
The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

Narrowing Trees for Syntactically Deterministic
Conditional Term Rewriting Systems
Naoki Nishida
Graduate School of Informatics, Nagoya University, Nagoya, Japan
nishida@i.nagoya-u.ac.jp

https://orcid.org/0000-0001-8697-4970

Yuya Maeda
Graduate School of Informatics, Nagoya University, Nagoya, Japan
yuya@trs.css.i.nagoya-u.ac.jp

Abstract
A narrowing tree for a constructor term rewriting system and a pair of terms is a finite repres-
entation for the space of all possible innermost-narrowing derivations that start with the pair
and end with non-narrowable terms. Narrowing trees have grammar representations that can be
considered regular tree grammars. Innermost narrowing is a counterpart of constructor-based re-
writing, and thus, narrowing trees can be used in analyzing constructor-based rewriting to normal
forms. In this paper, using grammar representations, we extend narrowing trees to syntactically
deterministic conditional term rewriting systems that are constructor systems. We show that
narrowing trees are useful to prove two properties of a normal conditional term rewriting system:
one is infeasibility of conditional critical pairs and the other is quasi-reducibility.

2012 ACM Subject Classification Theory of computation → Rewrite systems

Keywords and phrases conditional term rewriting, innermost narrowing, regular tree grammar

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.26

Funding This work was partially supported by JSPS KAKENHI Grant Number JP17H01722.

Acknowledgements We gratefully acknowledge the anonymous reviewers for their useful com-
ments and suggestions to improve the paper.

1 Introduction

Conditional term rewriting [32, Chapter 7] is known to be more complicated than unconditional
term rewriting in the sense of analyzing properties, e.g., operational termination [21] (quasi-
decreasingness [32]), confluence [37], and reachability [6]. A popular approach to the analysis
of conditional term rewriting systems (CTRSs, for short) is to transform a CTRS into an
unconditional term rewriting system (a TRS, for short) that is in general an overapproximation
of the CTRS w.r.t. reduction (cf. [32]). This approach enables us to use existing techniques
for the analysis of TRSs. For example, a CTRS is operationally terminating if the unraveled
TRS [22, 32] is terminating [5]. To prove termination of the unraveled TRS, we can use many
techniques for proving termination of TRSs (cf. [32]). On the other hand, it is not so easy to
analyze reachability which is relevant to, e.g., infeasibility of conditions—non-existence of
substitutions satisfying conditions—of conditional rewrite rules, conditional critical pairs,
etc.

Let us consider to prove confluence of the following normal 1-CTRS [31] defining even
© Naoki Nishida and Yuya Maeda;
licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Hélène Kirchner; Article No. 26; pp. 26:1–26:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nishida@i.nagoya-u.ac.jp
https://orcid.org/0000-0001-8697-4970
mailto:yuya@trs.css.i.nagoya-u.ac.jp
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

26:2 Narrowing Trees for Syntactically Deterministic CTRSs

and odd predicates over the non-negative integers represented by 0 and s:

R1 =
{

e(0)→ true, e(s(x))→ true⇐ o(x)� true, e(s(x))→ false⇐ e(x)� true,
o(0)→ false, o(s(x))→ true⇐ e(x)� true, o(s(x))→ false⇐ o(x)� true

}
Unfortunately, neither a transformational approach in [10, 9] nor a direct approach to
reachability analysis to prove infeasibility of conditional critical pairs succeeds in proving
confluence of R1. For example, R1 has the following four critical pairs:

〈true, false〉 ⇐ o(x)� true & e(x)� true 〈false, true〉 ⇐ o(x)� true & e(x)� true
〈true, false〉 ⇐ e(x)� true & o(x)� true 〈false, true〉 ⇐ e(x)� true & o(x)� true

An operationally terminating CTRS is confluent if all critical pairs of the CTRS are infeasible
(cf. [1, 4]). To prove infeasibility of the critical pairs above, it suffices to show non-existence of
terms t such that o(t)→∗R1

true and e(t)→∗R1
true. Thanks to the meaning of even and odd

predicates, it would be easy for human to notice that such a term t does not exist. However,
it is not so easy to mechanize a way to show non-existence of t. In fact, confluence provers
for CTRSs, ConCon [35], CO3 [25], and CoScart [8], based on e.g., transformations of CTRSs
into TRSs and/or reachability analysis for infeasibility of conditional critical pairs failed to
prove confluence of R1 (see Confluence Competition 2016 1 and 2017,2 489.trs or 522.trs).
Note that a semantic approach in [19, 18] can prove confluence of R1 using AGES [11], a tool
for generating logical models of order-sorted first-order theories (cf. [20]).

The (non-)existence of a term t with o(t)→∗R1
true and e(t)→∗R1

true can be reduced to
the (non-)existence of substitutions θ such that o(x) ∗θ,R1

true and e(x) ∗θ,R1
true, where

 denotes the narrowing step [14]. In addition, the non-existence of such substitutions
can be reduced to the emptiness of the set of such substitutions, i.e., the emptiness of {θ |
o(x) ∗θ,R1

true, e(x) ∗θ,R1
true}. From this viewpoint, the enumeration of substitutions

obtained by narrowing from a pair of terms would be useful in analyzing rewriting sequences
that starts with instances of the pair.

A narrowing tree [29] for a sufficiently complete constructor TRS R with the root
pair s � t where t is a constructor term is a finite representation that defines the set of
substitutions θ such that the pair s � t narrows to a special constant > by innermost
narrowing i

 R with a substitution θ (i.e., (s� t) i
 ∗θ,R > and thus θs c→∗R θt). Note that �

is considered a binary symbol, (x� x)→ > is assumed to be implicitly included in R, and
c→R denotes the constructor-based rewriting step which applies rewrite rules to basic terms.
Note that a basic terms is of the form f (u1, . . . , un) with a defined symbol f and constructor
terms u1, . . . , un. A narrowing tree can be the enumeration of substitutions obtained by
innermost narrowing of R to >. The idea of narrowing trees has been extended to finite
representations of SLD trees for logic programs [30].

In this paper, we extend narrowing trees to syntactically deterministic conditional term
rewriting systems (a SDCTRS, for short) that are constructor systems. The class of SDCTRSs
is reasonable to model functional programs. We do not directly extend narrowing trees to
conditional systems, but we convert an SDCTRS to an equivalent unconditional constructor
system that may have extra variables. Narrowing trees for the converted constructor system
can be used for the original SDCTRS, i.e., they represent all substitutions derived by
innermost narrowing of the original SDCTRS.

1 http://cops.uibk.ac.at/results/?y=2016&c=CTRS
2 http://cops.uibk.ac.at/results/?y=2017-full-run&c=CTRS

http://cops.uibk.ac.at/results/?y=2016&c=CTRS
http://cops.uibk.ac.at/results/?y=2017-full-run&c=CTRS

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

N. Nishida and Y. Maeda 26:3

f(x, y)� v
{x7→a}
yy

{x7→b}
��

{x7→c(x′,y′), y 7→z′}
++

a� v

{v 7→a}
��

b� v

{v 7→b}
��

c(f(x′, y′), f(z′, x′))� v

> > f(x′, y′)� v′ & f(z′, x′)� v′′ & c(v′, v′′)� v

ow �� '/
f(x′, y′)� v′

{x′ 7→x, y′ 7→y, v′ 7→v}

>>

f(z′, x′)� v′′

{x′ 7→y, z′ 7→x, v′′ 7→v}

ii

c(v′, v′′)� v

{v 7→c(v′,v′′)} ��
>

Figure 1 A narrowing tree for f(x, y)� v w.r.t. R2.

Consider the sufficiently complete constructor TRS R2 = { f(a, z) → a, f(b, z) →
b, f(c(x, y), z)→ c(f(x, y), f(z, x)) }. A narrowing tree for the pair f(x, y)� v is illustrated
in Figure 1. Labeled solid arrows “ θ−→” represent innermost-narrowing steps with relevant
substitutions θ,3 double-line arcs “=” decompose nests of defined symbols (flattening), double
arrows “=⇒” divide equations to single ones (splitting), labeled dotted arrows “ δ // ” visualize
the existence of a variant node connected via a renaming 4 δ (recursion). The narrowing
tree in Figure 1 can be written by the following grammar representation [29] that can be
considered a regular tree grammar [3]:

Γf(x,y)�v→{v 7→ a} • {x 7→ a} | {v 7→ b} • {x 7→ b}

|


Γf(x,y)�v • {x′ 7→ x, , y′ 7→ y, v′ 7→ v}

&
Γf(x,y)�v • {x′ 7→ y, z′ 7→ x, v′′ 7→ v}

&
{v 7→ c(v′, v′′)}

 • {x 7→ c(x′, y′), y 7→ z′} (1)

The binary symbols • and & are interpreted by standard composition and parallel composi-
tion [13, 33], respectively. Parallel composition ⇑ of two idempotent substitutions returns
a most general unifier of the substitutions if the substitutions are unifiable. For example,
{y′ 7→ a, y 7→ a} ⇑ {y′ 7→ y} returns {y′ 7→ a, y 7→ a} and {y′ 7→ a, y 7→ b} ⇑ {y′ 7→ y} fails.
Due to parallel composition (i.e., occurrence of &), it is not so easy to not only analyze but
also simplify grammar representations of narrowing trees. In the remaining of this paper, we
do not deal with narrowing trees but their grammar representations.

Throughout this paper, we aim at proving infeasibility of the condition o(x)� true &
e(x)� true for R1

5 w.r.t. constructor-based rewriting. To this end, we first show that every

3 One may think that y of f(x, y) � v in Figure 1 does not have to be instantiated by z′ because y is
received by a variable that can be seen as patternless. However, the tree is used two or more times via
dotted arrows, and the reuse always starts with f(x, y)� v that is connected by means of a renaming
attached with dotted arrows. To avoid any conflict of using y, we always introduce only fresh variables
at narrowing steps, i.e., f(x, y) i

 R2 c(f(x′, y), f(z′, x′)) is not allowed (see Definition 3 in Section 3).
4 To be precise, δ (e.g., {x′ 7→ y, z′ 7→ x, v′′ 7→ v} in Figure 1) is not a renaming, while we can write

an exact renaming. However, we write such a substitution, so-called a prenaming [17], obtained by
restricting a renaming to variables that we are interested in because the renaming is used to rename a
particular term.

5 We use R1, which is an SDCTRS but also a normal 1-CTRS, as a leading example of this paper because
R1 is reasonable to illustrate how we can use the grammar representation of a narrowing tree to prove
confluence of a CTRS.

FSCD 2018

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

26:4 Narrowing Trees for Syntactically Deterministic CTRSs

constructor SDCTRS can be converted to an equivalent unconditional constructor system
which may have extra variables (Section 3). Secondly, we revisit compositionality of innermost
narrowing, relaxing some assumptions in [29] (Section 4). Thirdly, we introduce grammar
representations of sets of idempotent substitutions as regular tree grammars (Section 5) and
a construction of narrowing trees for given unconditional constructor systems (Section 6).
Fourthly, we show some methods to simplify grammar representations of narrowing trees
(Section 7). Finally, we show that grammar representations of narrowing trees are useful to
prove infeasibility of conditional critical pairs of R1 and quasi-reducibility [16] of R1 with
usual sorts for natural numbers and boolean values (Section 8). Quasi-reducibility is that
every ground basic term is defined (i.e., reducible). For (operationally) terminating (C)TRSs,
quasi-reducibility is equivalent to sufficient completeness (cf. [15, 2]). The results in this
paper would straightforwardly be extended to many sorted systems. Differences to related
work are described in Section 9, and proofs of theorems are shown in Appendix B.

The contribution of this paper is to show a method that can prove (1) confluence of R1,
for which all existing confluence provers other than AGES fail to prove confluence, and (2)
quasi-reducibility of R1.

2 Preliminaries

In this section, we recall basic notions and notations of term rewriting [1, 32] and regular
tree grammars [3].

Throughout the paper, we use V as a countably infinite set of variables. Let F be a
signature, a finite set of function symbols f each of which has its own fixed arity. We often
write f /n ∈ F instead of “an n-ary symbol f ∈ F”, and so on. The set of terms over F and
V (⊆ V) is denoted by T (F , V), and T (F , ∅), the set of ground terms, is abbreviated to
T (F). The set of variables appearing in any of terms t1, . . . , tn is denoted by Var(t1, . . . , tn).
For a term t and a position p of t, the subterm of t at p is denoted by t|p. Given terms s, t
and a position p of s, we denote by s[t]p the term obtained from s by replacing the subterm
s|p at p by t.

A substitution σ is a mapping from variables to terms such that the number of variables
x with σ(x) 6= x is finite, and is naturally extended over terms. The domain and range of σ
are denoted by Dom(σ) and Ran(σ), respectively. The set of variables in Ran(σ) is denoted
by VRan(σ). We may denote σ by {x1 7→ t1, . . . , xn 7→ tn} if Dom(σ) = {x1, . . . , xn}
and σ(xi) = ti for all 1 ≤ i ≤ n. The identity substitution is denoted by id. The set
of substitutions that range over a signature F and a set V of variables is denoted by
Subst(F , V): Subst(F , V) = {σ | σ is a substitution, Ran(σ) ⊆ T (F , V)}. The application
of a substitution σ to a term t is abbreviated to σt, and σt is called an instance of t. Given a
set V of variables, σ|V denotes the restricted substitution of σ w.r.t. V : σ|V = {x 7→ σx | x ∈
Dom(σ)∩V }. A substitution σ is called a renaming if σ is a bijection on V . The composition
θ · σ (simply θσ) of substitutions σ and θ is defined as (θ · σ)(x) = θ(σ(x)). A substitution
σ is called idempotent if σσ = σ (i.e., Dom(σ) ∩ VRan(σ) = ∅). A substitution σ is called
more general than a substitution θ, written by σ ≤ θ, if there exists a substitution δ such that
δσ = θ. A finite set E of term equations s ≈ t is called unifiable if there exists a unifier of E
such that σs = σt for all term equations s ≈ t in E. A most general unifier (mgu, for short)
of E is denoted by mgu(E) if E is unifiable. Terms s and t are called unifiable if {s ≈ t} is
unifiable. The application of a substitution θ to E is defined as θ(E) = {θs ≈ θt | s ≈ t ∈ E}.

An oriented conditional rewrite rule over a signature F is a triple (`, r, c), denoted by
`→ r ⇐ c, such that the left-hand side ` is a non-variable term in T (F ,V), the right-hand

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

N. Nishida and Y. Maeda 26:5

side r is a term in T (F ,V), and the conditional part c is a sequence s1 � t1, . . . , sk � tk
of term pairs (k ≥ 0) where s1, t1, . . . , sk, tk ∈ T (F ,V). In particular, a conditional rewrite
rule is called unconditional if the conditional part is the empty sequence (i.e., k = 0), and
we may abbreviate it to ` → r. Variables in Var(r, c) \ Var(`) are called extra variables
of the rule. An oriented conditional term rewriting system (a CTRS, for short) over F is
a set of oriented conditional rewrite rules over F . A CTRS is called an (unconditional)
term rewriting system (TRS) if every rule ` → r ⇐ c in the CTRS is unconditional
and satisfies Var(`) ⊇ Var(r). The reduction relation →R of a CTRS R is defined as
→R =

⋃
n≥0 →(n),R, where→(0),R = ∅, and→(i+1),R = {(s[σ`]p, s[σr]p) | s ∈ T (F ,V), `→

r ⇐ s1 � t1, . . . , sk � tk ∈ R, σs1 →∗(i),R σt1, . . . , σsk →∗(i),R σtk} for i ≥ 0. To specify
the position where the rule is applied, we may write →p,R instead of →R. The underlying
unconditional system {`→ r | `→ r ⇐ c ∈ R} of R is denoted by Ru. A term t is called a
normal form (of R) if t is irreducible w.r.t. R. A substitution σ is called normalized (w.r.t.
R) if σx is a normal form of R for each variable x ∈ Dom(σ). A CTRS R is called Type 1
(1-CTRS, for short) if every rule ` → r ⇐ c ∈ R satisfies that Var(r, c) ⊆ Var(`); Type 3
(3-CTRS, for short) if every rule `→ r ⇐ c ∈ R satisfies that Var(r) ⊆ Var(`, c); normal if
for every rule `→ r ⇐ s1 � t1, . . . , sk � tk ∈ R, all t1, . . . , tk are ground normal forms of
Ru; deterministic (a DCTRS, for short) if, for every rule `→ r ⇐ s1 � t1, . . . , sk � tk ∈ R,
Var(si) ⊆ Var(`, t1, . . . , ti−1) for all 1 ≤ i ≤ k.

The sets of defined symbols and constructors of a CTRS R over a signature F are denoted
by DR and CR, respectively: DR = {f | f (u1, . . . , un) → r ⇐ c ∈ R} and CR = F \ DR.
Terms in T (CR,V) are called constructor terms of R. A substitution in Subst(CR,V) is
called a constructor substitution of R. A term of the form f (t1, . . . , tn) with f /n ∈ DR and
t1, . . . , tn ∈ T (CR,V) is called basic. A CTRS R is called a constructor system if for every
rule `→ r ⇐ c in R, ` is basic. A CTRS R is called a pure-constructor system (a pc-CTRS,
for short) if for every rule ` → r ⇐ s1 � t1, . . . , sk � tk ∈ R, all of `, s1, . . . , sk are basic
and all of r, t1, . . . , tk are constructor terms [24]. A 3-DCTRS R is called syntactically
deterministic (an SDCTRS, for short) if for every rule `→ r ⇐ s1 � t1, . . . , sk � tk ∈ R,
every ti is a constructor term or a ground normal form of Ru.

A CTRS R is called operationally terminating if there are no infinite well-formed trees in
a certain logical inference system [21]—operational termination means that the evaluation of
conditions must either successfully terminate or fail in finite time. Two terms s and t are
said to be joinable, written as s ↓R t, if there exists a term u such that s →∗R u ←∗R t. A
CTRS R is called confluent if t1 ↓R t2 for any terms t1, t2 with t1 ←∗R · →∗R t2.

A regular tree grammar is a quadruple G = (S,N ,F ,P) such that F is a signature, N is
a finite set of non-terminals (constants not in F), S ∈ N , and P is a finite set of production
rules of the form A→ β with A ∈ N and β ∈ T (F ∪N). Note that A→ β1 | . . . | βn stands
for A→ β1, . . . , A→ βn. Given a non-terminal S′ ∈ N , the set {t ∈ T (F) | S′ →∗P t} is the
language generated by G from S′, denoted by L(G, S′). The initial non-terminal S does not
play an important role in this paper. A regular tree language is a language generated by a
regular tree grammar from one of its non-terminals. The class of regular tree languages is
equivalent to the class of recognizable tree languages which are recognized by tree automata.
This means that the intersection (non-)emptiness problem for regular tree languages is
decidable.

I Example 1. The regular tree grammar G1 = (X, {X,X ′}, {0/0, s/1}, {X → 0 | s(X ′),
X ′ → s(X) }) generates the sets of even and odd numbers over 0 and s from X and X ′,
respectively: L(G1, X) = {s2n(0) | n ≥ 0} (= L(G1)) and L(G1, X

′) = {s2n+1(0) | n ≥ 0}.

FSCD 2018

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

26:6 Narrowing Trees for Syntactically Deterministic CTRSs

3 From Constructor SDCTRSs to Unconditional Constructor Systems

In this section, we show that every constructor SDCTRS can be converted to an equivalent
unconditional constructor system w.r.t. constructor-based rewriting and innermost narrowing
for goal clauses. Since SDCTRSs possibly have extra variables, we relax the requirement
“Var(`) ⊇ Var(r)” for TRSs, i.e., we allow unconditional rules to have extra variables.

We denote a pair of terms s, t by s � t (not an equation s ≈ t) because we analyze
conditions of rewrite rules and distinguish the left- and right-hand sides of the pair s� t.
We deal with pairs of terms as terms by considering � a binary function symbol. For this
reason, we apply many notions for terms to pairs of terms without notice. For readability,
when we deal with s� t as a term, we often put it in parentheses: (s� t). As in [23], we
assume that any CTRS in this paper implicitly includes the rule (x� x)→ > where > is a
special constant. The rule (x� x)→ > is used to test equivalence between two terms t1, t2
via t1 � t2. A pair s � t of terms s, t is called a goal of a constructor SDCTRS R if the
left-hand side s is either a constructor term or a basic term and the right-hand side t is a
constructor term.

To deal with a conjunction of pairs e1, . . . , ek of terms (ei is either si � ti or >) as a
term, we write e1 & · · · & ek by using an associative binary symbol &. We call such a term
an equational term. Unlike [29], to avoid & to be a defined symbol, we do not use any rule
for &, e.g., (> & x) → x. Instead of derivations ending with >, we consider derivations
that end with terms in T ({>,&}). We assume that none of &, �, or > is included in the
range of any substitution below. In the following, we denote conditional parts of rules by
equational terms, e.g., `→ r ⇐ s1 � t1 & · · · & sk � tk. Note that the empty sequence of a
conditional part is denoted by >. An equational term is called a goal clause of a constructor
SDCTRS R if it is a conjunction of goals for R. Note that for a goal clause T , any instance
θT with θ a constructor substitution is a goal clause.

I Example 2. The equational term e(x)� true & o(x)� true is a goal clause of R1.

3.1 Constructor-based Rewriting and Innermost Narrowing
Following [28], we define constructor-based conditional rewriting on goal clauses as follows:
for a goal clause S = U & s� t & S′ with U ∈ T ({>,&}), we write S c→R T if there exist a
non-variable position p of (s� t), a rule `→ r ⇐ C in R, and a constructor substitution
σ such that (s� t)|p is basic, (s� t)|p = σ`, and T = U & σC & (s� t)[σr]p & S′. The
constructor-based rewriting under the leftmost strategy is denoted by lc→R. It is clear that
for a goal clause S and a normal form T of R, S c→∗R T if and only if S lc→∗R T .

The narrowing relation [34, 14] mainly extends rewriting by replacing matching with
unification. This paper follows the formalization in [28], while we use the rule (x� x)→ >
instead of the corresponding inference rule.

I Definition 3 (innermost narrowing). Let R be a CTRS. A goal clause S = U & s� t & S′

with U ∈ T ({>,&}) is said to conditionally narrow into an equational term T at an innermost
position, written as S i

 R T , if there exist a non-variable position p of (s � t), a variant
`→ r ⇐ C of a rule inR, and a constructor substitution σ such that Var(`, r, C)∩Var(S) = ∅,
(s � t)|p is basic, (s � t)|p and ` are unifiable, σ = mgu({(s � t)|p ≈ `}), and T = U &
σC & σ((s� t)[r]p) & σS′. Note that all extra variables of `→ r ⇐ C remain in T as fresh
variables which do not appear in S. We assume that Var(S) ∩ VRan(σ|Var((s�t)|p)) = ∅
(i.e., σ|Var((s�t)|p) is idempotent) and Var((s� t)|p) ⊆ Dom(σ). We write S li

 R T if p is

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

N. Nishida and Y. Maeda 26:7

the leftmost among innermost narrowable positions in (s� t). We write S i
 σ|Var(S),R T to

make the substitution explicit.

An example of innermost narrowing and constructor-based rewriting can be seen in Ap-
pendix A. Let x

 R be either i
 R or li

 R. An innermost narrowing derivation T0
x
 ∗σ,R Tn

(and T0
x
 n
σ,R Tn) denotes a sequence of narrowing steps T0

x
 σ1,R · · ·

x
 σn,R Tn with

σ = (σn · · ·σ1)|Var(T0) an idempotent substitution. When we consider two (or more) narrow-
ing derivations S1

x
 ∗σ1,R T1 and S2

x
 ∗σ2,R T2, we assume that VRan(σ1) ∩ VRan(σ2) = ∅.

As in [29], for the sake of simplicity, we first consider the leftmost innermost narrowing.
After showing basic properties of compositionality, we drop this restriction (see Theorem 14).

Constructor-based rewriting and innermost narrowing of constructor SDCTRSs have the
following relationships (cf. [28]).

I Theorem 4. Let R be a constructor SDCTRS, T a goal clause, and U ∈ T ({>,&}).
1. If T li

 ∗σ,R U , then σT lc→∗R U (i.e., σs lc→∗R σt for all goals s� t in T).
2. For a constructor substitution θ, if θT lc→∗R U , then there exists an idempotent constructor

substitution σ such that T li
 ∗σ,R U and σ ≤ θ.

3.2 Converting to Unconditional Constructor Systems
We say that a constructor SDCTRS R over a signature F is equivalent to a constructor
SDCTRS R′ over F w.r.t. c→ and i

 if DR = DR′ and both of the following hold:
for any goal clause T , T lc→∗R U for some term U ∈ T ({>,&}) if and only if T lc→∗R′ U ′

for some term U ′ ∈ T ({>,&}), and
for any goal clause T , T li

 ∗θ,R U for some term U ∈ T ({>,&}) if and only if T li
 ∗θ,R′ U ′

for some term U ′ ∈ T ({>,&}).
Note that CR = CR′ . In this section, we first convert a constructor SDCTRS to a pc-CTRS
that is equivalent to the SDCTRS w.r.t. c→ and i

 , and then convert the pc-CTRS to a
constructor TRS that is equivalent to the pc-CTRS w.r.t. c→ and i

 .
To convert a constructor SDCTRS R, we adopt a stepwise transformation for each rule

`→ r ⇐ C ∈ R as follows (cf. [26, Definition 23]).

I Definition 5. We transform each rule `→ r ⇐ C of a constructor SDCTRS R as follows:
1. We replace r and C by a fresh variable y and C, r � y, respectively, if r /∈ T (CR,V).
2. For each condition s� t in the resulting conditional part, if t contains a defined symbol,

then we replace s� t by (s� x) & (t� x), where x is a fresh variable.6
3. We remove all nests of defined symbols in the resulting conditional part by replacing

a condition s[f (u1, . . . , un)]p � t with (f (u1, . . . , un) � x) & (s[x]p � t), where f is a
defined symbol, p > ε, and x is a fresh variable that does not appear in the intermediate
rule. This operation is so-called a flattening [29] shown in Section 4.

4. If the resulting rule has a condition s� t with s, t constructor terms, then (1) we drop the
rule from R whenever s and t are not unifiable, and (2) otherwise, we drop the condition
s� t by applying an mgu of s, t to the rule [27, p. 292] (see also [26, Theorem 26]).

6 If C contains a condition s � t such that t contains a defined symbol, then rule ` → r ⇐ C is never
used in constructor-based rewriting of goal clauses to terms in T ({>,&}) because t is not a constructor
term and any instance of s� t is never reduced to any term in T ({>,&}). However, we do not drop
the rule from R because defined symbols are preserved during the conversion and the rule can be used
for the standard rewriting →R.

FSCD 2018

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

26:8 Narrowing Trees for Syntactically Deterministic CTRSs

We denote the resulting CTRS by Pc(R).

I Theorem 6. Let R be a constructor SDCTRS over a signature F . Then, Pc(R) is a
pc-CTRS over F and is equivalent to R w.r.t. c→ and i

 .

Let R be a pc-CTRS over F . We denote the TRS {(` � y) → C & (r � y) | ` →
r ⇐ C ∈ R, y ∈ V \ Var(`, r, C)} by Trs(R). Since the conditional part is a goal clause,
the generated right-hand side C & (r � y) is a goal clause. Thus, for a goal clause T , if
T

c→R T ′ or T i
 R T ′, then T ′ is a goal clause. It is clear that Trs(R) is a constructor TRS,

DTrs(R) = {�}, and CTrs(R) = F ∪ {>,&}.

I Theorem 7. Let R be a pc-CTRS over a signature F . Then, Trs(R) is a constructor
TRS over F ∪ {�,>,&} and is equivalent to R w.r.t. c→ and i

 .

I Example 8. For R1 in Section 1, we obtain the following TRS by applying Trs(·) to R1:

Trs(R1) =


(e(0)� y) → (true� y), (e(s(x))� y) → (o(x)� true) & (true� y),

(e(s(x))� y) → (e(x)� true) & (false� y),
(o(0)� y) → (false� y), (o(s(x))� y) → (e(x)� true) & (true� y),

(o(s(x))� y) → (o(x)� true) & (false� y)


For example, the following narrowing derivation holds for both R1 and Trs(R1): (e(x)�
true) li

 {x7→s(x1)} (o(x1)� true) & (true� true) li
 {x1 7→0} (false� true) & (true� true).

As a consequence of Theorems 6 and 7, we obtain the following corollary.

I Corollary 9. Let R be a constructor SDCTRS over a signature F . Then, Trs(Pc(R)) is a
constructor TRS over F ∪ {�,>,&} and is equivalent to R w.r.t. c→ and i

 .

4 Compositionality of Innermost Narrowing

Compositionality of innermost narrowing under parallel composition of idempotent substitu-
tions is a key to ensure equivalence between substitutions obtained at innermost-narrowing
steps and those defined by grammar representations of narrowing trees. In this section, we
recall parallel composition, and revisit compositionality of innermost narrowing for TRSs.
Since the counterpart of i

 R is constructor-based rewriting c→R, sufficient completeness is
required in [29] to have c→R = i→R on ground terms. However, sufficient completeness is not
necessary for compositionality and we do not force this property to TRSs.

We first recall parallel composition ⇑ of idempotent substitutions [13, 33], which is
one of the most important key operations to enable us to construct finite narrowing trees.
Given a substitution θ = {x1 7→ t1, . . . , xn 7→ tn}, we denote the set of term equations
{x1 ≈ t1, . . . , xn ≈ tn} by θ̂.

I Definition 10 (parallel composition ⇑ [33]). Let θ1 and θ2 be idempotent substitutions.
Then, we define ⇑ as follows: θ1 ⇑ θ2 = mgu(θ̂1 ∪ θ̂2) if θ̂1 & θ̂2 is unifiable, and otherwise,
θ1 ⇑ θ2 = fail. Note that we define θ1 ⇑ θ2 = fail if θ1 or θ2 is not idempotent. Parallel
composition is extended to sets Θ1,Θ2 of idempotent substitutions in the natural way:
Θ1 ⇑ Θ2 = {θ1 ⇑ θ2 | θ1 ∈ Θ1, θ2 ∈ Θ2, θ1 ⇑ θ2 6= fail}.

We often have two or more substitutions that can be results of θ1 ⇑ θ2 (6= fail), while they are
unique up to variable renaming. To simplify the semantics of grammar representations for
substitutions, we adopt an idempotent substitution σ with Dom(θ1) ∪ Dom(θ2) ⊆ Dom(σ)
as a result of θ1 ⇑ θ2 (6= fail). Idempotent substitutions we can adopt as results of θ1 ⇑ θ2
under the convention are unique up to variable renaming, but not exactly unique in general.

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

N. Nishida and Y. Maeda 26:9

I Example 11. The parallel composition {x 7→ s(z), y 7→ z} ⇑ {x 7→ w} may return
{x 7→ s(z), y 7→ z, w 7→ s(z)}, but we do not allow {x 7→ s(y), z 7→ y, w 7→ s(y)} as a result.
On the other hand, {x 7→ s(z), y 7→ z} ⇑ {x 7→ y} fails.

Let x
 R be either i

 R or li
 R. For a constructor SDCTRS R and a goal clause T ,

we define the success set of T (w.r.t. x
 R), which is the set of successful substitutions

derived by x
 R, as follows: Suc(x

 R, T) = {θ | ∃U ∈ T ({>,&}). T x
 ∗θ,R U}. Note that

Dom(θ) ⊆ Var(T) for any substitution θ ∈ Suc(x
 R, T). We extend the restriction of

substitutions to sets of substitutions: Θ|V = {θ|V | θ ∈ Θ}.

I Theorem 12 (compositionality [29]). For a constructor TRS R and goal clauses T1, T2,
Suc(li
 R, T1 & T2) =

(
Suc(li
 R, T1) ⇑ Suc(li

 R, T2)
)
|Var(T1,T2) up to variable renaming.

Note that & is just a binary symbol to construct conjunctions of goals, and ⇑ is a binary
operator for parallel composition. In Theorem 12, we restrict Suc(li

 R, T1) ⇑ Suc(li
 R, T2) to

Var(T1, T2) because parallel composition may make the domain of a resulting substitution in
Suc(li
 R, T1) ⇑ Suc(li

 R, T2) include a variable that does not appear in T1 & T2. Theorem 12
enables us to, given T1 & T2, compute Suc(li

 R, T1) and Suc(li
 R, T2) separately, so-called

splitting, instead of computing Suc(li
 R, T1 & T2), and then apply parallel composition to

them under the variable restriction to Var(T1, T2).
Let T be an equational term, p a position of T such that the root symbol of T |p is none

of �, >, and &. A flattening of T w.r.t. p is given by T [x]p & (T |p � x) where x is a fresh
variable [29]. Note that T |p may be a variable, but, to avoid any redundant replacement, we
allow T |p to be a variable only if the replacement is in the process of linearizing a basic term
in T . Thanks to Theorem 12, we can use flattening in computing the success set of T .

I Theorem 13 (flattening [29]). Let R be a constructor TRS, T a goal clause, and T ′ a
flattening of T w.r.t. a position p of T . Then, Suc(li

 R, T) = (Suc(li
 R, T ′))|Var(T) up to

variable renaming.

As in Theorem 12, we restrict Suc(li
 R, T ′) to Var(T) in Theorem 13 because a variable in

T ′ but not in T may appear in the domain of a substitution in Suc(li
 R, T ′), but not in T .

Thanks to Theorems 12 and 13, we can show that innermost-narrowing steps to a ground
normal form in T ({>,&}) can be replaced by leftmost ones.

I Theorem 14 ([29]). Let R be a constructor TRS and T a goal clause. Then, Suc(i
 R, T)=

Suc(li
 R, T) up to variable renaming.

Thanks to Theorem 14, both Theorems 12 and 13 hold for i
 R. To make the proof of

Theorem 13 simpler, we adopt T [x]p & T |p � x as a result of flattening. However, thanks to
Theorem 14, we may adopt T |p � x & T [x]p as a result of flattening.

As mentioned above, in [29], R is restricted to a sufficiently complete constructor TRS
without extra variables. However, sufficient completeness is not used for proving The-
orems 12, 13, and 14, and the existence of extra variables does not affect the proofs of
Theorems 12, 13, and 14. For this reason, Theorems 12, 13, and 14 hold for constructor
TRSs with extra variables.

5 Grammar Representation for Sets of Idempotent Substitutions

In this section, we formalize grammar representations that define sets of idempotent substi-
tutions. Since substitutions derived by narrowing steps are assumed to be idempotent, we

FSCD 2018

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

26:10 Narrowing Trees for Syntactically Deterministic CTRSs

only deal with idempotent substitutions which introduce only fresh variables not appearing
in any previous term. The formalization here is based on success set equations in [29].

In the following, a renaming δ is used to rename a particular term t and we assume that
δ|Var(t) is injective on Var(t). For this reason, as described in Footnote 4, we write δ|Var(t)
instead of δ, and call δ|Var(t) a renaming for t (simply, a renaming).

We first introduce terms to represent idempotent substitutions computed using · and ⇑.
We prepare the signature Σ consisting of the following symbols:

idempotent substitutions which are considered constants, (basic elements)
a constant ∅, (the empty set/non-existence)
an associative binary symbol •, (standard composition)
an associative binary symbol &, and (parallel composition)
a binary symbol rec. (recursion with renaming)

We use infix notation for • and &, and may omit parentheses with the precedence such that
• has a higher priority than &.

We deal with terms over Σ and some constants which are used as non-terminals of
grammar representations, where we allow such constants to only appear in the first argument
of rec. Note that a term without any constant may appear in the first argument of rec.
Given a finite set N of constants, we denote the set of such terms by T (Σ ∪N). We assume
that each constant in N has a term t (possibly a goal clause) as subscript such as Γt. For
an expression rec(Γt, δ), the role of Γt is recursion to generate terms in T (Σ). To reuse
substitutions generated by recursion, we connect them with other substitutions via some
renaming δ. For this reason, we restrict the second argument of rec to renamings and we
require each term rec(Γt, δ) to satisfy VRan(δ) = Var(t).

I Example 15. The following are instances of terms in T (Σ): {y 7→ 0} • {x 7→ s(y)},
({x′ 7→ s(y)} • {x 7→ x′}) & {x 7→ s(s(z))}, (∅ & {y 7→ z}) • {x 7→ s(y)}, and rec({x 7→
0, y 7→ s(y′)}, {x′ 7→ x, y′ 7→ y}) • {y 7→ s(x′)}.

As described in Section 3, in computing σ1 ⇑ σ2 from two narrowing derivations S1
i
 ∗σ1,R

T1 and S2
i
 ∗σ2,R T2, we assume that VRan(σ1)∩VRan(σ2) = ∅. To satisfy this assumption

explicitly in the semantics for T (Σ), we introduce an operation freshδ(·) of substitutions
to make a substitution introduce only variables that do not appear in Dom(δ) ∪ VRan(δ):
for substitutions σ, δ, we define freshδ(σ) by (ξ · σ)|Dom(σ) where ξ is a renaming such
that Dom(ξ) ⊇ VRan(σ) and VRan(ξ|VRan(σ)) ∩ (Dom(δ) ∪ VRan(δ) ∪Dom(σ)) = ∅. The
subscript δ of freshδ(·) is used to specify freshness of variables. We say that a variable x is
fresh w.r.t. a set X of variables if x /∈ X.

The semantics of terms in T (Σ) to define substitutions is inductively defined as follows:
[[θ]] = θ if θ is a substitution,
[[e1 • e2]] = [[e1]] · [[e2]] if [[e2]] 6= fail and [[e1]] 6= fail,
[[e1 & e2]] = (θ1 ⇑ θ2)|Dom(θ1)∪Dom(θ2) if [[e1]] 6= fail and [[e2]] 6= fail, where θ1 = [[e1]]
and θ2 = freshθ1

([[e2]]),
[[rec(e, δ)]] = (freshδ([[e]]) · δ)|Dom(δ) if [[e]] 6= fail and VRan(δ) = Dom([[e]]),
otherwise, [[e]] = fail (e.g., [[∅]] = fail).

Notice that a constant Γt is not included in T (Σ), and thus, [[Γt]] is not defined above. Since
⇑ may fail, we allow to have fail, e.g., [[{y 7→ s(z)} • {x 7→ y} & {x 7→ 0}]] = fail. The
number of variables appearing in a regular tree grammar defined below is finite. However,
we would like to use regular tree grammars to define infinitely many substitutions such
that the maximum number of variables we need cannot be fixed. To solve this problem, in
the definition of [[rec(e, δ)]], we introduced the operation freshδ(·) that make all variables

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

N. Nishida and Y. Maeda 26:11

introduced by [[e]] fresh w.r.t. Dom(δ) ∪ VRan(δ). In [29], this operation is implicitly
considered, but in this paper, we explicitly introduced rec to the syntax in order to interpret
terms in T (Σ) precisely. To assume VRan([[e1]]) ∩ VRan([[e2]]) = ∅ for [[e1 & e2]], we also
introduced freshθ1(·) in the case of [[e1 & e2]].

I Example 16. The expressions in Example 15 are interpreted as follows: [[{y 7→ 0} •
{x 7→ s(y)}]] = {x 7→ s(0), y 7→ 0}, [[({x′ 7→ s(y)} • {x 7→ x′}) & {x 7→ s(s(z))}]] = {x 7→
s(s(z)), x′ 7→ s(s(z))}, [[(∅ & {y 7→ z}) • {x 7→ s(y)}]] = fail, and [[rec({x 7→ 0, y 7→
s(y′)}, {x′ 7→ x, y′ 7→ y}) • {y 7→ s(x′)}]] = {x′ 7→ 0, y′ 7→ s(y′′), y 7→ s(0)}.

To define sets of idempotent substitutions, we adopt regular tree grammars. In the
following, we drop the third component from grammars constructed below because the third
one is fixed to Σ and a finite number of substitutions that are clear from production rules. A
substitution-set grammar (SSG) for a term t0 is a regular tree grammar G = (Γt0 ,N ,P) such
that N is a finite set of non-terminals Γt, Γt0 ∈ N , and P is a finite set of production rules
of the form Γt → β with β ∈ T (Σ∪N). Note that L(G,Γt) = {e ∈ T (Σ) | Γt →∗G e} for each
Γt ∈ N . The set of substitutions defined by G from Γt ∈ N is defined as [[L(G,Γt)]] = {[[e]] |
e ∈ L(G,Γt), [[e]] 6= fail}.

I Example 17. The SSG G3 = (Γx, {Γx,Γy}, {Γx → {x 7→ 0} | rec(Γy, {x′ 7→ y}) •
{x 7→ s(x′)}, Γy → rec(Γx, {x′ 7→ x}) • {y 7→ s(x′)} }) generates a set of expressions
to define substitutions replacing x by even numbers over 0/0 and s/1. We have that
L(G3) = L(G3,Γx) = {{x 7→ 0}, rec((rec({x 7→ 0}, {x′ 7→ x}) • {y 7→ s(x′)}), {x′ 7→ y}) •
{x 7→ s(x′)}, . . .}, and [[L(G3,Γx)]] = {{x 7→ s2n(0)} | n ≥ 0}.

6 Construction of Grammar Representations of Narrowing Trees

In this section, given a pc-CTRS and a goal clause, we show a construction of an SSG for the
success set of the goal clause w.r.t. innermost narrowing of the CTRS. Since every constructor
SDCTRS can be converted to an equivalent pc-CTRS w.r.t. c→ and i

 , we only consider
pc-CTRSs. We employ the idea of narrowing trees, but we directly construct SSGs. In the
following, we let R be a pc-CTRS over a signature F unless noted otherwise.

For a goal clause T = (s1 � t1) & · · · & (sn � tn), we denote the set of ground constructor
terms appearing as right-hand sides of goals in T by Crhs(T): Crhs(T) = {t1, . . . , tn}∩T (CR).
We abuse Crhs for R and a goal clause T : Crhs(R, T) = Crhs(T) ∪

⋃
`→r⇐C∈R Crhs(C).

For example, Crhs(R1, e(x)� true & o(x)� true) = {true}. It is clear that Crhs(R, T) is
finite.

Let T be a goal clause that does not contain >. We prepare the set of constants
NR,T = {ΓT } ∪ {Γf (x1,...,xn)�u | f /n ∈ DR, x1, . . . , xn ∈ V, f (x1, . . . , xn) is linear, u ∈
Crhs(R, T) ∪ (V \ {x1, . . . , xn})}. Note that NR,T is finite up to variable renaming w.r.t.
subscripts, and thus, we consider NR,T a set of representatives: Var(T ′) ∩ Var(T ′′) = ∅ and
T ′ is not a variant of T ′′ for any different non-terminals ΓT ′ ,ΓT ′′ ∈ NR,T . We construct
an SSG from R and T as follows: SSG(R, T) = (ΓT ,NR,T , {ΓT ′ → Φ0(T ′) | ΓT ′ ∈ NR,T }),
where Φb(·) with b ∈ {0, 1} is inductively defined as follows:
Splitting Φb(T1 & · · ·& Tn) = Φ1(T1) & · · ·&Φ1(Tn),
Narrowing Φ0(f (x1, . . . , xn)� u) = Φ1(T1) •σ1 | · · · | Φ1(Tm) •σm if f (x1, . . . , xn) is basic

and linear, and x1, . . . , xn ∈ V , where {(T ′, σ) | (f (x1, . . . , xn)� u) i
 σ,R T ′, VRan(σi)∩

(
⋃

ΓT ′∈NR,T
Var(T ′)) = ∅} = {(T1, σ1), . . . , (Tm, σm)},

Narrowing Φb(t� u) = mgu({t ≈ u}) if t, u ∈ T (CR,V) and t, u are unifiable,
Failure Φb(t� u) = ∅ if t, u ∈ T (CR,V) and t, u are not unifiable,

FSCD 2018

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

26:12 Narrowing Trees for Syntactically Deterministic CTRSs

Recursion Φ1(f (x1, . . . , xn) � u) = rec(Γf (x′
1,...,x

′
n)�u′ , {x1 7→ x′1, . . . , xn 7→ x′n} ∪ δ) if

f (x1, . . . , xn) is basic and linear, Γf (x′
1,...,x

′
n)�u′ ∈ NR,T , x1, . . . , xn ∈ V \ {x′1, . . . , x′n},

u′ ∈ T (CR) ∪ (V \ ({x1, . . . , xn} ∪ Var(u))), and either u = u′ ∈ T (CR) or u, u′ ∈ V,
where if u ∈ T (CR), then δ = id, and otherwise, δ = {u 7→ u′}), and

Flattening Φb(f (u1, . . . , un) � u) = Φ1(f (y1, . . . , yn) � y) & (u1 � y1) & · · · & (un �
yn) & (u � y) if f (u1, . . . , un) � u is not a variant of f (x′1, . . . , x′n) � u′ with
Var(u1, . . . , un, u) ∩ ({x′1, . . . , x′n} ∪ Var(u′)) = ∅ for any Γf (x′

1,...,x
′
n)�u′ ∈ NR,T , where

y1, . . . , yn, are fresh distinct variables w.r.t. Var(u1, . . . , un, u)∪
⋃

ΓT ′∈NR,T
Var(T ′). Note

that we do not have to added the goal u� y to the result if u ∈ Crhs(R, T).
Note that we may omit ΓT ′ and its production rules if ΓT ′ is not relevant to ΓT . The
subscript b of Φb(·) is used to specify whether the call of Φb(·) is initial or not. Without
the subscript, for Γf (x1,...,xn)�u, we only construct Γf (x1,...,xn)�u → rec(id,Γf (x1,...,xn)�u)
which is meaningless. The definition of Φb(·) follows the definition of a single step of
narrowing, splitting under parallel composition, and flattening in the natural way. For
example, the semantics of rec takes renamings for Var(`, r, C)∩Var(S) = ∅ in the definition
of innermost-narrowing into account and enables us to reuse substitutions generated by the
first argument of rec.

I Example 18. For R1 and the goal clause e(x)� true & o(x)� true, we prepare constants
Γe(x)�true&o(x)�true, Γe(x′)�true, and Γo(x′′)�true because we have that Crhs(R1, e(x)� true &
o(x)� true) = {true}. For the goal e(x′)� true, we have the following conversion:

Φ0(e(x′)� true) = id • {x′ 7→ 0} |
(
rec(Γo(x′′)�true, {x1 7→ x′′}) & id

)
• {x′ 7→ s(x1)}

|
(
rec(Γe(x′)�true, {x2 7→ x′}) & ∅

)
• {x′ 7→ s(x2)}

From the conversion above, the SSG G2 with the following production rules is constructed:

Γe(x)�true&o(x)�true→ rec(Γe(x′)�true, {x 7→ x′}) & rec(Γo(x′′)�true, {x 7→ x′′})
Γe(x′)�true→ id • {x′ 7→ 0} |

(
rec(Γo(x′′)�true, {x1 7→ x′′}) & id

)
• {x′ 7→ s(x1)}

|
(
rec(Γe(x′)�true, {x2 7→ x′}) & ∅

)
• {x′ 7→ s(x2)}

Γo(x′′)�true→∅ • {x′′ 7→ 0} |
(
rec(Γe(x′)�true, {x3 7→ x′}) & id

)
• {x′′ 7→ s(x3)}

|
(
rec(Γo(x′′)�true, {x4 7→ x′′}) & ∅

)
• {x′′ 7→ s(x4)}

I Theorem 19. Let T be a goal clause without >. Then, [[L(SSG(R, T),ΓT)]] = Suc(i
 R, T)

up to variable renaming.

Note that Theorem 19 corresponds to [29, Theorem 20]. For a constructor SDCTRS R and
a goal clause T , Theorem 6 enables us to use SSG(Pc(R), T) for R.

7 Simplification of Grammar Representations

In this section, we show some methods to simplify production rules of SSGs. Given an SSG
G = (ΓT ,N ,P), we extend the semantics of terms in T (Σ) to sets of terms in T (Σ ∪N) as
follows: {[e]}G = [[L((ΓT ,N ∪ {Γe},P ∪ {Γe → e}),Γe)]] for e ∈ T (Σ ∪ N), where Γe /∈ N .
We say that terms e1, e2 ∈ T (Σ∪N) are semantically equivalent w.r.t. G if {[e1]}G = {[e2]}G
up to variable renaming.

We first compute subexpressions consisting of substitutions, •, &, and ∅. The following
equivalences trivially hold:

I Theorem 20. Let G = (ΓT ,N ,P), θ1, θ2 idempotent substitutions, and e ∈ T (Σ ∪ N).
Then, all of the following hold: {[θ1 • θ2]}G = {[θ1 · θ2]}G, {[e • ∅]}G = {[∅ • e]}G = {[∅ &
e]}G = {[e & ∅]}G = {[∅]}G (= ∅), and {[id & e]}G = {[e & id]}G = {[e]}G.

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

N. Nishida and Y. Maeda 26:13

Following Theorem 20, we simplify subexpressions to the smallest one among semantically
equivalent terms w.r.t. G (e.g., replace e • ∅ by ∅) as much as possible.

I Example 21. The production rules of G2 in Example 18 are simplified as follows:

Γe(x)�true&o(x)�true → rec(Γe(x′)�true, {x 7→ x′}) & rec(Γo(x′′)�true, {x 7→ x′′})
Γe(x′)�true → {x′ 7→ 0} | rec(Γo(x′′)�true, {x1 7→ x′′}) • {x′ 7→ s(x1)}
Γo(x′′)�true → rec(Γe(x′)�true, {x3 7→ x′}) • {x′′ 7→ s(x3)}

The occurrence of & in SSGs makes it difficult to simplify and analyze grammar repres-
entations of narrowing trees. Since the second and third production rules in Example 21
no longer contain &, we focus on rec(Γe(x′)�true, {x 7→ x′}) & rec(Γo(x′′)�true, {x 7→
x′′}) which is the right-hand side of the first rule. Let us consider the sets L1, L2 of
terms substituted for x by means of substitutions in {[rec(Γe(x′)�true, {x 7→ x′})]}G2 and
{[rec(Γo(x′′)�true, {x 7→ x′′})]}G2 , respectively: L1 = {σx | σ ∈ {[rec(Γe(x′)�true, {x 7→
x′})]}G2}, and L2 = {σx | σ ∈ {[rec(Γo(x′′)�true, {x 7→ x′′})]}G2}. If L1 ∩ L2 = ∅,
then {[rec(Γe(x′)�true, {x 7→ x′}) & rec(Γo(x′′)�true, {x 7→ x′′})]}G2 = ∅ and we obtain
Γe(x)�true&o(x)�true → ∅ which is our goal of simplification in this section. To generate L1
and L2, we transform the second and third production rules in Example 21 into a regular
tree grammar generating the sets L1 and L2. In the rest of this section, we assume that the
signature F contains a constant.

Let G be an SSG (ΓT0 ,N ,P) and T a goal clause such that ΓT ∈ N . We denote by
P|ΓT

the set of production rules that are reachable from ΓT . We assume that any rule
in P|ΓT

is of the form ΓT ′ → θ1 | · · · | θm | rec(ΓT1 , δ1) • σ1 | · · · | rec(ΓTn
, δn) • σn,

where θ1, . . . , θm, σ1, . . . , σn are idempotent substitutions. Note that ΓT ′ → rec(ΓT ′′ , δ) is
considered ΓT ′ → rec(ΓT ′′ , δ) • id. Note also that the following construction is applicable
under this assumption. The regular tree grammar obtained from G and a variable x in T ,

written as RTG(G, T, x), is (ΓxT ,N ′,P ′ ∪ P ′′ ∪ {A→ g(
n︷ ︸︸ ︷

A, . . . , A) | g/n ∈ CR}) such that
N ′ = {Γx′

T ′ | ΓT ′ ∈ N , x′ ∈ Var(T ′) } ∪ {A}, and
P ′ = {Γx′

T ′ → ξVar(θix′)(θix′) | x′ ∈ Var(T ′), ΓT ′ → θi ∈ P }, and
P ′′ = {Γx′

T ′ →
(
{y 7→ Γδjy

Tj
| y ∈ Dom(δj)} ∪ ξVar(σjx′)\Dom(δj)

)
(σjx′) | x′ ∈ Var(T ′),

ΓT ′ → rec(ΓTj
, δj) • σj ∈ P },

where ξX = {y 7→ A | y ∈ X}, which corresponds to ξ in the definition of freshδ(·). Note
that the non-terminal A generates T (CR) and corresponds to a fresh variable.

I Theorem 22. Let G be an SSG (ΓT0 ,N ,P), ΓT1 ,ΓT2 ∈ N , x ∈ V, x1 ∈ Var(T1), x2 ∈
Var(T2), RTG(G, T1, x1),RTG(G, T2, x2) be constructed, and δ1, δ2 be renamings such that
VRan(δi) = Var(Ti) and δix = xi for i = 1, 2. If L(RTG(G, T1, x1))∩L(RTG(G, T2, x2)) =
∅, then {[rec(ΓT1 , δ1) & rec(ΓT2 , δ2)]}G = {[∅]}G.

I Example 23. From the production rules in Example 21, we obtain the following regular
tree grammars:
G′2 = RTG(G2, e(x′)� true, x′) = (Γx′

e(x′)�true, {Γx
′

e(x′)�true,Γx
′′

o(x′′)�true},P
′), and

G′′2 = RTG(G2, o(x′′)� true, x′′) = (Γx′′

o(x′′)�true, {Γx
′

e(x′)�true,Γx
′′

o(x′′)�true},P
′),

where
P ′ = { Γx′

e(x′)�true → 0 | s(Γx′′

o(x′′)�true), Γx′′

o(x′′)�true → s(Γx′

e(x′)�true) }.
We can decide the intersection emptiness problem of L(G′2) and L(G′′2), and the answer
is true: L(G′2) ∩ L(G′′2) = ∅. Thanks to Theorem 22, we can replace the expression
rec(Γe(x′)�true, {x 7→ x′}) & rec(Γo(x′′)�true, {x 7→ x′′}) by ∅, and thus we can trans-
form the first production rule in Example 21 into Γe(x)�true&o(x)�true → ∅.

FSCD 2018

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

26:14 Narrowing Trees for Syntactically Deterministic CTRSs

In summary, the simplification proposed in this section is to replace subexpressions by
semantically equivalent smaller ones as much as possible by following Theorems 20 and 22.
This simplification always halts because the number of Σ-symbols in equations is strictly
decreasing at every simplification step. In addition, it is clear that results of the simplification
are unique.

If a constructor SDCTRS R has a nest of defined symbols or a goal clause T contains, e.g.,
(f (~x)� x′) & (g(~y)� y′), to simplify SSG(Trs(Pc(R)), T) as much as possible, we apply
the simplification based on Theorem 22 at least once, i.e., we try to solve the intersection
emptiness problem of regular tree grammars at least once, which is EXPTIME-complete.
The number of occurrence of • and & is at most O(n), where n is the size of R and T .
Therefore, the cost of the overall simplification is EXPTIME-complete.

8 Applications

In this section, we show that grammar representations of narrowing trees are useful to prove
(1) infeasibility of conditional critical pairs of R1 and (2) quasi-reducibility of R1 with usual
sorts for the non-negative integers and the boolean values.

Two conditional rewrite rules `1 → r1 ⇐ C1 and `2 → r2 ⇐ C2 that are renamed to have
no shared variable are said to be overlapping if there exists a non-variable position p of `1
such that `1|p and `2 are unifiable, and p 6= ε if one of the rules is a renamed variant of
the other. In this case, given σ = mgu({`1|p ≈ `2}), the triple (σ(`1[r2]p), σr1, σC1 & σC2),
denoted by 〈σ(`1[r2]p), σr1〉 ⇐ σC1 & σC2, is called a conditional critical pair of R. A
conditional critical pair 〈s, t〉 ⇐ s1 � t1 & · · · & sk � tk is called infeasible if there exists
no substitution θ such that θsi →∗R θti for all 1 ≤ i ≤ k, and called joinable if θs ↓R θt for
any substitution θ such that θsi →∗R θti for all 1 ≤ i ≤ k. Note that infeasible conditional
critical pairs are joinable and unconditional critical pairs are feasible. Therefore, from [4,
Theorem 3.8] and [21, Theorem 3], an operationally terminating CTRS R is confluent if all
critical pairs of R are infeasible.

I Example 24. Consider R1 in Section 1. It follows from Example 23 that Suc(i
 R1 , o(x)�

true & e(x) � true) = ∅. This means that there exists no constructor term t such that
o(t) c→∗R1

true and e(t) c→∗R1
true. Assume that there exists a term t such that o(t)→∗R1

true
and e(t) →∗R1

true. Since c→R1 = c→Trs(R1) and Trs(R1) is non-erasing, t should be a
ground constructor term. Since Trs(R1) is a constructor system, we have that o(t) c→∗R1

true
and e(t) c→∗R1

true, and hence o(x) i
 ∗θ1,R1

true and e(x) i
 ∗θ2,R1

true for some constructor
substitutions θ1, θ2. It follows from Theorem 12 that θ1 ⇑ θ2 ∈ Suc(i

 R1 , o(x) � true &
e(x) � true). This contradicts the fact that Suc(i

 R1 , o(x) � true & e(x) � true) = ∅.
Therefore, all critical pairs of R1 are infeasible, and hence R1 is confluent.

A CTRS R is called quasi-reducible [16] if any ground basic term is not a normal form. R
is called sufficiently complete if for every ground term t, there exists a ground constructor term
u such that t→∗R u [12]. Note that if an operationally terminating CTRS is quasi-reducible,
then the CTRS is sufficiently complete.

I Example 25. CTRSR1 in Section 1 is not quasi-reducible since e(true) is not defined. Thus,
let us consider the sorts with 0 : nat, s : nat → nat, true, false : bool, and e, o : nat → bool.
For quasi-reducibility of R1 with the sorts, it suffices to show that e(sn(0)) and o(sn(0)) with
n ≥ 0 are reducible. It follows from the unconditional rules e(0) → true and o(0) → false
that e(0) and o(0) are reducible. From the production rules in Example 23, we can show

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

N. Nishida and Y. Maeda 26:15

that L(G′2) ∪ L(G′′2) = T ({0, s}), and hence e(sn(0)) and o(sn(0)) with n > 0 are reducible.
Therefore, R1 with the sorts is quasi-reducible, and hence sufficiently complete.

9 Related Work

One of the closest related work to be compared with our results must be reachability analysis
for CTRSs. A well-investigated approach is tree automata techniques (cf. [7, 6]): given a
(C)TRS and two terms s, t, we construct a tree automaton that over-approximately recognizes
all descendants of any ground instance of s, and solves the intersection emptiness problem
between the automaton and another one for ground instances of t. To prove infeasibility
of o(x)� true & e(x)� true w.r.t. c→R1 via reachability, we convert it to the reachability
problem from ground instances of c(o(x), e(x)) to c(true, true). Tree automata techniques need
overapproximation for non-linear terms, and thus, the reachability problem is solved as the
reachability from c(o(x′), e(x′′)) to c(true, true). Due to this linearization, the non-existence
of a ground instance of x cannot be proved. The method in [36] for proving infeasibility
of conditional critical pairs analyzes reachability using the underlying TRSs—{ e(0) →
true, e(s(x)) → true, e(s(x)) → false, o(0) → false, o(s(x)) → true, o(s(x)) → false } for
R1—, and thus, the non-existence of a ground t with o(t) →∗R1

true and e(t) →∗R1
true

cannot be proved. On the other hand, the approach in this paper is to construct a regular
tree grammar that can be seen as a tree automaton, and that recognizes ground terms given
at an argument of a defined symbol we are interested in.

Another important related work is a semantic approach to infeasibility analysis for
conditional rewrite rules and conditional critical pairs of CTRSs [19, 18], which uses AGES [11]
based on the methods in [20]. The semantic approach reduces infeasibility of conditions
s1 � t1, . . . , sk � tk to the existence of a logical model for the theory R∪{¬(∃−→X. s1 →∗ t1∧
· · · ∧ sk →∗ tk)}, where X = Var(s1, t1, . . . , sk, tk) and R is a first-order theory obtained
by R. The power of proving infeasibility relies on that of generating a model for the
theory. For example, infeasibility of x < y � true, y < x � true w.r.t. R4 = { 0 < s(y) →
true, x < 0→ false, s(x) < s(y)→ x < y } can be reduced to the existence of a model for
R4 ∪ {¬(∀x, y. x < y →∗ true ∧ y < x→∗ true)}, but AGES did not find any model for the
theory via its web interface with default parameters. The power of our method for proving
infeasibility relies on the success of simplifying SSGs to ΓT → ∅. For this reason, it is not so
easy to compare these two approaches from theoretical point of view to prove infeasibility of
conditions. On the other hand, our result can be used to prove quasi-reducibility of R1 with
usual sorts for the non-negative integers and the boolean values.

10 Conclusion

In this paper, we extended grammar representations of narrowing trees to constructor
SDCTRSs, and showed that grammar representations are useful to prove confluence and
quasi-reducibility of a normal CTRS. We will implement the construction and simplification
of grammar representations for narrowing trees, and will introduce them into CO3 [25] to use
them to prove confluence of constructor SDCTRSs. In addition, we will make an empirical
comparison of the tree automata approach, the semantic approach, and ours to infeasibility
analysis of constructor SDCTRSs after implementing our method. Narrowing trees define
constructor substitutions obtained by innermost narrowing. For this reason, the usefulness is
limited to constructor-based rewriting only. A further direction of this research will be to
extend narrowing trees to other kinds of narrowing, e.g., basic narrowing [14].

FSCD 2018

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

26:16 Narrowing Trees for Syntactically Deterministic CTRSs

A Example of Innermost Narrowing and Constructor-based Rewriting

I Example 26. Consider R1 in Section 1 again. We have infinitely many leftmost innermost
narrowing derivations starting from e(x)� true:

(e(x)� true) li
 {x7→0},R1 (true� true) li

 id,R1 >,
(e(x) � true) li

 {x7→s(x1)},R1 (o(x1) � true) & (true � true) li
 {x1 7→0},R1 (false �

true) & (true� true),
(e(x) � true) li

 {x7→s(x1)},R1 (o(x1) � true) & (true � true) li
 {x1 7→s(x2)},R1 (e(x2) �

true) & (true � true) & (true � true) li
 {x2 7→0},R1 (true � true) & (true � true) &

(true � true) li
 id,R1 > & (true � true) & (true � true) li

 id,R1 > & > & (true �
true) li

 id,R1 > & > & >,
. . .

The following leftmost constructor-based rewriting derivations correspond to the above
narrowing derivations, respectively:

(e(0)� true) lc→R1 (true� true) lc→R1 >,
(e(s(0))� true) lc→R1 (o(0)� true) & (true� true) lc→R1 (false� true) & (true� true),
(e(s(s((0)))� true) lc→R1 (o(s(0))� true) & (true� true) lc→R1 (e(0)� true) & (true�
true) & (true � true) lc→R1 (true � true) & (true � true) & (true � true) lc→R1 > &
(true� true) & (true� true) lc→R1 > & > & (true� true) lc→R1 > & > & >,
. . .

B Proofs of Theorems

In this appendix, we show proofs of Theorems 4, 6, 7, 19, and 22.

I Theorem 4. Let R be a constructor SDCTRS, T a goal clause, and U ∈ T ({>,&}).
1. If T li

 ∗σ,R U , then σT lc→∗R U (i.e., σs lc→∗R σt for all goals s� t in T).
2. For a constructor substitution θ, if θT lc→∗R U , then there exists an idempotent constructor

substitution σ such that T li
 ∗σ,R U and σ ≤ θ.

Proof. The first claim can be straightforwardly proved by induction on the length of
T

li
 ∗σ,R U . In [28], the second claim is proved for a constructor SDCTRS R such that for

each rule ` → r ⇐ s1 � t1 & · · · & sk � tk, all t1, . . . , tk are constructor terms. Any rule
` → r ⇐ s1 � t1 & · · · & sk � tk is not used in c→R if there exists some i such that ti
contains a defined symbol. In addition, in the proof, R does not have to be deterministic or
a 3-CTRS. For this reason, the proof in [28, Lemma 17] can be a proof of this theorem. J

We show some lemmas to prove Theorem 6.

I Lemma 27. Let R be a constructor SDCTRS over a signature F such that R = R0]{`→
r ⇐ C} where r is not a constructor term of R. Let R′ = R0 ∪ {` → x ⇐ C & r � x},
where x is a fresh variable. Then, R′ is a constructor SDCTRS over F and is equivalent to
R w.r.t. c→ and i

 .

Proof. By definition, it is clear that DR = DR′ . The remaining properties for equivalence
w.r.t. c→ and i

 can straightforwardly proved by induction on the numbers of rewriting and
narrowing steps, respectively. J

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

N. Nishida and Y. Maeda 26:17

I Lemma 28. Let R be a constructor SDCTRS over a signature F such that R = R0∪{`→
r ⇐ C1 & si � ti & C2} where r is a constructor term, p 6= ε, and ti is a ground normal form
of Ru but not a constructor term. Let R′ = R0 ∪ {`→ r ⇐ C1 & si � x & ti � x & C2},
where x is a fresh variable. Then, R′ is a constructor SDCTRS over F and is equivalent to
R w.r.t. c→ and i

 .

Proof. By definition, it is clear that DR = DR′ . Since ti contains a defined symbol, ti is a
ground normal form of Ru and there is no rule `′ → r′ ⇐ C ′ in R such that `′ matches a
subterm of ti. To use `→ r ⇐ C1 & si � ti & C2 in a constructor-based rewriting to a term
in T ({>,&}), an instance of si � ti should be reduced to a term in T ({>,&}). However,
such a reduction is impossible for constructor-based rewriting because ti � ti cannot be
rewritten or narrowed to >. For this reason, ` → r ⇐ C1 & si � ti & C2 is never used in
constructor-based rewriting or innermost narrowing to a term in T ({>,&}). For the same
reason, ` → r ⇐ C1 & si � x & ti � x & C2 ∈ R′ is never used in constructor-based
rewriting of R′ to terms in T ({>,&}), either. Therefore, it is clear that for a goal clause T
and a term U ∈ T ({>,&}), (a) T lc→∗R U if and only if T lc→∗R′ U , and (b) T li

 ∗θ,R U if and
only if T li

 ∗θ,R′ U . J

I Lemma 29. Let R be a constructor SDCTRS over a signature F such that R = R0∪{`→
r ⇐ C1 & si[s′]p � ti & C2} where r is a constructor term, p 6= ε, and s′ is rooted by a
defined symbol. Let R′ = R0 ∪ {` → r ⇐ C1 & s′ � x & si[x]p � ti & C2}, where x is a
fresh variable. Then, R′ is a constructor SDCTRS over F and is equivalent to R w.r.t. c→
and i
 .

Proof. By definition, it is clear that DR = DR′ . The remaining properties for equivalence
w.r.t. c→ and i

 can straightforwardly proved by induction on the numbers of rewriting and
narrowing steps, respectively. J

I Theorem 6. Let R be a constructor SDCTRS over a signature F . Then, Pc(R) is a
pc-CTRS over F and is equivalent to R w.r.t. c→ and i

 .

Proof. By definition, it is clear that Pc(R) is a pc-CTRS over the signature F and DR =
DPc(R). The remaining properties can be proved by Lemmas 27, 28, and 29, and [26,
Theorem 26]. J

I Theorem 7. Let R be a pc-CTRS over a signature F . Then, Trs(R) is a constructor
TRS over F ∪ {�,>,&} and is equivalent to R w.r.t. c→ and i

 .

Proof. By definition, it is clear that (1) Trs(R) is a constructor TRS over F ∪ {�,>,&}, (2)
DR = DTrs(R), (3) (s� t) c→R T if and only if (s� t) c→Trs(R) T and (4) (s� t) i

 θ,R T

if and only if (s � t) i
 θ,Trs(R) T . Using (3), we can prove that for a goal clause T and

a term U ∈ T ({>,&}), T lc→∗R U if and only if T lc→∗R′ U , by induction on the number of
rewriting steps. Using (4), we can prove that for a goal clause T and a term U ∈ T ({>,&}),
T

li
 ∗θ,R U if and only if T li

 ∗θ,R′ U , by induction on the number of narrowing steps. J

I Theorem 19. Let T be a goal clause without >. Then, [[L(SSG(R, T),ΓT)]] = Suc(i
 R, T)

up to variable renaming.

Proof. Thanks to Theorems 12, 13, and 14, a constructor substitution θ for T i
 ∗θ,R U ∈

T ({>,&}) can be obtained by (1) splitting, (2) flattening, and (3) narrowing applied to goals

FSCD 2018

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

26:18 Narrowing Trees for Syntactically Deterministic CTRSs

of the form f (x1, . . . , xn)� u such that u ∈ (V \ {x1, . . . , xn}) ∪ T (CR) and x1, . . . , xn are
distinct variables. The application of these operations is exactly the same as the application
of production rules in SSG(R, T). Therefore, this theorem holds. J

The following lemma is used to prove Theorem 22.

I Lemma 30. Let G be an SSG (ΓT0 ,N ,P), ΓT ∈ N , x ∈ Var(T), and RTG(G, T, x)
be constructed. Then, {ξθx | θ ∈ [[L(G,ΓT)]], ξ ∈ Subst(CR), Dom(η) = Var(θx)} ⊆
L(RTG(G, T, x)).

Proof. Suppose that e is generated by n steps of applying production rules obtained from
P|ΓT

. Then, it is easy to prove this lemma by induction on n. J

The converse inclusion in Lemma 30 does not hold in general even if [[L(G,ΓT)]] is a set of
ground substitutions.

I Example 31. Consider an SSG G4 = (Γx�a, {Γx�a,Γz�b}, { Γx�a → rec(Γz�b, {y 7→
z}) • {x 7→ c(y, y)}, Γz�b → {z 7→ a} | {z 7→ b} }). For goal x � a and variable x,
we have the regular tree grammar RTG(G4, x � a, x) = (Γxx�a, {Γxx�a,Γzz�b}, { Γxx�a →
c(Γzz�b,Γzz�b), Γzz�b → a | b }). The term c(a, b) is included in L(RTG(G4, x� a, x),Γxx�a),
but there is no substitution θ such that θx = c(a, b) and σ ≤ θ for some σ in [[L(G4,Γx�a)]] =
{ {x 7→ c(a, a)}, {x 7→ c(b, b)} }.

I Theorem 22. Let G be an SSG (ΓT0 ,N ,P), ΓT1 ,ΓT2 ∈ N , x ∈ V, x1 ∈ Var(T1), x2 ∈
Var(T2), RTG(G, T1, x1),RTG(G, T2, x2) be constructed, and δ1, δ2 be renamings such that
VRan(δi) = Var(Ti) and δix = xi for i = 1, 2. If L(RTG(G, T1, x1))∩L(RTG(G, T2, x2)) =
∅, then {[rec(ΓT1 , δ1) & rec(ΓT2 , δ2)]}G = {[∅]}G.

Proof. We proceed by contradiction. Assume that L(RTG(G, T1, x1)) ∩ L(RTG(G, T2, x2))
= ∅ and {[rec(ΓT1 , δ1) & rec(ΓT2 , δ2)]}G 6= {[∅]}G . Then, there exists a constructor substi-
tution θ ∈ {[rec(ΓT1 , δ1) & rec(ΓT2 , δ2)]}G , and hence there exist constructor substitutions
θ1, θ2 such that θ1 ∈ {[ΓT1]}G , θ2 ∈ {[ΓT2]}G , and θ = (θ1 · δ1) ⇑ (θ2 · δ2). Thus, it follows
from Lemma 30 that ξθx ∈ L(RTG(G, T1, x1))∩L(RTG(G, T2, x2)) for some ξ ∈ Subst(CR).
This contradicts the assumption. J

References
1 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University

Press, 1998.
2 Adel Bouhoula and Florent Jacquemard. Sufficient completeness verification for conditional

and constrained TRS. Journal of Applied Logic, 10(1):127–143, 2012.
3 Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Christof

Löding, Sophie Tison, and Marc Tommasi. Tree Automata Techniques and Applications,
2007. Release October, 12th 2007.

4 Nachum Dershowitz, Mitsuhiro Okada, and G. Sivakumar. Canonical conditional rewrite
systems. In Proceedings of the 9th International Conference on Automated Deduction,
volume 310 of Lecture Notes in Computer Science, pages 538–549. Springer, 1988.

5 Francisco Durán, Salvador Lucas, José Meseguer, Claude Marché, and Xavier Urbain. Prov-
ing termination of membership equational programs. In Nevin Heintze and Peter Sestoft,
editors, Proceedings of the 2004 ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-based Program Manipulation, pages 147–158. ACM, 2004.

6 Guillaume Feuillade and Thomas Genet. Reachability in conditional term rewriting systems.
Electronic Notes in Theoretical Computer Science, 86(1):133–146, 2003.

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

N. Nishida and Y. Maeda 26:19

7 Thomas Genet. Decidable approximations of sets of descendants and sets of normal forms.
In Tobias Nipkow, editor, Proceedings of the 9th International Conference on Rewriting
Techniques and Applications, volume 1379 of Lecture Notes in Computer Science, pages
151–165. Springer, 1998.

8 Karl Gmeiner. CoScart: Confluence prover in Scala. In Ashish Tiwari and Takahito Aoto,
editors, Proceedings of the 4th International Workshop on Confluence, page 45, 2015.

9 Karl Gmeiner and Naoki Nishida. Notes on structure-preserving transformations of con-
ditional term rewrite systems. In Manfred Schmidt-Schauß, Masahiko Sakai, David Sabel,
and Yuki Chiba, editors, Proceedings of the first International Workshop on Rewriting Tech-
niques for Program Transformations and Evaluation, volume 40 of OpenAccess Series in
Informatics, pages 3–14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2014.

10 Karl Gmeiner, Naoki Nishida, and Bernhard Gramlich. Proving confluence of conditional
term rewriting systems via unravelings. In Nao Hirokawa and Vincent van Oostrom, editors,
Proceedings of the 2nd International Workshop on Confluence, pages 35–39, 2013.

11 Raúl Gutiérrez, Salvador Lucas, and Patricio Reinoso. A tool for the automatic generation
of logical models of order-sorted first-order theories. In Alicia Villanueva, editor, Proceed-
ings of the XVI Jornadas sobre Programación y Lenguages, pages 215–230, 2016. Tool
available at http://zenon.dsic.upv.es/ages/.

12 John V. Guttag. The Specification and Application to Programming of Abstract Data Types.
PhD thesis, University of Tronto, Toronto, Canada, 1975.

13 Manuel V. Hermenegildo and Francesca Rossi. On the correctness and efficiency of inde-
pendent and-parallelism in logic programs. In Ewing L. Lusk and Ross A. Overbeek, editors,
Proceedings of the North American Conference on Logic Programming, pages 369–389. MIT
Press, 1989.

14 Jean-Marie Hullot. Canonical forms and unification. In Wolfgang Bibel and Robert A.
Kowalski, editors, Proceedings of the 5th Conference on Automated Deduction, volume 87
of Lecture Notes in Computer Science, pages 318–334. Springer, 1980.

15 Deepak Kapur, Paliath Narendran, and Hantao Zhang. On sufficient-completeness and
related properties of term rewriting systems. Acta Informatica, 24(4):395–415, 1987.

16 Emmanuel Kounalis. Completeness in data type specifications. In Bob F. Caviness, editor,
Proceedings of the European Conference on Computer Algebra, volume 204 of Lecture Notes
in Computer Science, pages 348–362. Springer, 1985.

17 Marija Kulaš. A practical view on renaming. In Sibylle Schwarz and Janis Voigtländer,
editors, Proceedings of the 29th and 30th Workshops on (Constraint) Logic Programming
and 24th International Workshop on Functional and (Constraint) Logic Programming, and
24th International Workshop on Functional and (Constraint) Logic Programming, volume
234 of Electronic Proceedings in Theoretical Computer Science, pages 27–41, 2017.

18 Salvador Lucas. A semantic approach to the analysis of rewriting-based systems. In
Fabio Fioravanti and John P. Gallagher, editors, Pre-Proceedings of the 27th Interna-
tional Symposium on Logic-Based Program Synthesis and Transformation, 2017. CoRR,
abs/1709.05095.

19 Salvador Lucas and Raúl Gutiérrez. A semantic criterion for proving infeasibility in condi-
tional rewriting. In Beniamino Accattoli and Bertram Felgenhauer, editors, Proceedings of
the 6th International Workshop on Confluence, pages 15–20, 2017.

20 Salvador Lucas and Raúl Gutiérrez. Automatic synthesis of logical models for order-sorted
first-order theories. Journal of Automated Reasoning, 60(4):465–01, 2018.

21 Salvador Lucas, Claude Marché, and José Meseguer. Operational termination of conditional
term rewriting systems. Information Processing Letters, 95(4):446–453, 2005.

22 Massimo Marchiori. Unravelings and ultra-properties. In Michael Hanus and Mario
Rodríguez-Artalejo, editors, Proceedings of the 5th International Conference on Algebraic

FSCD 2018

http://zenon.dsic.upv.es/ages/

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

26:20 Narrowing Trees for Syntactically Deterministic CTRSs

and Logic Programming, volume 1139 of Lecture Notes in Computer Science, pages 107–121.
Springer, 1996.

23 Aart Middeldorp and Erik Hamoen. Completeness results for basic narrowing. Applicable
Algebra in Engineering, Communication and Computing, 5:213–253, 1994.

24 Masanori Nagashima, Masahiko Sakai, and Toshiki Sakabe. Determinization of conditional
term rewriting systems. Theoretical Computer Science, 464:72–89, 2012.

25 Naoki Nishida, Takayuki Kuroda, Makishi Yanagisawa, and Karl Gmeiner. CO3: a COn-
verter for proving COnfluence of COnditional TRSs. In Ashish Tiwari and Takahito Aoto,
editors, Proceedings of the 4th International Workshop on Confluence, page 42, 2015.

26 Naoki Nishida, Adrián Palacios, and Germán Vidal. Reversible computation in term re-
writing. Journal of Logical and Algebraic Methods in Programming, 94:128–149, 2018.

27 Naoki Nishida and Germán Vidal. Program inversion for tail recursive functions. In Manfred
Schmidt-Schauß, editor, Proceedings of the 22nd International Conference on Rewriting
Techniques and Applications, volume 10 of Leibniz International Proceedings in Informatics,
pages 283–298. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2011.

28 Naoki Nishida and Germán Vidal. Computing more specific versions of conditional rewrit-
ing systems. In Elvira Albert, editor, Revised Selected Papers of the 22nd International
Symposium on Logic-Based Program Synthesis and Transformation, volume 7844 of Lecture
Notes in Computer Science, pages 137–154. Springer, 2013.

29 Naoki Nishida and Germán Vidal. A finite representation of the narrowing space. In
Gopal Gupta and Ricardo Peña, editors, Revised Selected Papers of the 23rd International
Symposium on Logic-Based Program Synthesis and Transformation, volume 8901 of Lecture
Notes in Computer Science, pages 54–71. Springer, 2014.

30 Naoki Nishida and Germán Vidal. A framework for computing finite SLD trees. Journal
of Logic and Algebraic Methods in Programming, 84(2):197–217, 2015.

31 Naoki Nishida, Makishi Yanagisawa, and Karl Gmeiner. On proving confluence of con-
ditional term rewriting systems via the computationally equivalent transformation. In
Takahito Aoto and Delia Kesner, editors, Proceedings of the 3rd International Workshop
on Confluence, pages 24–28, 2014.

32 Enno Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.
33 Catuscia Palamidessi. Algebraic properties of idempotent substitutions. In Mike Pater-

son, editor, Proceedings of the 17th International Colloquium on Automata, Languages and
Programming, volume 443 of Lecture Notes in Computer Science, pages 386–399. Springer,
1990.

34 James R. Slagle. Automated theorem-proving for theories with simplifiers, commutativity
and associativity. Journal of the ACM, 21(4):622–642, 1974.

35 Thomas Sternagel and Aart Middeldorp. Conditional confluence (system description). In
Gilles Dowek, editor, Proceedings of the Joint International Conference on Rewriting and
Typed Lambda Calculi, volume 8560 of Lecture Notes in Computer Science, pages 456–465.
Springer, 2014.

36 Thomas Sternagel and Aart Middeldorp. Infeasible conditional critical pairs. In Ashish
Tiwari and Takahito Aoto, editors, Proceedings of the 4th International Workshop on Con-
fluence, pages 13–17, 2015.

37 Taro Suzuki, Aart Middeldorp, and Tetsuo Ida. Level-confluence of conditional rewrite
systems with extra variables in right-hand sides. In Jieh Hsiang, editor, Proceedings of
the 6th International Conference on Rewriting Techniques and Applications, volume 914 of
Lecture Notes in Computer Science, pages 179–193. Springer, 1995.

	Introduction
	Preliminaries
	From Constructor SDCTRSs to Unconditional Constructor Systems
	Constructor-based Rewriting and Innermost Narrowing
	Converting to Unconditional Constructor Systems

	Compositionality of Innermost Narrowing
	Grammar Representation for Sets of Idempotent Substitutions
	Construction of Grammar Representations of Narrowing Trees
	Simplification of Grammar Representations
	Applications
	Related Work
	Conclusion
	Example of Innermost Narrowing and Constructor-based Rewriting
	Proofs of Theorems

