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Abstract
B-terms are built from the B combinator alone defined by B ≡ λf.λg.λx.f (g x), which is well-
known as a function composition operator. This paper investigates an interesting property of
B-terms, that is, whether repetitive right applications of a B-term cycles or not. We discuss
conditions for B-terms to have and not to have the property through a sound and complete
equational axiomatization. Specifically, we give examples of B-terms which have the property
and show that there are infinitely many B-terms which do not have the property. Also, we
introduce a canonical representation of B-terms that is useful to detect cycles, or equivalently,
to prove the property, with an efficient algorithm.
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1 Introduction

The ‘bluebird’ combinator B = λf.λg.λx.f (g x) is well-known [10] as a bracketing combinator
or composition operator, which has a principal type (α → β) → (γ → α) → γ → β. A
function B f g (also written as f ◦ g) takes a single argument x and returns the term f (g x).

In the general case that g takes n arguments, the composition of f and g, defined by
λx1. · · ·λxn.f (g x1 . . . xn), can be expressed as Bn f g where en is the n-fold composition
e ◦ · · · ◦ e︸ ︷︷ ︸

n

of the function e, or equivalently given by en x = e (. . . (e︸ ︷︷ ︸
n

x)) [1, Definition 2.1.9].

We call n-argument composition for the generalized composition represented by Bn.
Now we consider the 2-argument composition expressed as B2 = λf.λg.λx.λy. f (g x y).

From the definition, we have B2 = B ◦ B = B B B. Note that function application is
considered left-associative, that is, f a b = (f a) b. Thus B2 is expressed as a term in which
all applications nest to the left, never to the right. We call such terms flat [9]. We write X(k)
for the flat term defined by X X X . . . X︸ ︷︷ ︸

k

= (. . . ((X X) X) . . . ) X︸ ︷︷ ︸
k

. Using this notation,

we can write B2 = B(3).
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18:2 On repetitive right application of B-terms

B(1) B(2) B(3) B(4) B(5) B(6)
(= B(10) = B(14) = . . . )

B(7)
(= B(11) = B(15) = . . . )

B(9)
(= B(13) = B(17) = . . . )

B(8)
(= B(12) = B(16) = . . . )

Figure 1 ρ-property of the B combinator

Okasaki [9] investigated facts about flatness. For example, he shows that there is no
universal combinator X that can represent any combinator by X(k) with some k. We shall
delve into the case of X = B. Consider the n-argument composition operator Bn. We have
already seen that B2 can be written by the flat term B(3). For n = 3, we can also check B3 =
B B B B B B B B = B(8) by repeating β-reduction for B(8) f g x y z = f (g x y z). How
about the 4-argument composition B4? In fact, there is no integer k such that B4 = B(k)
with respect to βη-equality. Moreover, for any n > 3, there does not exist k such that
Bn = B(k). This surprising fact is proved by a quite simple method; listing all B(k)s for
k = 1, 2, . . . and checking that none of them is equivalent to Bn. An easy computation
gives B(6) = B(10) = λx.λy.λz.λw.λv. x (y z) (w v), and hence B(i) = B(i+4) for every
i ≥ 6. Then, by computing B(k)s only for k ∈ {1, 2, . . . , 6}, we can check that B(k) is not
βη-equivalent to Bn with n > 3 for k ∈ {1, 2, . . . }. Thus we conclude that there is no integer
k such that Bn = B(k).

This is the starting point of our research. We call ρ-property for this “periodicity” on
combinatory terms. More precisely, we say that a combinator X has ρ-property if there exist
two distinct integers i and j such that X(i) = X(j). In this case, we have X(i+k) = X(j+k)
for any k ≥ 0 (à la finite monogenic semigroup [7]). Fig. 1 shows a computation graph of
B(k). The ρ-property is named after the shape of the graph.

This paper discusses the ρ-property of combinatory terms, particularly terms built from B

alone. We call such terms B-terms and CL(B) denotes the set of all B-terms. For example,
the B-term B B enjoys the ρ-property with (B B)(52) = (B B)(32) and so does B (B B) with
(B (B B))(294) = (B (B B))(258) as reported in [8]. Several combinators other than B-terms
can be found to enjoy the ρ-property, for example, K = λx.λy.x and C = λx.λy.λz. x z y

because of K(3) = K(1) and C(4) = C(3). They are less interesting in the sense that the cycle
starts immediately and its size is very small, comparing with B-terms like B B and B (B B).
As we will see later, B (B (B (B (B (B B)))))(≡ B6 B) has the ρ-property with the cycle of
the size more than 3×1011 which starts after more than 2×1012 repetitive right applications.
This is why the ρ-property of B-terms is intensively discussed in the present paper.

The contributions of the paper are two-fold. One is to give a characterization of CL(B)
(Section 3) and another is to provide a sufficient condition for the ρ-property and anti-ρ-
property of B-terms (Section 4). In the former, we introduce a canonical representation
of B-terms and establish a sound and complete equational axiomatization for CL(B). In
the latter, the ρ-property of BnB with n ≤ 6 is shown with an efficient algorithm and the
anti-ρ-property for B-terms of particular forms is proved.

2 ρ-property of terms

The ρ-property of combinator X is that X(i) = X(j) holds for some i > j ≥ 1. We adopt
βη-equality of corresponding λ-terms for the equality of combinatory terms in this paper. We
could use other equality, for example, induced by the axioms of combinatory logic. The choice
of equality is not essential here, e.g., B(9) and B(13) are equal even up to the combinatory
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M. Ikebuchi and K. Nakano 18:3

ρ(B0B) = (6, 4) ρ(B4B) = (191206, 431453)
ρ(B1B) = (32, 20) ρ(B5B) = (766241307, 234444571)
ρ(B2B) = (258, 36) ρ(B6B) = (2641033883877, 339020201163)
ρ(B3B) = (4240, 5796)

Figure 2 ρ-property of B-terms in a particular form

axiom of B, as well as βη-equality. Furthermore, for simplicity, we only deal with the case
where X(n) is normalizable for all n. If X(n) is not normalizable, it is much more difficult to
check equivalence with the other terms. This restriction does not affect results of the paper
because all B-terms are normalizing.

Let us write ρ(X) = (i, j) if a combinator X has the ρ-property due to X(i) = X(i+j)
with minimum positive integers i and j. For example, we have ρ(B) = (6, 4), ρ(C) = (3, 1),
ρ(K) = (1, 2) and ρ(I) = (1, 1). Besides them, several combinators introduced in Smullyan’s
book [10] have the ρ-property:

ρ(D) = (32, 20) where D = λx.λy.λz.λw.x y (z w)
ρ(F ) = (3, 1) where F = λx.λy.λz.z y x

ρ(R) = (3, 1) where R = λx.λy.λz.y z x

ρ(T ) = (2, 1) where T = λx.λy.y x

ρ(V ) = (3, 1) where V = λx.λy.λz.z x y.
Except the B and D (= B B) combinators, the property is ‘trivial’ in the sense that the
loop starts early and the size of cycle is very small.

On the other hand, the combinators S = λx.λy.λz.x z (y z) and O = λx.λy.y (x y) in
the book do not have the ρ-property for reason (A), which is illustrated by

S(2n+1) = λx.λy. x y (x y (. . . (x y︸ ︷︷ ︸
n

(λz.x z (y z))) . . . )),

O(n+1) = λx. x (x (. . . (x︸ ︷︷ ︸
n

(λy.y (x y)).

The definition of the ρ-property is naturally extended from single combinators to terms
obtained by combining several combinators. We found by computation that several B-terms,
built from the B combinator alone, have a nontrivial ρ-property as shown in Fig. 2. The
detail will be shown in Section 4.

3 Checking equivalence of B-terms

The set of all B-terms, CL(B), is closed under application by definition, that is, the repetitive
right application of a B-term always generates a sequence of B-terms. Hence, the ρ-property
can be decided by checking ‘equivalence’ among generated B-terms, where the equivalence
should be checked through βη-equivalence of their corresponding λ-terms in accordance with
the definition of the ρ-property. It would be useful if we have a fast algorithm for deciding
equivalence over B-terms.

In this section, we give a characterization of the B-terms to efficiently decide their
equivalence. We introduce a method for deciding equivalence of B-terms without calculating
the corresponding λ-terms. To this end, we first investigate equivalence over B-terms with

FSCD 2018
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18:4 On repetitive right application of B-terms

B x y z = x (y z) (B1)
B (B x y) = B (B x) (B y) (B2)
B B (B x) = B (B (B x)) B (B3)

Figure 3 Equational axiomatization for B-terms

examples and then present an equation system as a characterization of B-terms so as to
decide equivalence between two B-terms. Based on the equation system, we introduce a
canonical representation of B-terms. The representation makes it easy to observe the growth
caused by repetitive right application of B-terms, which will be later used for proving the
anti-ρ-property of B2. We believe that this representation will be helpful to prove the
ρ-property or the anti-ρ-property for the other B-terms.

3.1 Equivalence over B-terms

Two B-terms are said equivalent if their corresponding λ-terms are βη-equivalent. For
instance, B B (B B) and B (B B) B B are equivalent. This can be easily shown by
the definition B x y z = x (y z). For another (non-trivial) instance, B B (B B) and
B (B (B B)) B are equivalent. This is illustrated by the fact that they are equivalent to
λx.λy.λz.λw.λv.x (y z) (w v) where B is replaced with λx.λy.λz. x (y z) or the other way
around at the =β equation. Similarly, we cannot show equivalence between two B-terms,
B (B B) (B B) and B (B B B), without long calculation. This kind of equality makes it
hard to investigate the ρ-property of B-terms. To solve this annoying issue, we will later
introduce a canonical representation of B-terms.

3.2 Equational axiomatization for B-terms

Equality between two B-terms can be effectively decided by an equation system. Figure 3
shows a sound and complete equation system as described in the following theorem.

I Theorem 1. Two B-terms are βη-equivalent if and only if their equality is derived by
equations (B1), (B2), and (B3).

The proof of the “if” part, which corresponds to the soundness of the equation system
(B1), (B2), and (B3), is given here. We will later prove the “only if” part with the uniqueness
of the canonical representation of B-terms.

Proof. Equation (B1) is immediate from the definition of B. Equations (B2) and (B3) are
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shown by
B (B e1 e2) = λx.λy. B (B e1 e2) x y B B (B e1) = λx. B B (B e1) x

= λx.λy. B e1 e2 (x y) = λx. B (B e1 x)
= λx.λy. e1 (e2 (x y)) = λx.λy.λz. B e1 x(y z)
= λx.λy. e1 (B e2 x y) = λx.λy.λz. e1 (x (y z))
= λx. B e1 (B e2 x) = λx.λy.λz. e1 (B x y z)
= B (B e1) (B e2) = λx.λy. B e1 (B x y)

= λx. B (B e1) (B x)
= B (B (B e1)) B

where the α-renaming is implicitly used. J

Equation (B2) has been employed by Statman [12] to show that no Bω-term can be a
fixed-point combinator where ω = λx.x x. This equation exposes an interesting feature of
the B combinator. Write equation (B2) as

B (e1 ◦ e2) = (B e1) ◦ (B e2) (B2’)
by replacing every B combinator with ◦ infix operator if it has exactly two arguments.
The equation is a distributive law of B over ◦, which will be used to obtain the canonical
representation of B-terms. Equation (B3) is also used for the same purpose as the form of

B ◦ (B e1) = (B (B e1)) ◦B. (B3’)
We also have a natural equation B e1 (B e2 e3) = B (B e1 e2) e3 which represents

associativity of function composition, i.e., e1 ◦ (e2 ◦ e3) = (e1 ◦ e2) ◦ e3. This is shown with
equations (B1) and (B2) by

B e1 (B e2 e3) = B (B e1) (B e2) e3 = B (B e1 e2) e3.

3.3 Canonical representation of B-terms
To decide equality between two B-terms, it does not suffice to compute their normal forms
under the definition of B, B x y z → x (y z). This is because two distinct normal forms
may be equal up to βη-equivalence, e.g., B B (B B) and B (B (B B)) B. We introduce a
canonical representation of B-terms, which makes it easy to check equivalence of B-terms.
We will eventually find that for any B-term e there exists a unique finite non-empty weakly-
decreasing sequence of non-negative integers n1 ≥ n2 ≥ · · · ≥ nk such that e is equivalent
to (Bn1B) ◦ (Bn2B) ◦ · · · ◦ (BnkB). Ignoring the inequality condition gives polynomials
introduced by Statman [12]. We will use these decreasing polynomials for our canonical
representation as presented later. A similar result is found in [4].

First, we explain how this canonical form is obtained from a B-term. We only need to
consider B-terms in which every B has at most two arguments. One can easily reduce the
arguments of B to less than three by repeatedly rewriting occurrences of B e1 e2 e3 e4 . . . en
into e1 (e2 e3) e4 . . . en. The rewriting procedure always terminates because it reduces the
number of B. Thus, every B-term in CL(B) is equivalent to a B-term built by the syntax

e ::= B | B e | e ◦ e (1)
where e1 ◦ e2 denotes B e1 e2. We prefer to use the infix operator ◦ instead of B that
has two arguments because associativity of B, that is, B e1 (B e2 e3) = B (B e1 e2) e3
can be implicitly assumed. This simplifies the further discussion on B-terms. We will deal
with only B-terms in syntax (1) from now on. The ◦ operator has a lower precedence than

FSCD 2018
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18:6 On repetitive right application of B-terms

application in this paper, e.g., terms B B ◦B and B ◦B B represent (B B)◦B and B ◦ (B B),
respectively.

The syntactic restriction by (1) does not suffice to proffer a canonical representation of
B-terms. For example, both of the two B-terms B ◦B B and B (B B) ◦B are given in the
form of (1), but we can see they are equivalent using (B3’).

A polynomial form of B-terms is obtained by putting a restriction on the syntax so that
no B combinator occurs outside of the ◦ operator while syntax (1) allows the B combinators
and the ◦ operators to occur in an arbitrary position. The restricted syntax is given as

e ::= eB | e ◦ e eB ::= B | B eB

where terms in eB have a form of B(. . . (B(B B)) . . . ), that is BnB with some n, called
monomial. The syntax can be simply rewritten into e ::= BnB | e ◦ e, which is called
polynomial.

I Definition 2. A B-term BnB is called monomial. A polynomial is a B-term given in the
form of

(Bn1B) ◦ (Bn2B) ◦ · · · ◦ (BnkB)
where k > 0 and n1, . . . , nk ≥ 0 are integers. In particular, a polynomial is called decreasing
when n1 ≥ n2 ≥ · · · ≥ nk. The length of a polynomial P is a number of monomials in P , i.e.,
the length of the polynomial above is k. The numbers n1, n2, . . . , nk are called degrees.

In the rest of this subsection, we prove that for any B-term e there exists a unique
decreasing polynomial equivalent to e. First, we show that e has an equivalent polynomial.

I Lemma 3 ([12]). For any B-term e, there exists a polynomial equivalent to e.

Proof. We prove the statement by induction on the structure of e. In the case of e ≡ B, the
term itself is polynomial. In the case of e ≡ B e1, assume that e1 has equivalent polynomial
(Bn1B) ◦ (Bn2B) ◦ · · · ◦ (BnkB). Repeatedly applying equation (B2’) to B e1, we obtain
a polynomial equivalent to B e1 as (Bn1+1B) ◦ (Bn2+1B) ◦ · · · ◦ (Bnk+1B). In the case of
e ≡ e1 ◦ e2, assume that e1 and e2 have equivalent polynomials P1 and P2, respectively. A
polynomial equivalent to e is given by P1 ◦ P2. J

Next, we show that for any polynomial P there exists a decreasing polynomial equivalent
to P . A key equation of the proof is

(BmB) ◦ (BnB) = (Bn+1B) ◦ (BmB) when m < n, (2)
which is shown by

(BmB) ◦ (BnB) = Bm(B ◦ (Bn−mB))
= Bm(B ◦ (B (Bn−m−1B)))
= Bm((B(B(Bn−m−1B))) ◦B)
= (Bn+1B) ◦ (BmB)

using equations (B2’) and (B3’).

I Lemma 4. Any polynomial P has an equivalent decreasing polynomial P ′ such that
the length of P and P ′ are equal, and
the lowest degrees of P and P ′ are equal.

Proof. We prove the statement by induction on the length of P . When the length is 1, that
is, P is a monomial, P itself is decreasing and the statement holds. When the length k of
P is greater than 1, take P1 such that P ≡ P1 ◦ (BnB). From the induction hypothesis,
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there exists a decreasing polynomial P ′1 ≡ (Bn1B) ◦ (Bn2B) ◦ · · · ◦ (Bnk−1B) equivalent to
P1, and the lowest degree of P1 is nk−1. If nk−1 ≥ n, then P ′ ≡ P ′1 ◦ (Bn B) is decreasing
and equivalent to P . Since the lowest degrees of P and P ′ are n, the statement holds. If
nk−1 < n, P is equivalent to

(Bn1 B) ◦ · · · ◦ (Bnk−1B) ◦ (BnB) = (Bn1B) ◦ · · · ◦ (Bn+1B) ◦ (Bnk−1B)
due to equation (2). Putting the last term as P2 ◦ (Bnk−1B), the length of P2 is k − 1 and
the lowest degree of P2 is greater than or equal to nk−1. From the induction hypothesis,
P2 has an equivalent decreasing polynomial P ′2 of length k − 1 and the lowest degree of P ′2
greater than or equal to nk−1. Thereby we obtain a decreasing polynomial P ′2 ◦ (Bnk−1B)
equivalent to P and the statement holds. J

I Example 5. Consider a B-term e = B (B B B) (B B) B. First, applying equation (B1),
e = B (B B B) (B B) (B B) = B B B (B B (B B)) = B (B (B B (B B)))

so that every B has at most two arguments. Then replace each B to the infix ◦ operator if it
has two arguments and obtain B (B (B ◦ (B B))) Applying equation (B2’), we have

B (B (B ◦ (B B))) = B ((B B) ◦ (B (B B)))
= (B (B B)) ◦ (B (B (B B)))
= (B2B) ◦ (B3B).

Applying equation (2), we obtain the decreasing polynomial (B4B) ◦ (B2B) equivalent to e.

Every B-term has at least one equivalent decreasing polynomial as shown so far. To
conclude this subsection, we show the uniqueness of decreasing polynomial equivalent to any
B-term, that is, every B-term e has no two distinct decreasing polynomials equivalent to e.

The proof is based on the idea that B-terms correspond to unlabeled binary trees. Let
M be a term which is constructed from variables x1, . . . , xk and their applications. Then
we can show that if the λ-term λx1. . . . λxk. M is in CL(B), then M is obtained by putting
parentheses to some positions in the sequence x1 . . . xk. More precisely, we have the following
lemma.

I Lemma 6. Every λ-term in CL(B) is βη-equivalent to a λ-term of the form λx1. . . . λxk. M

with some k > 2 where M satisfies the following two conditions: (1) M consists of only the
variables x1, . . . , xk and their applications, and (2) for every subterm of M which is in the
form of M1 M2, if M1 has a variable xi, then M2 does not have any variable xj with j ≤ i.

Proof. By the structural induction of B-terms. J

From this lemma, we see that we do not need to specify variables in M and we can simply
write like ? ? (? ?) = x1 x2 (x3 x4). Formally speaking, every λ-term in CL(B) uniquely
corresponds to a term built from ? alone by the map (λx1. . . . λxk. M) 7→M [?/x1, . . . , ?/xk].
We say an unlabeled binary tree (or simply, binary tree) for a term built from ? alone
since every term built from ? alone can be seen as an unlabeled binary tree. (A term ?

corresponds to a leaf and t1 t2 corresponds to the tree with left subtree t1 and right subtree
t2.) To specify the applications in binary trees, we write 〈t1, t2〉 for the application t1 t2. For
example, B-terms B = λx.λy.λz. x (y z) and B B = λx.λy.λz.λw. x y (z w) are represented
by 〈?, 〈?, ?〉〉 and 〈〈?, ?〉, 〈?, ?〉〉, respectively.

We will present an algorithm for constructing the corresponding decreasing polynomial
from a given binary tree. First let us define a function Li with integer i which maps binary
trees to lists of integers:
Li(?) = [ ] Li(〈t1, t2〉) = Li+||t1||(t2) ++ Li(t1) ++ [i]

FSCD 2018
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18:8 On repetitive right application of B-terms

where ++ concatenates two lists and ||t|| denotes a number of leaves. For example, L0(〈〈?, ?〉, 〈?, ?〉〉) =
[2, 0, 0] and L1(〈〈?, 〈?, ?〉〉, 〈?, 〈?, ?〉〉〉) = [4, 4, 2, 1, 1]. Informally, the Li function returns a
list of integers which is obtained by labeling both leaves and nodes in the following steps.
First each leaf of a given tree is labeled by i, i+ 1, i+ 2, . . . in left-to-right order. Then each
binary node of the tree is labeled by the same label as its leftmost descendant leaf. The Li
functions return a list of only node labels in decreasing order. The length of the list equals
the number of nodes, that is, smaller by one than the number of variables in the λ-term.

We define a function L which takes a binary tree t and returns a list of non-negative
integers in L−1(t), that is, the list obtained by excluding trailing all −1’s in L−1(t). Note
that by excluding the label −1’s it may happen to be L(t) = L(t′) for two distinct binary
trees t and t′ even though the Li function is injective. However, those binary trees t and t′
must be ‘η-equivalent’ in terms of the corresponding λ-terms.

The following lemma claims that the L function computes a list of degrees of a decreasing
polynomial corresponding to a given λ-term.

I Lemma 7. A decreasing polynomial (Bn1B) ◦ (Bn2B) ◦ · · · ◦ (BnkB) is βη-equivalent to a
λ-term e ∈ CL(B) corresponding a binary tree t such that L(t) = [n1, n2, . . . , nk].

Proof. We prove the statement by induction on the length of the polynomial P .
When P ≡ BnB with n ≥ 0, it is found to be equivalent to the λ-term
λx1.λx2.λx3. . . . .λxn+1.λxn+2.λxn+3. x1 x2 x3 . . . xn+1 (xn+2 xn+3)

by induction on n. This λ-term corresponds to a binary tree t = 〈〈. . . 〈〈?, ?〉, ?〉, . . . , ?〉︸ ︷︷ ︸
n leaves

, 〈?, ?〉〉.

Then we have L(t) = [n] holds from L−1(t) = [n,−1,−1, . . . ,−1︸ ︷︷ ︸
n+1

].

When P ≡ P ′ ◦ (BnB) with P ′ ≡ (Bn1B) ◦ · · · ◦ (BnkB), k ≥ 1 and n1 ≥ · · · ≥ nk ≥
n ≥ 0, there exists a λ-term βη-equivalent to P ′ corresponding a binary tree t′ such that
L(t′) = [n1, . . . , nk] from the induction hypothesis. The binary tree t′ must have the form
of 〈〈〈. . . 〈〈?, ?〉, ?〉, . . . , ?〉︸ ︷︷ ︸

nk leaves

, t1〉, . . . , tm〉 with m ≥ 1 and some trees t1, . . . , tm, otherwise L(t′)

would contain an integer smaller than nk. From the definition of L and Li, we have
L(t′) = Lsm(tm) ++ · · ·++ Ls1(t1) (3)

where sj = nk + 1 +
∑j−1
i=1 ||ti||. Additionally, the structure of t′ implies P ′ = λx1. . . . .λxl.

x1 x2 . . . xnk+1 e1 . . . em where ei corresponds to a binary tree ti for i = 1, . . . ,m. From
Bn B = λy1. . . . .λyn+3. y1 y2 . . . yn+1 (yn+2 yn+3), we compute a λ-term βη-equivalent to
P ≡ P ′ ◦ (BnB) by

P = λx. P ′(BnB x)
= λx. (λx1. . . . .λxl. x1 x2 . . . xnk+1 e1 . . . em)

(λy2. . . . .λyn+3. x y2 . . . yn+1 (yn+2 yn+3))
= λx.λx2. . . . .λxl. (λy2. . . . .λyn+3. x y2 . . . yn+1 (yn+2 yn+3)) x2 . . . xnk+1 e1 . . . em

= λx.λx2. . . . .λxl.

(λyn+1.λyn+2.λyn+3. x x2 . . . xn yn+1 (yn+2 yn+3)) xn+1 . . . xnk+1 e1 . . . em

where nk ≥ n is taken into account. We split into four cases: (i) nk = n and m = 1, (ii)
nk = n and m > 1, (iii) nk = n+ 1, and (iv) nk > n+ 1. In the case (i) where nk = n and
m = 1, we have

P = λx.λx2. . . . .λxl.λyn+3. x x2 . . . xn xn+1 (e1 yn+3).
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whose corresponding binary tree t is 〈〈. . . 〈〈?, ?〉, ?〉, . . . , ?〉︸ ︷︷ ︸
n leaves

, 〈t1, ?〉〉. From equation (3),

L(t) = Ln+1(t1) ++ [n+ 1] = L(t′) ++ [n+ 1] = [n1, . . . , nk, n+ 1], thus the statement holds.
In the case (ii) where nk = n and m > 1, we have

P = λx.λx2. . . . .λxl. x x2 . . . xn xn+1 (e1 e2) e3 . . . em.
whose corresponding binary tree t is 〈〈〈. . . 〈〈?, ?〉, ?〉, . . . , ?〉︸ ︷︷ ︸

n leaves

, 〈t1, t2〉, t3〉, . . . , tm〉. Hence,

L(t) = L(t′) ++ [n+ 1] holds again from equation (3). In the case (iii) where nk = n+ 1, we
have

P = λx.λx2. . . . .λxl. x x2 . . . xn xn+1 (xn+2 e1) e2 . . . em, or
whose corresponding binary tree t is 〈〈〈. . . 〈〈?, ?〉, ?〉, . . . , ?〉︸ ︷︷ ︸

n leaves

, 〈?, t1〉, t2〉, . . . , tm〉. Hence, L(t) =

L(t′) ++ [n+ 1] holds from equation (3). In the case (iv) where nk ≥ n+ 2, we have
P = λx.λx2. . . . .λxl. x x2 . . . xn xn+1 (xn+2 xn+3) . . . e1 . . . em,

whose corresponding binary tree t is 〈〈〈. . . 〈〈?, ?〉, ?〉, . . . , ?〉︸ ︷︷ ︸
n leaves

, 〈?, ?〉, . . . , t1〉, . . . , tm〉. Hence,

L(t) = L(t′) ++ [n+ 1] holds from equation (3). J

I Example 8. A λ-term λx1.λx2.λx3.λx4.λx5.λx6.λx7.λx8. x1 (x2 x3) (x4 x5 x6 (x7 x8))
is βη-equivalent to (B5 B) ◦ (B2 B) ◦ (B2 B) ◦ (B2 B) ◦ (B0 B) because its corresponding
binary tree t = 〈〈?, 〈?, ?〉〉, 〈〈〈?, ?〉, ?〉, 〈?, ?〉〉〉 satisfies L(t) = [5, 2, 2, 2, 0].

The previous lemmas immediately conclude the uniqueness of decreasing polynomials for
B-terms shown in the following theorem.

I Theorem 9. Every B-term e has a unique decreasing polynomial.

Proof. For any given B-term e, we can find a decreasing polynomial for e from Lemma 3 and
Lemma 4. Since every decreasing polynomial corresponds to only one binary tree (and since
every B-term also corresponds to only one binary tree up to η-equivalence) from Lemma 7,
the present statement holds. J

This theorem implies that the decreasing polynomial of B-terms can be used as their
canonical representation, which is effectively derived as shown in Lemma 3 and Lemma 4.

As a corollary of the theorem, we can show the “only if” statement of Theorem 1, which
corresponds to the completeness of the equation system.

Proof. Let e1 and e2 be equivalent B-terms, that is, their λ-terms are βη-equivalent. From
Theorem 9, their decreasing polynomials are the same. Since the decreasing polynomial is
derived from e1 and e2 by equations (B1), (B2), and (B3) according to the proofs of Lemma 3
and Lemma 4, equivalence between e1 and e2 is also derived from these equations. J

4 Results on the ρ-property of B-terms

We investigate the ρ-property of concrete B-terms, some of which have the property and
others do not. For B-terms having the ρ-property, we introduce an efficient implementation
to compute the entry point and the size of the cycle. For B-terms not having the ρ-property,
we give a proof why they do not have.

FSCD 2018
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18:10 On repetitive right application of B-terms

4.1 B-terms having the ρ-property
As shown in Section 2, we can check that B-terms equivalent to BnB with n ≤ 6 have
the ρ-property by computing (BnB)(i) for each i. However, it is not easy to check it by
computer without an efficient implementation because we should compute all (B6B)(i)
with i ≤ 2980054085040 (= 2641033883877 + 339020201163) to know that ρ(B6B) =
(2641033883877, 339020201163). A naive implementation which computes terms of (B6B)(i)
for all i and stores all of them has no hope to detect the ρ-property.

We introduce an efficient procedure to find the ρ-property of B-terms which can success-
fully compute ρ(B6B). The procedure is based on two orthogonal ideas, Floyd’s cycle-finding
algorithm [6] and an efficient right application algorithm over decreasing polynomials pre-
sented in Section 3.3.

The first idea, Floyd’s cycle-finding algorithm (also called the tortoise and the hare
algorithm), enables us to detect the cycle with a constant memory usage, that is, the history
of all terms X(i) does not need to be stored to check the ρ-property of the X combinator. The
key of this algorithm is the fact that there are two distinct integers i and j with X(i) = X(j)
if and only if there is an integer m with X(m) = X(2m), where the latter requires to compare
X(i) and X(2i) from smaller i and store only these two terms for the next comparison between
X(i+1) = X(i)X and X(2i+2) = X(2i)XX when X(i) 6= X(2i). The following procedure
computes the entry point and the size of the cycle if X has the ρ-property.
1. Find the smallest m such that X(m) = X(2m).
2. Find the smallest k such that X(k) = X(m+k).
3. Find the smallest 0 < c ≤ k such that X(m) = X(m+c). If not found, put c = m.
After this procedure, we find ρ(X) = (k, c). The third step can be run in parallel during
the second one. See [6, exercise 3.1.6] for the detail. One could use slightly more (possibly)
efficient algorithms by Brent [3] and Gosper [2, item 132] for cycle detection.

Efficient cycle-finding algorithms do not suffice to compute ρ(B6B). Only with the idea
above running on a laptop (1.7 GHz Intel Core i7 / 8GB of memory), it takes about 2 hours
even for ρ(B5B) and fails to compute ρ(B6B) with an out-of-memory error.

The second idea enables us to efficiently compute X(i+1) from X(i) for B-terms X. The
key of this algorithm is to use the canonical representation of X(i), that is a decreasing
polynomial, and directly compute the canonical representation of X(i+1) from that of X(i).
Additionally, the canonical representation enables us to quickly decide equivalence which is
required many times to find the cycle. It takes time just proportional to their lengths. If
λ-terms are used for finding the cycle, both application and deciding equivalence require much
more complicated computation. Our implementation based on these two ideas computes
ρ(B5B) and ρ(B6B) in 10 minutes and 59 days (!), respectively.

For two given decreasing polynomials P1 and P2, we show how a decreasing polynomial
P equivalent to (P1 P2) can be obtained. The method is based on the following lemma about
application of one B-term to another B-term.

I Lemma 10. For B-terms e1 and e2, there exists k ≥ 0 such that e1◦(B e2) = B (e1 e2)◦Bk.

Proof. Let P1 be a decreasing polynomial equivalent to e1. We prove the statement by case
analysis on the maximum degree in P1. When the maximum degree is 0, we can take k′ ≥ 1
such that P1 ≡ B ◦ · · · ◦B︸ ︷︷ ︸

k′

= Bk
′ . Then,

e1 ◦ (B e2) = B ◦ · · · ◦B︸ ︷︷ ︸
k′

◦(B e2) = (Bk
′+1e2) ◦B ◦ · · · ◦B︸ ︷︷ ︸

k′

= B (e1 e2) ◦Bk
′
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where equation (B3’) is used k′ times in the second equation. Therefore the statement holds
by taking k = k′. When the maximum degree is greater than 0, we can take a decreasing
polynomial P ′ for a B-term and k′ ≥ 0 such that P1 = (B P ′) ◦B ◦ · · · ◦B︸ ︷︷ ︸

k′

= (B P ′) ◦Bk′

due to equation (B2’). Then,
e1 ◦ (B e2) = (B P ′) ◦B ◦ · · · ◦B︸ ︷︷ ︸

k′

◦(B e2)

= (B P ′) ◦ (Bk
′+1e2) ◦B ◦ · · · ◦B︸ ︷︷ ︸

k′

= B (P ′ ◦ (Bk
′
e2)) ◦Bk

′

= B (B P ′ (Bk
′
e2)) ◦Bk

′

= B (P1 e2) ◦Bk
′

= B (e1 e2) ◦Bk
′
.

Therefore, the statement holds by taking k = k′. J

This lemma indicates that, from two decreasing polynomials P1 and P2, a decreasing
polynomial P equivalent to (P1 P2) can be obtained in the following steps where L1 and L2
are lists of non-negative numbers as shown in Section 3.3 corresponding to P1 and P2.
1. Build P ′2 by incrementing each degree of P2 by 1, i.e., when P2 ≡ (Bn1B) ◦ · · · ◦ (BnlB),

P ′2 ≡ (Bn1+1B) ◦ · · · ◦ (Bnl+1B). In terms of the list representation, a list L′2 is built
from L2 by incrementing each value by 1.

2. Find a decreasing polynomial P12 corresponding to P1 ◦ P ′2 by equation (2). In terms of
the list representation, a list L12 is constructed by appending L1 and L′2 and repeatedly
applying (2).

3. Obtain P by decrementing each degree of P12 after eliminating the trailing 0-degree units,
i.e., when P12 ≡ (Bn1B) ◦ · · · ◦ (BnlB) ◦ (B0B) ◦ · · · ◦ (B0B) with n1 ≥ · · · ≥ nl > 0,
P ≡ (Bn1−1B) ◦ · · · ◦ (Bnl−1B). In terms of the list representation, a list L is obtained
from L12 by decrementing each value by 1 after removing trailing 0’s.

In the first step, a decreasing polynomial P ′2 equivalent to B P2 is obtained. The second
step yields a decreasing polynomial P12 for P1 ◦ P ′2 = P1 ◦ (B P2). Since P1 and P2 are
decreasing, it is easy to find P12 by repetitive application of equation (2) for each unit of
P ′2, à la insertion operation in insertion sort. In the final step, a polynomial P that satisfies
(B P ) ◦Bk = P12 with some k is obtained. From Lemma 10 and the uniqueness of decreasing
polynomials, P is equivalent to (P1 P2).

I Example 11. Let P1 and P2 be decreasing polynomials represented by lists L1 = [4, 1, 0]
and L2 = [2, 0]. Then a decreasing polynomial P equivalent to (P1 P2) is obtained as a list
L in three steps:
1. A list L′2 = [3, 1] is obtained from L2 by incrementing each value by 1.
2. A decreasing list L12 is obtained from L1 and L′2 by
L12 = [4, 1, 0, 3, 1] = [4, 1, 4, 0, 1] = [4, 5, 1, 0, 1] = [6, 4, 1, 0, 1] = [6, 4, 1, 2, 0] = [6, 4, 3, 1, 0]
where equation (2) is applied in each underlined pair.

3. A list L = [5, 3, 2, 0] is obtained from L12 as the result of the application by decrementing
each value by 1 after removing trailing 0’s.

The implementation based on the right application over decreasing polynomials is avail-
able at https://github.com/ksk/Rho. Note that the program does not terminate for the
combinator which does not have the ρ-property. It will not help to decide if a combinator

FSCD 2018
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18:12 On repetitive right application of B-terms

has the ρ-property. One might observe how the terms grow by repetitive right applications
through running the program, though.

4.2 B-terms not having the ρ-property

We prove that the B-terms (BkB)(k+2)n (k ≥ 0, n > 0) do not have the ρ-property. For
example, B-term B2 = B B B, which is the case of k = 0 and n = 1, does not have the
ρ-property. To this end, we show that the number of variables in the βη-normal form of
((BkB)(k+2)n)(i) is monotonically non-decreasing and that it implies the anti-ρ-property.
Additionally, after proving that, we consider a sufficient condition not to have the ρ-property
through the monotonicity.

First, we introduce some notations. Suppose that the βη-normal form of a B-term X

is given by λx1. . . . λxn. x1 e1 · · · ek for some terms e1, . . . , ek. Then we define l(X) = n

(the number of variables), a(X) = k (the number of arguments of x1), and Ni(X) = ei
for i = 1, . . . , k. For convinience, we define functions l, a, and Ni also for terms of form
Y = x e1 . . . ek in the same mannar. That is, l(Y ) is the number of variables in Y ,
a(Y ) = k, and Ni(Y ) = ei. Let X ′ be another B-term and suppose its βη-normal form
is given by λx′1. . . . λx

′
n′ . e

′ where e′ does not have λ-abstractions. We can see X X ′ =
(λx1. . . . λxn. x1 e1 · · · ek) X ′ = λx2. . . . λxn. X

′ e1 · · · ek and from Lemma 6, its βη-normal
form is{

λx2. . . . λxn.λx
′
k+1. . . . λx

′
n′ . e

′[e1/x
′
1, . . . , ek/x

′
k] (k ≤ n′)

λx2. . . . λxn. e
′[e1/x

′
1, . . . , en′/x

′
n′ ] en′+1 · · · ek (otherwise).

Here e′[e1/x
′
1, . . . , ek/x

′
k] is the term which is obtained by substituting e1, . . . , ek to the

variables x′1, . . . , x′k in e′ .
By simple computation with this fact, we get the following lemma:

I Lemma 12. Let X and X ′ be B-terms. Then
l(X X ′) = l(X)− 1 + max{l(X ′)− a(X), 0}
a(X X ′) = a(X ′) + a(N1(X)) + max{a(X)− l(X ′), 0}

N1(X X ′) =
{
N1(X ′)[N2(X)/x′2, . . . , Nm(X)/x′m] (if N1(X) is a variable)
N1(N1(X)) (otherwise)

where m = min{l(N1(X ′)), a(X)}.

The βη-normal form of (BkB)(k+2)n is given by
λx1. . . . λxk+(k+2)n+2. x1 x2 · · · xk+1 (xk+2 xk+3 · · · xk+(k+2)n+2).

This is deduced from Lemma 7 since the binary tree corresponding to the above λ-term
is t = 〈〈. . . 〈〈?, ?〉, ?〉, . . . , ?︸ ︷︷ ︸

k+1

〉, 〈. . . 〈〈?, ?〉, ?〉, . . . , ?︸ ︷︷ ︸
(k+2)n

〉〉 and L(t) = [k, . . . , k︸ ︷︷ ︸
(k+2)n

]. Especially, we get

l((BkB)(k+2)n) = k+(k+2)n+2. In this section, we write 〈?, ?, ?, . . . , ?〉 for 〈. . . 〈〈?, ?〉, ?〉, . . . , ?〉
and identify B-terms with their corresponding binary trees.

To describe properties of (BkB)(k+2)n, we introduce a set Tk,n which is closed under right
application of (BkB)(k+2)n, that is, Tk,n satisfies that “if X ∈ Tk,n then X (BkB)(k+2)n ∈
Tk,n holds”. First we inductively define a set of terms T ′k,n as follows:
1. ? ∈ T ′k,n
2. 〈?, s1, . . . , s(k+2)n〉 ∈ T ′k,n if si = ? for each multiple i of k + 2 and si ∈ T ′k,n for the

others.
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Then we define Tk,n by Tk,n =
{
〈t0, t1, . . . , tk+1〉

∣∣∣ t0, t1, . . . , tk+1 ∈ T ′k,n
}
. It is obvious

that (BkB)(k+2)n ∈ Tk,n. Now we shall prove that Tk,n is closed under right application of
(BkB)(k+2)n.

I Lemma 13. If X ∈ Tk,n then X (BkB)(k+2)n ∈ Tk,n.

Proof. From the definition of Tk,n, if X ∈ Tk,n then X can be written in the form
〈t0, t1, . . . , tk+1〉 for some t0, . . . , tk+1 ∈ T ′k,n. In the case where t0 = ?, we have
X (BkB)(k+2)n = 〈t1, . . . , tk+1, 〈?, . . . , ?︸ ︷︷ ︸

(k+2)n

〉〉 ∈ Tk,n. In the case where t0 has the form of 2

in the definition of T ′k,n, then we have X = 〈?, s1, . . . , s(k+2)n, t1, . . . , tk+1〉 with si = ?

for each multiple i of k + 2 and si ∈ T ′k,n for the others, hence

X (BkB)(k+2)n = 〈s1, . . . , sk+1, 〈sk+2, . . . , s(k+2)n, t1, . . . , tk+1, ?〉〉.
We can easily see s1, . . . , sk+1, and 〈sk+2, . . . , s(k+2)n, t1, . . . , tk+1, ?〉 are in T ′k,n. J

From the definition of Tk,n, we can compute that a(X) equals k+ 1 or (k+ 2)n+ k+ 1 if
X ∈ Tk,n. Particularly, we get the following:

I Lemma 14. For any X ∈ Tk,n, a(X) ≤ (k + 2)n+ k + 1 = l((BkB)(k+2)n)− 1.

This lemma is crucial to show that the number of variables in ((BkB)(k+2)n)(i) is mono-
tonically non-decreasing. Put Z = (BkB)(k+2)n for short. Since Z ∈ Tk,n, we have
{Z(i) | i ≥ 1} ⊂ Tk,n by Lemma 13. Using Lemma 14, we can simplify Lemma 12 in the case
where X = Z(i) and X ′ = Z as follows:

l(Z(i+1)) = l(Z(i)) + (k + 2)n+ k + 1− a(Z(i)) (4)
a(Z(i+1)) = a(N1(Z(i))) + k + 1 (5)

N1(Z(i+1)) =
{
N2(Z(i)) (if N1(Z(i)) is a variable)
N1(N1(Z(i))) (otherwise).

(6)

By (4) and Lemma 14, we get l(Z(i+1)) ≥ l(Z(i)).
To prove that Z does not have the ρ-property, it suffices to show the following:

I Lemma 15. For any i ≥ 1, there exists j > i that satisfies l(Z(j)) > l(Z(i)).

Proof. Suppose that there exists i ≥ 1 that satisfies l(Z(i)) = l(Z(j)) for any j > i. We
get a(Z(j)) = (k + 2)n + k + 1 by (4) and then a(N1(Z(j))) = (k + 2)n by (5). Therefore
N1(Z(j)) is not a variable for any j > i and from (6), we obtain N1(Z(j)) = N1(N1(Z(j−1))) =
· · · = N1(· · ·N1(︸ ︷︷ ︸

j−i+1

Z(i)) · · · ) for any j > i. However, this implies that Z(i) has infinitely many

variables and it yields contradiction. J

Now, we get the desired result:

I Theorem 16. For any k ≥ 0 and n > 0, (BkB)(k+2)n does not have the ρ-property.

The key fact which enables us to show the anti-ρ-property of (BkB)(k+2)n is the existence
of the set Tk,n ⊃

{
((BkB)(k+2)n)(i)

∣∣ i ≥ 1
}
which satisfies Lemma 14. In a similar way, we

can show the anti-ρ-property of a B-term which has such a “good” set. That is,

I Theorem 17. Let X be a B-term and T be a set of B-terms. If
{
X(i)

∣∣ i ≥ 1
}
⊂ T and

l(X) ≥ a(X ′) + 1 for any X ′ ∈ T , then X does not have the ρ-property.

FSCD 2018
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Here is an example of the B-terms which satisfy the condition in Theorem 17 with some
set T . Consider X = (B2B)2 ◦ (BB)2 ◦B2 = 〈?, 〈?, 〈?, 〈?, ?, ?〉, ?〉, ?〉〉. We inductively
define T ′ as follows:
1. ? ∈ T ′
2. For any t ∈ T ′, 〈?, t, ?〉 ∈ T ′
3. For any t1, t2 ∈ T ′, 〈?, t1, ?, 〈?, t2, ?〉, ?〉 ∈ T ′
Then T = {〈t1, 〈?, t2, ?〉〉 | t1, t2 ∈ T ′} satisfies the condition in Theorem 17. It can be
checked simply by case analysis. Thus

I Theorem 18. (B2B)2 ◦ (BB)2 ◦B2 does not have the ρ-property.

Theorem 17 gives a possible technique to prove the monotonicity with respect to l(X(i)), or,
the anti-ρ-property of X, for some B-term X. Moreover, we can consider another problem on
B-terms: “Give a necessary and sufficient condition to have the monotonicity for B-terms.”

5 Concluding remark

We have investigated the ρ-properties of B-terms in particular forms so far. While the
B-terms equivalent to BnB with n ≤ 6 have the ρ-property, the B-terms (BkB)(k+2)n with
k ≥ 0 and n > 0 and (B2B)2 ◦ (BB)2 ◦B2 do not. In this section, remaining problems related
to these results are introduced and possible approaches to illustrate them are discussed.

5.1 Remaining problems
The ρ-property is defined for any combinatory terms (and closed λ-terms). We investigated
it only for B-terms as a simple but interesting instance in the present paper. From his
observation on repetitive right applications for several B-terms, Nakano [8] has conjectured
as follows.
I Conjecture 19. A B-term e has the ρ-property if and only if e is a monomial, i.e., e is
equivalent to BnB with n ≥ 0.
The “if” part for n ≤ 6 has been shown by computation and the “only if” part for (BkB)(k+2)n

(k ≥ 0, n > 0) and (B2B)2 ◦ (BB)2 ◦ B2 has been shown by Theorem 16. This conjecture
implies that the ρ-property of B-terms is decidable. We conjecture that the ρ-property of
even BCK- and BCI-terms is decidable. The decidability for the ρ-property of S-terms
and L-terms can also be considered. Waldmann’s work on a rational representation of
normalizable S-terms may be helpful to solve it. We expect that none of S-terms have the
ρ-property as S itself does not, though. Regarding L-terms, Statman’s work [11] may be
helpful where equivalence of L-terms is shown decidable up to a congruence relation induced
by L e1 e2 → e1 (e2 e2). It would be interesting to investigate the ρ-property of L-terms in
this setting.

5.2 Possible approaches
The present paper introduces a canonical representation to make equivalence check of B-terms
easier. The idea of the representation is based on that we can lift all ◦’s (2-argument B) to the
outside of B (1-argument B) by equation (B2’). One may consider it the other way around.
Using the equation, we can lift all B’s (1-argument B) to the outside of ◦ (2-argument B).
Then one of the arguments of ◦ becomes B. By equation (B3’), we can move all B’s right.
Thereby we find another canonical representation for B-terms given by

e ::=B | B e | e ◦B
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whose uniqueness could be easily proved in a way similar to Theorem 9.
Waldmann [13] suggests that the ρ-property of BnB may be checked even without

converting B-terms into canonical forms. He simply defines B-terms by
e ::=Bk | e e

and regards Bk as a constant which has a rewrite rule Bk e1 e2 . . . ek+2 → e1 (e2 . . . ek+2).
He implemented a check program in Haskell to confirm the ρ-property. Even in the re-
striction on rewriting rules, he found that (B0B)(9) = (B0B)(13), (B1B)(36) = (B1B)(56),
(B2B)(274) = (B2B)(310) and (B3B)(4267) = (B3B)(10063), in which it requires a few more
right applications to find the ρ-property than the case of canonical representation. If the
ρ-property of BnB for any n ≥ 0 is shown under the restricted equivalence given by rewriting
rules, then we can conclude the “if” part of Conjecture 19.

Another possible approach is to observe the change of (principal) types by right repetitive
application. Although there are many distinct λ-terms of the same type, we can consider
a desirable subset of typed λ-terms. As shown by Hirokawa [5], each BCK-term can be
characterized by its type, that is, any two λ-terms in CL(BCK) of the same principal type
are identical up to β-equivalence. This approach may require observing unification between
types in a clever way.
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