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Abstract
We consider higher-order recursion schemes as generators of infinite trees. A sort (simple type)
is called homogeneous when all arguments of higher order are taken before any arguments of
lower order. We prove that every scheme can be converted into an equivalent one (i.e, generating
the same tree) that is homogeneous, that is, uses only homogeneous sorts. Then, we prove the
same for safe schemes: every safe scheme can be converted into an equivalent safe homogeneous
scheme. Furthermore, we compare two definition of safe schemes: the original definition of Damm,
and the modern one. Finally, we prove a lemma which illustrates usefulness of the homogeneity
assumption. The results are known, but we prove them in a novel way: by directly manipulating
considered schemes.

2012 ACM Subject Classification Theory of computation → Rewrite systems

Keywords and phrases higher-order recursion schemes, λ-calculus, homogeneous types, safe
schemes

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.27

1 Introduction

Higher-order recursion schemes (schemes in short) are used to faithfully represent the control
flow of programs in languages with higher-order functions. This formalism is equivalent via
direct translations to simply-typed λY -calculus [18] and to higher-order OI grammars [9, 15].
Collapsible pushdown systems [10] and ordered tree-pushdown systems [7] are other equivalent
formalisms. Schemes cover some other models such as indexed grammars [1] and ordered
multi-pushdown automata [4]. We consider schemes as generators of infinite trees, so we say
that two schemes are equivalent if they generate the same tree. Likewise, we say that two
classes of schemes are equi-expressive, if for every scheme in one of the classes there exists
an equivalent scheme in the other class.

A sort (simple type) is called homogeneous when all arguments of higher order are
taken before any arguments of lower order; a scheme is homogeneous when it uses only
homogeneous sorts. Homogeneous schemes should not be confused with safe schemes. The
safety assumption was first introduced implicitly by Damm [9]. His restriction was that when
an argument of some order is applied to a function, then all arguments of greater or the
same order have to be applied as well. A modern definition of safety (introduced by Knapik,
Niwiński, Urzyczyn [14]) is slightly different: it says that a subterm of some order cannot
use parameters of a strictly smaller order. We remark that some authors, while defining
safe schemes, require that they are also homogeneous [9, 13, 14], while other authors do not
impose this requirement [3, 6]. In this paper we treat homogeneity separately from safety.

The goal of this paper is to compare the aforementioned notions, and to give simple
translations between equi-expressive classes of schemes. The main equi-expressivity result
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27:2 Homogeneity without Loss of Generality

says that every scheme can be converted into a homogeneous scheme that is equivalent, and
remains of the same order. This was shown by Broadbent in his PhD thesis [5, Section 3.4],
and was never published. Furthermore, it is easy to see that the Damm’s definition of safety
is more restrictive than the modern one. On the other hand, it was observed by Carayol and
Serre [6] that every scheme that is safe according to the modern definition can be turned into
an equivalent scheme that is safe according to Damm’s definition. Likewise, it was shown by
Blum [2] (his paper dates back to 2009, when it was shared on his personal website, but was
published on arXiv only in 2017), and independently by Carayol and Serre [6], that every
safe scheme (without the homogeneity assumption) can be converted into an equivalent safe
scheme that is homogeneous, and remains of the same order.

All the proofs for safe schemes follow the same idea: they inspect the equivalence between
safe schemes and higher-order pushdown automata. It is observed that while translating from
safe schemes to higher-order pushdown automata, schemes can comply with a less restrictive
definition; simultaneously, when translating from automata to schemes, it is easy to fulfill
additional requirements on the scheme.

The proof of Broadbent, dealing with schemes that need not to be safe, is even more
complicated. Arbitrary schemes are equivalent to collapsible pushdown automata, a gen-
eralization of higher-order pushdown automata. We can see, though, that the only known
translation from collapsible pushdown automata to recursion schemes [10] results in schemes
that are not homogeneous. The actual proof consists of three steps. First, it is observed
that already while translating a scheme to a collapsible pushdown automaton, the resulting
automaton is of a special shape. Then, such an automaton is further modified (without
changing the generated tree), so that it gains some additional properties. Finally, it is
observed that for the particular automata obtained this way, the translation from automata
to schemes can be altered so that the resulting schemes are homogeneous.

We reprove the above results: we give a simple transformation changing any scheme to
an equivalent homogeneous scheme, and another simple transformation changing any safe
scheme to a scheme that is safe according to the more restrictive definition of Damm, and
moreover homogeneous.

Both our proofs (the one for general schemes, and the one for safe schemes) do not use any
detour through automata; we directly show how to syntactically modify a scheme so that it
becomes homogeneous. Roughly, in the case of general schemes we artificially increase orders
of some arguments, while in the case of safe schemes we split complex rules into multiple
simpler rules, and we reorder arguments. Our direct approach has the advantage that it
is more transparent and it sheds some light on the nature of the homogeneity assumption
(conversely to the previous proofs: while translating a scheme to an automaton and then
back to a scheme, we obtain a scheme of a completely different shape than the original one).

In order to give a full picture we have to recall here the result that there is a scheme
that is not equivalent to any safe scheme [16]. We thus have two groups of equi-expressive
classes: “unsafe” schemes, either homogeneous or not, and safe schemes, either according to
the Damm’s definition or to the modern definition, and either homogeneous or not.

In addition to the above results, in the final section we prove a simple lemma, which
illustrates usefulness of the homogeneity assumption.

2 Preliminaries

Infinitary λ-calculus. The set of sorts (aka. simple types) is defined by induction: o is a
sort, and if α and β are sorts, then α→ β is a sort. We omit brackets on the right of an
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P. Parys 27:3

arrow, so, for example, o→ (o→ o) is abbreviated to o→ o→ o. Notice that every sort can
be written in the form α1→ · · · → αs→ o.

The order of a sort γ, denoted ord(γ), is defined by induction on the structure of γ:
ord(o) = 0, and ord(α→ β) = max(ord(α) + 1, ord(β)). We observe that ord(α1→ · · · →
αs→ o) = 1 + max(ord(α1), . . . , ord(αs)) whenever s ≥ 1.

A sort α1→ · · · → αs→ o is homogeneous if ord(α1) ≥ · · · ≥ ord(αs) and all α1, . . . , αs
are homogeneous. An equivalent definition says that the sort o is homogeneous, and a sort
α→ β is homogeneous if ord(α) = ord(α→ β)− 1 and α, β are homogeneous.

While defining λ-terms, we assume existence of the following sets:
Σ—a set of symbols (alphabet), and
V—a set of variables with assigned sorts; we write xα, yα, zα, . . . for variables of sort α.
We consider infinitary, sorted λ-calculus. Infinitary λ-terms (or just λ-terms) are defined

by coinduction (for an introduction to coinductive definitions and proofs see, e.g., Czajka [8]),
according to the following rules:

node constructor—if Ko
1 , . . . ,K

o
r are λ-terms, then (a〈Ko

1 , . . . ,K
o
r 〉)o is a λ-term, for

every a ∈ Σ,
variable—every variable xα ∈ V is a λ-term,
application—if Kα→β and Lα are λ-terms, then (Kα→β Lα)β is a λ-term, and
λ-binder—if Kβ is a λ-term and xα ∈ V is a variable, then (λxα.Kβ)α→β is a λ-term.

We naturally identify λ-terms differing only in names of bound variables. We often omit
sort annotations of λ-terms, but we keep in mind that every λ-term (and every variable) has
a particular sort. The set of free variables of a λ-term M , denoted FV (M), is defined as
usual. A λ-term M is closed if FV (M) = ∅. We assume that in V there are always some
fresh variables of every sort, not appearing in λ-terms under consideration.

The order of a λ-term M , written ord(M), is just the order of its sort. The complexity of
a λ-term M is the smallest number m ∈ N ∪ {∞} such that all subterms of M are of order
at most m.

Reductions. By M [N/x] (where we require that N is of the same sort as x) we denote the
λ-term obtained by substituting N for x. This is by definition a capture-avoiding substitution,
which means that free variables of N are not captured by λ-binders in M ; this is achieved by
appropriately renaming bound variables in M .

A compatible closure  of a relation � is defined by induction according to the following
rules:

if M � N , then M  N ,
if Kj  K ′j for some j ∈ {1, . . . , r} and Ki = K ′i for all i ∈ {1, . . . , r} \ {j}, then
a〈K1, . . . ,Kr〉 a〈K ′1, . . . ,K ′r〉,
if K  K ′, then K L K ′ L,
if L L′, then K L K L′, and
if K  K ′, then λx.K  λx.K ′.
The relation →β of β-reduction is defined as the compatible closure of the relation

{((λx.K)L,K[L/x])}. The relation →η of η-conversion is defined as the compatible closure
of the relation {(λx.K x,K) | x 6∈ FV (K)}. We let (→βη) = (→β) ∪ (→η). As a restriction
of β-reduction, we define the relation h−→β of head β-reduction: it contains all pairs of the
form

((λx.K)LP1 . . . Pn,K[L/x]P1 . . . Pn) .

FSCD 2018
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27:4 Homogeneity without Loss of Generality

For relations  and �, by ( ) ◦ (�) we denote their composition, by  k (where k ∈ N)
the composition of  with itself k times, and by  ∗ the reflexive transitive closure of
 . Moreover,  ∞ is the infinitary closure of  , defined by coinduction, according to the
following rules:

if M  ∗ a〈K1, . . . ,Kr〉 and Ki  ∞ K ′i for all i ∈ {1, . . . , r}, then M  ∞ a〈K ′1, . . . ,K ′r〉,
if M  ∗ x then M  ∞ x,
if M  ∗ K L, and K  ∞ K ′, and L ∞ L′, then M  ∞ K ′ L′, and
if M  ∗ λx.K and K  ∞ K ′, then M  ∞ λx.K ′.

Trees; Böhm Trees. A tree is defined as a λ-term that is built using only node constructors,
that is, not using variables, applications, nor λ-binders.

We consider Böhm trees only for closed λ-terms of sort o. For such a λ-term M , its Böhm
tree BT (M) is defined by coinduction, as follows:

if M h−→∗β a〈K1, . . . ,Kr〉 for some a ∈ Σ and some λ-terms K1, . . . ,Kr, then BT(M) =
a〈BT (K1), . . . ,BT (Kr)〉;
otherwise BT (M) = ⊥〈〉 (where ⊥ ∈ Σ is a distinguished symbol).

With such a definition it is easy to see that for every M there is exactly one Böhm tree. It
is a consequence of Kennaway, Klop, Sleep, de Vries [11] and Kennaway, van Oostrom, de
Vries [12] that the Böhm tree does not change during βη-reductions.

I Fact 1. If M and N are closed λ-terms of sort o and M →∞βη N , then BT(M) =
BT (N). J

Higher-Order Recursion Schemes. A higher-order recursion scheme (or just a scheme) is
a triple G = (N ,R, Xo

0 ), where N ⊆ V is a finite set of nonterminals, Xo
0 ∈ N is a starting

nonterminal, being of sort o, and R is a function that maps every nonterminal X ∈ N to a
finite λ-term of the form λx1. · · · .λxs.M , where

the sorts of X and λx1. · · · .λxs.M are the same,
FV (M) ⊆ N ∪ {x1, . . . , xs},
M is of sort o, and
M is a finite applicative term, that is, it does not contain any λ-binders.

We assume that elements of N are not used as bound variables, and that R(X) is not a
nonterminal.1 When R(X) = λx1. · · · .λxs.M , we say that X x1 . . . xs →M is a rule of G,
and M is its right side. The order of the scheme is defined as the maximum of orders of
nonterminals in N .

The infinitary λ-term generated by a scheme G = (N ,R, X0) from a λ-term M , denoted
ΛG(M), is defined as the limit of the following process starting fromM : take any nonterminal
X appearing in the current term, and replace it by R(X). We define Λ(G) = ΛG(X0); observe
that this is a closed λ-term of sort o and of complexity not greater than the order of the
scheme. The tree generated by G is defined as BT (Λ(G)).

We say that a scheme G = (N ,R, X0) is homogeneous if sorts of all nonterminals in N
are homogeneous. Notice that then also the sort of every subterm of R(X) is homogeneous,
for every nonterminal X ∈ N .

1 Without the last condition, it would be necessary to give a more complicated definition of Λ(G). On the
other hand, it is easy to ensure this condition, without changing the tree generated by the scheme.



The official version will be available from July 9, 2018 at: 
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry 

an
d 

Unp
ub

lis
he

d 

Vers
ion

P. Parys 27:5

I Example 1. Consider a scheme G1 with nonterminals Y o0 , Y
o→((o→o)→o)→o
1 , Y o→o2 , and

Y
o→(o→o)→o
3 , where Y0 is starting; and rules

Y0 → Y1 (b〈c〈〉〉) (Y3 (c〈〉)) , Y2 x
o → x ,

Y1 x
o z(o→o)→o → a〈z Y2, Y1 (b〈x〉) (Y3 x)〉 , Y3 x

o yo→o → y x .

Then

Λ(G1) = M1 (b〈c〈〉〉) ((λxo.λyo→o.y x) (c〈〉)) ,

where M1 is the unique λ-term such that

M1 = λxo.λz(o→o)→o.a〈z (λxo.x),M1 (b〈x〉) ((λxo.λyo→o.y x)x)〉 .

We can see that BT(Λ(G1)) = a〈T0, a〈T1, a〈T2, . . .〉〉〉, where T0 = c〈〉, and Ti+1 = b〈Ti〉 for
i ∈ N.

Notice that the sorts of Y1 and of Y3 are not homogeneous: the first parameter is of order
0, and the second of order 2 or 1. J

3 Ensuring Homogeneity

We now prove our main theorem:

I Theorem 2. For every scheme G = (N ,R, X0) one can construct in logarithmic space a
homogeneous scheme H that is of the same order as G and such that BT (Λ(H)) = BT (Λ(G)).

Let us first present the general idea of the proof. Consider thus a nonterminal X with
R(X) = λx.λy.K, where ord(x) < ord(y) (like Y1 or Y3 in Example 1). The sort of X is not
homogeneous, as it does not satisfy ord(x) ≥ ord(y). How can we make it homogeneous?

One idea, which does not work, is to swap the order of x and y. The sort of λy.λx.K is
indeed homogeneous. Such a swap is problematic, though: possibly there are places where
only one argument is given to X, corresponding to the parameter x (e.g., in Example 1 we
always give only one argument to Y3). When the parameters are swapped, we cannot pass a
value of x to X, without passing a value of y.

There is another simple idea, which actually works. Namely, we should raise the order of
x to ord(y). How can we do that? Simply instead of passing to X an argument M of a low
order ord(x), we pass a function λz.M (of order ord(y), higher than ord(x)), which ignores
its argument z and returns M . On the other side, we change every use of x in K to xN ,
where N is an arbitrary λ-term of the same sort as z.

Notice that after such a modification of the sort of x, the order of λx.λy.K remains as
before the modification. This is very important: thanks to this property (orders of subterms
do not change), we can perform the modification independently in every place. Moreover, as
a side effect, also the order of the whole scheme remains unchanged.

There is one more difficulty to overcome, while proving the theorem. Namely, in λ-
calculus it would be possible to simply write λz.M instead of M , whenever we wanted to
convert M into a function returning M . This is not so trivial for schemes, as we cannot
use λ-binders—we should use nonterminals instead. Say that we want to change the order
of M from 0 (sort o) to 1 (sort o→ o). To this end, we introduce a nonterminal S with
R(S) = λxo.λzo.x, and we write SM instead of λz.M (that is, instead of M in the original
scheme).

FSCD 2018
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27:6 Homogeneity without Loss of Generality

Notice, though, that the sort of the new nonterminal S has to be homogeneous as
well. This means that using such a nonterminal S we can raise the order only by one,
as we cannot have R(S) = λxo.λz.x with ord(z) > 0. If we want to raise the order of
M from 0 to 2 (or more), beside of S we need another nonterminal S′ which raises the
order from 1 to 2 (again only by one), etc. As we start now from sort o→ o, we should
take R(S′) = λxo→o1 .λzo→o1 .λzo.x1 z. We then write S′ (SM) instead of M , which, after
expanding S and S′, equals

(λxo→o1 .λzo→o1 .λzo.x1 z) ((λxo.λzo.x)M) .

This β-reduces (in three steps) to λzo→o1 .λzo.M , thus it is a function of order 2 ignoring its
arguments and returning M .

We now come to details. First, we define sorts γk; these will be sorts of the spare
parameters (i.e., of z in the above explanation). The definition is by induction:

γ0 = o, γk = γk−1→ o for k ≥ 1.

For example, γ1 = o→ o and γ2 = (o→ o)→ o. We see that ord(γk) = k for all k ∈ N.
Next, we have an operation Rk, which says how to raise the order of a sort α to k. For

every sort α and every k ≥ ord(α) we define:

Rk(α) = γk−1→ γk−2→ · · · → γord(α)→ α .

In particular Rord(α)(α) = α. We see that ord(Rk(α)) = k. Basing on Rk, we define, by
induction, a transformation H changing an arbitrary sort into a homogeneous one:

H(o) = o, H(α→ β) = Rord(α→β)−1(H(α))→H(β).

Notice that ord(H(α)) = ord(α) for every sort α, and that H(α) is indeed homogeneous.
Next, we come to transforming λ-terms. For every sort α appearing in the original scheme

G (as a sort of a subterm of R(X) for some nonterminal X ∈ N ), and for every k such that
ord(α) < k ≤ ord(G), we add a nonterminal Sα,k. Its sort is Rk−1(H(α))→Rk(H(α)). Recall
that Rk(H(α)) = γk−1→Rk−1(H(α)); let us also write Rk−1(H(α)) = β1→ · · · → βs→ o.
Then the rule for Sα,k is

R′(Sα,k) = λx.λz.λy1. · · · .λys.x y1 . . . ys .

Here the sort of x is Rk−1(H(α)), the sort of z is γk−1, and the sorts of y1, . . . , ys are
β1, . . . , βs, respectively.

Let again α be a sort appearing in G, and let k be such that ord(α) ≤ k ≤ ord(G).
The sort of a λ-term may be changed from H(α) to Rk(H(α)) by applying the following
transformation, also called Rk:

Rk(M) = Sα,k (Sα,k−1 . . . (Sα,ord(α)+1M) . . . ) .

Here, by appending a nonterminal Sα,i we change the sort from Ri−1(H(α)) to Ri(H(α));
recall that Rord(α)(H(α)) = H(α).

We also need an opposite operation, which converts a function back to its value, by
applying some arguments of sorts γk. First we define some nonterminals of such sorts: we fix
a symbol e ∈ Σ, and for every k < ord(G) we add a nonterminal Uk of sort γk, and we take:

R′(U0) = e〈〉, R′(Uk) = λzγk−1 .e〈〉 for k ≥ 1.
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P. Parys 27:7

Clearly Uk has sort γk, for every k ∈ N.
When N is of sort Rk(H(α)), and ord(α) = n (the relation between k and n is k ≥ n),

we define

Ln(N) = N Uk−1 Uk−2 . . . Un .

This λ-term is indeed of sort H(α).
Using the above operations, we define a transformation changing the original scheme

into a homogeneous one. Let us first describe this transformation informally. It works as
follows. We first change the sort of every λ-term (i.e., every nonterminal, every variable, and
every subterm of the right side of every rule) from α to H(α). This causes a problem on
applications, since to a function of sort H(α→ β) = Rord(α→β)−1(H(α))→H(β) we apply
an argument of sort H(α). We thus repair the argument by applying Rord(α→β)−1(·) to it.
This also causes a problem on λ-binders and on variables: the new sort of a λ-binder λxα.Kβ

should be H(α→ β) = Rord(α→β)−1(H(α))→H(β), so the sort of the variable should be
Rord(α→β)−1(H(α)); however, while using this variable, we expect that it will have sort H(α).
We thus apply Lord(α)(·) to every place where the variable is used. There is no problem with
nonterminals: every nonterminal simply changes its sort from α to H(α).

We now define the transformation formally. A raise environment is a function Ω mapping
some variable names to sorts, where we require that Ω(xα) equals Rk(H(α)) for some
k ≥ ord(α). Intuitively, Ω(xα) is a new sort that the variable gets after the transformation.
For a raise environment Ω (such that FV (M) ⊆ dom(Ω)) we define HΩ(M) by coinduction
on the structure of a λ-term M :

HΩ(a〈K1, . . . ,Kr〉) = a〈HΩ(K1), . . . ,HΩ(Kr)〉 .

HΩ(xα) = Lord(α)(xΩ(xα)) if xα ∈ V \ N ,

HΩ(Xα) = XH(α) if Xα ∈ N ,
HΩ(K L) = HΩ(K) Rord(K)−1(HΩ(L)) ,

HΩ(λxα.K) = λxα
′
.HΩ[xα 7→α′](K) , where α′ = Rord(λxα.K)−1(H(α)) .

Here by Ω[xα 7→ α′] we mean the function that maps xα to α′, and every other variable
y ∈ dom(Ω) to Ω(y). Notice that for M of sort α, the resulting λ-term HΩ(M) is of sort
H(α); in particular, in the case of an application with K of sort β → γ, the sort of the
function HΩ(K) being H(β→ γ) = Rord(β→γ)−1(H(β))→H(γ) matches well with the sort
of the argument, being Rord(β→γ)−1(H(β)).

The newly created scheme H = (N ′,R′, X0) is as follows. For every nonterminal Xα ∈ N ,
to N ′ we take a nonterminal XH(α), and we define R′(XH(α)) = H∅(R(Xα)) (where ∅ is
the raise environment with empty domain). Additionally in N ′ we have nonterminals Sα,k
and Uk, with appropriate rules, as defined above.

I Example 1 (continued). While applying our transformation to the scheme G1 from Ex-
ample 1, we obtain a homogeneous scheme with the following rules (where we write Si instead
of So,i):

Y0 → Y1 (S2 (S1 (b〈c〈〉〉))) (Y3 (S1 (c〈〉))) ,

Y1 x
(o→o)→o→o z(o→o)→o → a〈z Y2, Y1 (S2 (S1 (b〈xU1 U0〉))) (Y3 (S1 (xU1 U0)))〉 ,

Y2 x
o → x , S1 x

o zo → x , U0 → e〈〉 ,
Y3 x

o→o yo→o → y (xU0) , S2 x
o→o zo→o yo1 → x y1 , U1 z

o → e〈〉 . J

FSCD 2018
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27:8 Homogeneity without Loss of Generality

It is easy to see that H can be computed in logarithmic space (in particular its size is
polynomial in the size of G). We also notice that the order of the scheme remains unchanged;
this is the case because ord(H(α)) = ord(α) for every sort α.

It remains to prove that BT(Λ(H)) = BT(Λ(G)) for every closed λ-term Mo. To this
end, we need to define a variant of our transformation that works with λ-terms, not with
schemes. We thus define RΛ

k (M) is the same way as Rk(M), but in the definition we replace
Sα,i with R′(Sα,i) (recall that R′ describes rules of the new scheme). Similarly LΛ

n(N) is
defined as Ln(N), but in the definition we replace Ui with R′(Ui). Finally, HΛ

Ω(M) is defined
as HΩ(M), but it uses functions RΛ

i and LΛ
i instead of Ri and Li. In other words, this

variant of the transformation inserts definitions of the nonterminals Sα,i and Ui instead of
the nonterminals themselves.

We immediately see that Λ(H) = HΛ
∅ (Λ(G)). In the remaining part of the section

we will prove that BT(HΛ
∅ (M)) = BT(M) for every closed λ-term Mo; this implies that

BT(Λ(H)) = BT(Λ(G)) when instantiated with M = Λ(G). The proof is split to several
lemmata.

I Lemma 3. Let P be a λ-term of sort Rk−1(H(α)), where k > ord(α). In such a situation
R′(Sα,k)P R′(Uk−1)→∗βη P .

Proof. Let Rk−1(H(α)) = β1→· · ·→βs→o. Recalling the definition of R′(Sα,k) we observe
that

R′(Sα,k)P R′(Uk−1) = (λx.λz.λy1. · · · .λys.x y1 . . . ys)P R′(Uk−1)
→2
β λy1. · · · .λys.P y1 . . . ys →s

η P . J

I Lemma 4. Let M be a λ-term of sort H(α), and let k ≥ ord(α) = n. In such a situation
LΛ
n(RΛ

k (M)))→∗βη M .

Proof. The thesis follows directly from Lemma 3 once we recall that

LΛ
n(RΛ

k (M)) = R′(Sα,k) (R′(Sα,k−1) . . . (R′(Sα,n+1)M) . . . )
R′(Uk−1)R′(Uk−2) . . . R′(Un) . J

I Lemma 5. Let M and Nα be λ-terms, xα a variable, and Ω a raise environment such
that FV (M) \ {xα} ∪ FV (N) ⊆ dom(Ω). Let also α′ = Rk(H(α)) for some k ≥ ord(α). In
such a situation HΛ

Ω[xα 7→α′](M)[RΛ
k (HΛ

Ω(N))/xα′ ]→∞βη HΛ
Ω(M [N/xα]).

Proof. The proof is by coinduction on the structure of M . Only the case of M = xα is in-
teresting. In this case HΛ

Ω[xα 7→α′](M) = LΛ
ord(α)(xα

′), so HΛ
Ω[xα 7→α′](M)[RΛ

k (HΛ
Ω(N))/xα′ ] =

LΛ
ord(α)(RΛ

k (HΛ
Ω(N))), and by Lemma 4 we have that LΛ

ord(α)(RΛ
k (HΛ

Ω(N))) →∗βη HΛ
Ω(N),

which is what we need since M [N/xα] = N .
We remark that in the case of M = λyβ .K, we use the assumption of coinduction for the

extended raise environment Ω[yβ 7→ β′], and we observe that HΛ
Ω(N) = HΛ

Ω[yβ 7→β′](N) when
(without loss of generality) we assume that yβ is not free in N . J

I Lemma 6. If M h−→β N , and Ω is a raise environment such that FV (M) ⊆ dom(Ω), then
(HΛ

Ω(M),HΛ
Ω(N)) ∈ ( h−→β) ◦ (→∞βη).

Proof. The proof is by induction on the depth of the head redex in M . The induction
step is trivial. Consider thus the base case, when M = (λxα.K)L, and N = K[L/xα]. Let
k = ord(λx.K)− 1, and α′ = Rk(H(α)); clearly k ≥ ord(α). By definition we have that

HΛ
Ω(M) = (λxα

′
.HΛ

Ω[xα 7→α′](K)) RΛ
k (HΛ

Ω(L)) .
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Taking P = HΛ
Ω[xα 7→α′](K)[RΛ

k (HΛ
Ω(L))/xα′ ] we see that HΛ

Ω(M) h−→β P , and from Lemma 5
we obtain that P →∞βη HΛ

Ω(N). J

Using Lemma 6 it is easy to prove by coinduction that for every closed λ-term M of sort o
it holds that BT (HΛ

∅ (M)) = BT (M). Let us write this in details. The proof is by coinduction
on the structure of these Böhm trees. According to the definition of a Böhm tree, we have
two cases. The first of them is that M h−→∗β N for some N that starts with a node constructor.
In this case, by Lemma 6 (applied to every reduction in the sequence of reductions witnessing
M

h−→∗β N) we have that (HΛ
∅ (M),HΛ

∅ (N)) ∈ (( h−→β) ◦ (→∞βη))∗. Clearly ( h−→β) ⊆ (→∞βη), thus
using Fact 1 (multiple times) we obtain that BT(HΛ

∅ (M)) = BT(HΛ
∅ (N)). Let us write

N = a〈K1, . . . ,Kr〉; then HΛ
∅ (N) = a〈HΛ

∅ (K1), . . . ,HΛ
∅ (Kr)〉. Since BT (HΛ

∅ (Ki)) = BT (Ki)
by the assumption of coinduction, we can conclude that

BT (HΛ
∅ (M)) = BT (HΛ

∅ (N)) = a〈BT (HΛ
∅ (K1)), . . . ,BT (HΛ

∅ (Kr))〉
= a〈BT (K1), . . . ,BT (Kr)〉 = BT (M) .

The opposite case is that no sequence of head β-reductions from M leads to a λ-term
starting with a node constructor. It is then possible that M h−→∗β N for some N such that no
head β-reduction can be performed from N (but N does not start with a node constructor).
Since M , and thus also N , are closed and of sort o, this implies that N is of the form
. . . K3K2K1 (infinite application). From the definition of HΛ

∅ it follows that HΛ
∅ (N) is

also such an infinite application, and thus no head β-reduction can be performed from N .
Moreover, as in the previous case, we can see that BT(HΛ

∅ (M)) = BT(HΛ
∅ (N)). We thus

have

BT (HΛ
∅ (M)) = BT (HΛ

∅ (N)) = ⊥〈〉 = BT (M) .

Another possibility is that an infinite sequence of head β-reductions can be performed
from M . In other words, for every n ∈ N there is a λ-term N such that M h−→n

β N .
Fix some such n and N . Lemma 6 implies that (HΛ

∅ (M),HΛ
∅ (N)) ∈ (( h−→β) ◦ (→∞βη))n.

Using Fact 7 (below) we can move all head β-reductions to the front, and obtain that
(HΛ
∅ (M),HΛ

∅ (N)) ∈ ( h−→β)n ◦ (→∞βη)n (we suppress the proof of Fact 7, as the fact is standard,
and the proof is not difficult). This can be done for every n, which means that arbitrarily
long sequences of head β-reductions start in HΛ

∅ (M). Recalling that for every P there is
at most one Q such that P h−→β Q, and that no head β-reduction can be performed from a
λ-term starting with a node constructor, we conclude that BT (HΛ

∅ (M)) = ⊥〈〉 = BT (M).

I Fact 7. For all λ-terms M,N of sort o, if (M,N) ∈ (→∞βη) ◦ ( h−→β), then (M,N) ∈
( h−→β) ◦ (→∞βη). J

4 Safe Schemes

In this section we consider safe schemes. Let us recall that we have two definitions of safety.
Following Carayol and Serre [6] we use the name “safe schemes” for schemes that are safe
according to the modern definition, and “Damm-safe schemes” for schemes that are safe
according to the definition of Damm. We now give these definitions.

We define by coinduction when an applicative term is safe, with respect to a set of
nonterminals N :

FSCD 2018
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27:10 Homogeneity without Loss of Generality

M = a〈K1, . . . ,Kr〉 is safe if K1, . . . ,Kr are safe,
M = x ∈ V (in particular M = X ∈ N ) is always safe, and
M = K L1 . . . Ls (with s ≥ 1) is safe if K,L1, . . . , Ls are safe, and additionally ord(x) ≥
ord(M) for all x ∈ FV (M) \ N .

Damm-safe applicative terms are also defined by coinduction:
M = a〈K1, . . . ,Kr〉 is Damm-safe if K1, . . . ,Kr are Damm-safe,
M = x ∈ V (in particular M = X ∈ N ) is always Damm-safe, and
M = K L1 . . . Ls (with s ≥ 1) is Damm-safe if K,L1, . . . , Ls are Damm-safe, and
additionally ord(Li) ≥ ord(M) for all i ∈ {1, . . . , s}.

A scheme G = (N ,R, X0) is safe (Damm-safe) if the right side of every of its rules (i.e., the
term M when R(X) = λx1. · · · .λxs.M) is safe (Damm-safe, respectively).

Notice that not every subterm of a (Damm-)safe term need to be (Damm-)safe. But,
for example, subterms appearing as arguments are (Damm-)safe, etc. We remark that the
definition of safe applicative terms can be extended to λ-terms which are not applicative [3],
but we refrain from doing this.

I Example 2. Consider a scheme G2 with the following rules:

S →W (X (b〈〉)) , W g(o→o)→o → Y (X (Y g)) , Y g(o→o)→o → g A ,

X xo fo→o → f x , Axo → a〈x〉 .

This scheme is safe, but not Damm-safe; in particular the subterm X (Y g) is not Damm-safe
since ord(Y g) = 0 < 2 = ord(X (Y g)). Moreover, the sort of X is not homogeneous. Notice
that BT (Λ(G2)) = a〈a〈b〈〉〉〉. J

It is easy to prove by coinduction that every Damm-safe applicative term is also safe; in
consequence every Damm-safe scheme is also safe. We now give two transformations: first
we show how to convert a safe scheme into an equivalent scheme that is Damm-safe; then we
show how to convert a Damm-safe scheme into an equivalent scheme that is Damm-safe and
homogeneous.

I Theorem 8. For every safe scheme G = (N ,R, X0) one can construct in logarithmic
space a Damm-safe scheme H = (N ′,R′, Y0) that is of the same order as G and such that
BT (Λ(H)) = BT (Λ(G)).

Let us fix some (arbitrary) order ≺ on variables. When FV (M) \ {N} = {x1, . . . , xk},
where x1 ≺ · · · ≺ xk, then we write OV (M) for the sequence (x1, . . . , xk).

The transformation of Theorem 8 amounts to splitting every rule of G into multiple
simpler rules. More precisely, for every safe subterm M of the right side of every rule of
G, and for every nonterminal M = X ∈ N , we create a new nonterminal denoted bMc. If
OV (M) = (xα1

1 , . . . , xαkk ), and if the sort ofM is β, then the sort of bMc is α1→· · ·→αk→β.
To the new set of nonterminals N ′, we take all such nonterminals bMc. As the starting
nonterminal we take Y0 = bX0c.

We now define R′(bMc) for every nonterminal bMc ∈ N ′. Consider first the case
when M = X is a nonterminal from N . Suppose that R(X) = λx1. · · · .λxs.K, and
OV (K) = (y1, . . . , yk). In such a situation we put R′(bMc) = λx1. · · · .λxs.bKc y1 . . . yr (on
the list y1, . . . , yr we have those of x1, . . . , xs which are free in K, reordered according to ≺).

Suppose now that M is not a nonterminal from N . Let OV (M) = (x1, . . . , xk). Let also
y1, . . . , ys be variables of sorts α1, . . . , αs, where α1→ · · · → αs→ o is the sort of M . We
have three possibilities, depending on the shape of M .
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If M = a〈K1, . . . ,Kr〉, and OV (Ki) = (zi,1, . . . , zi,mi) for all i ∈ {1, . . . , r}, then

R′(bMc) = λx1. · · · .λxk.a〈bK1c z1,1 . . . z1,m1 , . . . , bKrc zr,1 . . . zr,mr 〉 .

If M = x, then R′(bMc) = λx.λy1. · · · .λys.x y1 . . . ys.
If M = K0K1 . . . Kr, where r ≥ 1, and K0 is not an application, and OV (Ki) =
(zi,1 . . . zi,mi) for all i ∈ {0, . . . , r}, then

R′(bMc) = λx1. · · · .λxk.λy1. · · · .λys.bK0c z0,1 . . . z0,m0

(bK1c z1,1 . . . z1,m1) . . . (bKrc zr,1 . . . zr,mr ) y1 . . . ys .

Notice that in the first and the third case, the subterms Ki are safe, so bKic is indeed
a nonterminal in N ′. It is also easy to prove that the right side of every rule is Damm-
safe. Indeed, for subterms of sort o (i.e., of order 0) there is nothing to check. The only
subterms which are of higher order (and which are not a part of a larger application) are
bKic zi,1 . . . zi,mi in the last case of the definition. By safety of Ki we have that ord(zi,j) ≥
ord(Ki), since zi,j is free in Ki, and exactly this is needed to claim that bKic zi,1 . . . zi,mi is
Damm-safe.

Let Exp(K) be the λ-term obtained by repeatedly replacing in K all nonterminals bLc
such that L 6∈ N by R′(L) (this is similar to ΛH(K), but we do not expand nonterminals of
the form bXc, where X ∈ N ). It is easy to prove by induction on the structure of a finite
applicative term M , that if OV (M) = (x1, . . . , xk), then Exp(R′(bMc))x1 . . . xk →∗βη M (if
we identify nonterminals X ∈ N with bXc). In consequence Λ(H)→∞βη Λ(G), which implies
that BT (Λ(H)) = BT (Λ(G)), by Fact 1.

I Example 2 (continued). While applying our transformation to the safe scheme G2 from
Example 2, we obtain a Damm-safe scheme H2 with the following rules (where variables
x, f, g are of sorts o, o→ o, and (o→ o)→ o, respectively; we assume that f ≺ g ≺ x):

bSc → bW (X (b〈〉)c , bXcx f → bf xc f x , bgc g f → g f ,

bW c g → bY (X (Y g))c g , bAcx→ ba〈x〉cx , bxcx→ x ,

bY c g → bg Ac g , bfc f x→ f x , bb〈〉c → b〈〉 ,
bW (X (b〈〉)c → bW c bX (b〈〉)c , bY gc g → bY c (bgc g) ,
bX (b〈〉)c f → bXc bb〈〉c f , bg Ac g → bgc g bAc ,
bY (X (Y g))c g → bY c (bX (Y g)c g) , bf xc f x→ bfc f (bxcx) ,
bX (Y g)c g f → bXc (bY gc g) f , ba〈x〉cx→ a〈bxcx〉 . J

We now come to the second transformation.

I Theorem 9. For every Damm-safe scheme G = (N ,R, X0) one can construct in logarithmic
space a homogeneous Damm-safe scheme H = (N ′,R′, X0) that is of the same order as G
and such that BT (Λ(H)) = BT (Λ(G)).

We remark that the transformation from the previous section (which converts a scheme
to a homogeneous scheme), when applied to a Damm-safe scheme results in a scheme that is
homogeneous, but no longer (Damm-)safe. Indeed, we have there (on argument positions)
subterms of the form Sα,k+1M , where k = ord(M). Recalling that the order of Sα,k+1M is
k + 1, we notice that such a subterm is not Damm-safe (and if, e.g., M is a variable, it is
also not safe).

We thus use a different approach: we reorder parameters / arguments. This approach
works only because the scheme is Damm-safe. Indeed, Damm-safety ensures that when an
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argument of some order k is applied, then simultaneously all arguments of orders higher than
k are applied, and thus we can move our argument of order k behind these arguments.

Before giving a formal definition of our transformation, let us extend the notion of Damm-
safety from applicative terms to λ-terms. To this end, to the definition of a Damm-safe
terms, we add an item saying that a λ-term M = λx1. · · · .λxs.K (with s ≥ 1) is Damm-safe
if K is Damm-safe, and additionally ord(xi) ≥ ord(K) for all i ∈ {1, . . . , s}.

For sorts α1, . . . , αs, let sort(α1, . . . , αs) be the permutation (i1, . . . , is) of (1, . . . , s)
for which either ord(αij ) = ord(αij+1) and ij < ij+1, or ord(αij ) > ord(αij+1), for every
j ∈ {1, . . . , s}. Having the sorting function, we define our transformation on sorts, by
induction: when α = α1→ · · · → αs→ o, and sort(α1, . . . , αs) = (i1, . . . , is), we put S(α) =
S(αi1)→ · · · → S(αis)→ o (in particular S(o) = o). Similarly, for Damm-safe λ-terms we
define by coinduction:

if M = a〈K1, . . . ,Kr〉, then S(M) = a〈S(K1), . . . ,S(Kr)〉,
if M = xα ∈ V , then S(M) = xS(α) (where x is either a “real” variable, or a nonterminal),
if M = K Lα1

1 . . . Lαss (with s ≥ 1), and sort(α1, . . . , αs) = (i1, . . . , is), and K is Damm-
safe, then S(M) = S(K) S(Li1) . . . S(Lis), and
finally, if M = λxα1

1 . · · · .λxαss .K (with s ≥ 1), and sort(α1, . . . , αs) = (i1, . . . , is), and
ord(xi) ≥ ord(K) for all i ∈ {1, . . . , s}, then S(M) = λx

S(αi1 )
i1

. · · · .λxS(αis )
is

.S(K).
Notice that for a λ-term M of sort α, the sort of S(M) is S(α).

It may appear that the definition is ambiguous (but it is not). The problem is that
while transforming an application M = K L1 . . . Lk+m, where both K and N = K L1 . . . Lk
are Damm-safe, we may proceed in two ways: we may sort all the arguments L1 . . . Lk+m,
but we may also separately sort the arguments L1 . . . Lk and separately the arguments
Lk+1 . . . Lk+m. We notice, though, that the effect will be the same. Indeed, we have that
ord(Li) ≥ ord(N) for i ≤ k, because N is Damm-safe, and ord(Li) < ord(N) for i > k

because these Li are given as arguments to N . This means that even while sorting all the
arguments L1 . . . Lk+m together, the arguments Li for i ≤ k will appear before the arguments
for i > k. The same can be said about a sequence of λ-binders M = λx1. · · · .λxk+m.K in
which ord(xi) ≥ ord(λxk+1. · · · .λxk+m.K) for all i ∈ {1, . . . , k}.

Having a transformation of λ-terms, it is immediate to define a transformation on schemes:
we take N ′ = {XS(α) | Xα ∈ N , and R′(XS(α)) = S(R(Xα)) for all Xα ∈ N .

On the one hand, it should be clear that H is homogeneous, Damm-safe, and of the same
order as G. On the other hand, it is easy to prove the following lemma.

I Lemma 10. If M = (λx1. · · · .λxs.K)L1 . . . Ls is a Damm-safe λ-term, and M h−→s
β N ,

then N is Damm-safe, and S(M) h−→s
β S(N). J

Using the above lemma it is easy to prove by coinduction that BT (S(M)) = BT (M) for
every Damm-safe λ-term M . Because Λ(H) = S(Λ(G)), and because Λ(G) is Damm-safe, it
follows that BT (Λ(H)) = BT (Λ(G)). Notice that in Lemma 10 it is essential that we perform
all the s head β-reductions at once, not only a single one (since in S(M) the s arguments
are applied in different order than in M).

I Example 2 (continued). Let us apply the transformation to the Damm-safe scheme H2
from our example. Since bXc is the only nonterminal having a non-homogeneous sort, only
the rules involving bXc are changed, as follows:

bXc f x→ bf xc f x , bX (Y g)c g f → bXc f (bY gc g) ,
bX (b〈〉)c f → bXc f bb〈〉c .
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Notice that it does not make sense to apply the transformation to the scheme G2, which is
not Damm-safe. Indeed, it would be impossible to swap the order of the parameters of X,
since in the subterm X (Y g) we are applying only one argument to X. J

5 Consequences of Homogeneity

Let us say that a λ-term is homogeneous if sorts of all its subterms are homogeneous. By
definition this means that arguments of higher order are always applied before arguments of
lower order. Due to this fact, in a homogeneous λ-term (unlike in an arbitrary λ-term) we
can perform β-reductions starting from redexes concerning variables of the highest order.
In this section we formalize and prove this property of homogeneous λ-terms (Lemmata 11
and 12). We remark that this property turned out to be useful e.g. in Parys [17].

We define the order of a β-reduction as the order of the involved variable. More precisely,
for a number k ∈ N, the relation →β(k) of β-reduction of order k is defined as the compatible
closure of the relation {((λx.K)L,K[L/x]) | ord(x) = k}.

We first give our result for finite λ-terms.

I Lemma 11. Let M be a finite closed homogeneous λ-term of sort o and complexity at
most n. Then there exist λ-terms Nn, Nn−1, . . . , N0 such that M = Nn, and for every
k ∈ {0, . . . , n− 1}, Nk is of complexity at most k and Nk+1 →∗β(k) Nk, and N0 = BT (M).

For infinite λ-terms we need to be slightly more careful: it is not enough to replace
the reflexive transitive closure →∗β(k) by the infinitary closure →∞β(k). The problem lies in
subterms which do not have so-called head normal form: infinite applications . . . K3K2K1,
and subterms from which we can perform infinitely many head β-reductions. These are
subterms responsible for creating nodes labeled by ⊥ in the Böhm tree. We cannot deal with
these subterms by only applying β-reductions. We need to introduce relations that explicitly
replace such “invalid” subterms by ⊥〈〉.

The relation h−→β(k) of head β-reduction of order k (where k ∈ N) is defined as

{((λx.K)LP1 . . . Pn,K[L/x]P1 . . . Pn) | ord(x) = k} .

Consider now the relation containing all pairs of the form (K,λx1. · · · .λxs.⊥〈〉), where K
and λx1. · · · .λxs.⊥〈〉 are of the same sort, and either for every n ∈ N there is L such that
K

h−→n
β(k) L, or K is an infinite application. The compatible closure of this relation is denoted

→⊥(k). By →β⊥(k) we denote the union of →β(k) and →⊥(k). Using this relation we can
now reformulate Lemma 11 for infinite λ-terms.

I Lemma 12. Let M be a closed homogeneous λ-term of sort o and complexity at most
n. Then there exist λ-terms Nn, Nn−1, . . . , N0 such that M = Nn, and for every k ∈
{0, . . . , n− 1}, Nk is of complexity at most k and Nk+1 →∞β⊥(k) Nk, and N0 = BT (M).

Notice that Lemma 11 is an immediate consequence of Lemma 12, because when a λ-term
K is finite, then there is no L such that K →⊥(k) L, and K →∞β(k) M implies K →∗β(k) M

(every sequence of β-reductions from a finite λ-term is finite). Lemma 12, in turn, is a
consequence of the following lemma.

I Lemma 13. Let M be a λ-term of complexity at most k, order at most k−1, and such that
all free variables of M have order at most k − 1. Then there exists a λ-term P of complexity
at most k − 1 such that M →∞β⊥(k) P .
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Proof. The proof is by coinduction. Suppose first that for every n ∈ N there is N such
that M h−→n

β(k) N . In this situation M →⊥(k) λx1. · · · .λxs.⊥〈〉 (for an appropriate sequence
of variables x1, . . . , xs, corresponding to the sort of M). Denoting the latter λ-term P we
obtain the thesis, since the complexity of P equals ord(P ) = ord(M) ≤ k − 1.

The opposite case is that M h−→∗β(k) N for some N , but there is no N ′ such that N h−→β(k)
N ′. When N is a variable, the thesis is trivial for P = N , and when N = a〈K1, . . . ,Kr〉,
the thesis follows directly from the assumption of coinduction. When N = λx.K, the thesis
also follows from the assumption of coinduction; we only need to observe that ord(N) =
ord(M) ≤ k − 1 implies that ord(x) ≤ k − 2 ≤ k − 1. Suppose thus that N is an application.
When N is an infinite application, we again have M →⊥(k) λx1. · · · .λxs.⊥〈〉, and we are
done. When N = xL1 . . . Ls, by assumption the order of x is at most k−1, so we can simply
use the assumption of coinduction for all Li. Otherwise N is of the form (λx.K)L1 . . . Ls.
Since no head β-reduction of order k starts in N , necessarily ord(x) 6= k. Knowing that the
complexity of N is at most k, and that the sort of λx.K is homogeneous, this implies that
ord(λx.K) = ord(x)− 1 ≤ k − 1. We can thus again use the assumption of coinduction for
all the subterms K,L1, . . . , Ls. J

I Remark. We notice that Lemmata 11 and 12 would be false if we have allowed λ-terms
involving non-homogeneous sorts. For example, from a λ-term of the form (λx.λy.K)LM
with ord(x) = 0 and ord(y) = 1 we have to perform a β-reduction of order 0 concerning
x before a β-reduction of order 1 concerning y. It is, though, possible to reformulate our
lemmata without the homogeneity assumption. One only has to define the order of a β-
reduction (λx.K)L→β K[L/x] in a less natural way, as ord(λx.K)−1, not as ord(x) (notice
that these two numbers coincide for homogeneous sorts).
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