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Abstract
Like termination, confluence is a central property of rewrite systems. Unlike for termination,

however, there exists no known complexity hierarchy for confluence. In this paper we investigate
whether the decreasing diagrams technique can be used to obtain such a hierarchy. The decreasing
diagrams technique is one of the strongest and most versatile methods for proving confluence of
abstract reduction systems, it is complete for countable systems, and it has many well-known
confluence criteria as corollaries.

So what makes decreasing diagrams so powerful? In contrast to other confluence techniques,
decreasing diagrams employ a labelling of the steps → with labels from a well-founded order in
order to conclude confluence of the underlying unlabelled relation. Hence it is natural to ask
how the size of the label set influences the strength of the technique. In particular, what class
of abstract reduction systems can be proven confluent using decreasing diagrams restricted to
1 label, 2 labels, 3 labels, and so on? Surprisingly, we find that two labels suffice for proving
confluence for every abstract rewrite system having the cofinality property, thus in particular for
every confluent, countable system. We also show that this result stands in sharp contrast to the
situation for commutation of rewrite relations, where the hierarchy does not collapse.

Finally, as a background theme, we discuss the logical issue of first-order definability of the
notion of confluence.
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1 Introduction

A binary relation → is called confluent if two coinitial reductions (i.e., reductions having the
same starting term) can always be extended to cofinal reductions, that is:

∀abc.
(
b� a� c⇒ ∃d. b� d� c

)
. (1)
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14:2 Decreasing Diagrams: Two Labels Suffice

a

b c
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Figure 1 Confluence.

a

b c

d

Figure 2 Commutation.

The confluence property is illustrated in Figure 1, in which solid and dotted lines stand for
universal and existential quantification, respectively. The relation → is called terminating if
there are no infinite sequences a0 → a1 → a2 → . . ..

Termination and confluence are central properties of rewrite systems. For both properties
there exist numerous proof techniques, and there are annual competitions for comparing the
performance of automated provers. It is therefore a natural question how to measure and
classify the complexity of termination and confluence problems. While there is a well-known
hierarchy for termination [20], no such classification is known for confluence.1

The termination hierarchy [20] is based on the characterisation of termination in terms
of well-founded monotone algebras. This entails an interpretation of the symbols of the
signature as functions over the algebra. Then the class of the functions (or other properties
of the algebra) used to establish termination can serve as a measure for the complexity of the
termination problem. For instance, if polynomial functions over the natural numbers suffice
to establish termination, then the rewrite system is said to be polynomially terminating.

In order to address the question of a hierarchy and complexity measure for the confluence
property, our point of departure is the decreasing diagrams technique [17]. Decreasing
diagrams are for confluence what well-founded interpretations are for termination. The
decreasing diagrams technique is complete for systems having the cofinality property [15,
p. 766]. Thus, in particular for every confluent, countable abstract reduction system, the
confluence property can be proven using the decreasing diagrams technique. The power of
decreasing diagrams is moreover witnessed by the fact that many well-known confluence
criteria are direct consequences of decreasing diagrams [17], including the lemma of Hindley–
Rosen [6, 13], Rosen’s request lemma [13], Newman’s lemma [12], and Huet’s strong confluence
lemma [7].

What makes the decreasing diagrams technique so powerful? The freedom to label the
steps distinguishes decreasing diagrams from all other confluence criteria, with the exception
of the weak diamond property [1, 4] by De Bruijn which has equal strength. This suggests
that the power of these techniques arises from the labelling. This naturally leads to the
following questions:

1. How does the size of the label set influence the strength of decreasing diagrams?
2. What class of abstract reduction systems can be proven confluent using decreasing

diagrams with 1 label, 2 labels, 3 labels and so on?
3. Can the size of the label set serve as a complexity measure for a confluence problem?

Let DCR denote the class of abstract reduction systems (ARSs) whose confluence can be
proven using decreasing diagrams. For an ordinal α, we write DCRα for the class of ARSs

1 Ketema and Simonsen [8] consider peaks t1 � s � t2 and measure the length of joining reductions
t1 � ·� t2 as a function of the size of s and the length of the reductions in the peak. The nature of
this function can serve as a complexity measure for a confluence problem.
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Endrullis, Klop and Overbeek 14:3

whose confluence can be proven using decreasing diagrams with label set α (see Definition 15).
For every ARS A, we have

DCR(A) =⇒ DCRα(A) for some ordinal α (2)

The reason is that any partial well-founded order can be transformed into a total well-founded
order (thus an ordinal). This transformation does not require the Axiom of Choice, see [4].

Clearly, we have DCRα ⊆ DCRβ whenever α < β. So

DCR0 ⊆ DCR1 ⊆ DCR2 ⊆ DCR3 ⊆ . . . ⊆ DCRω ⊆ . . . (3)

But which of these inclusions are strict? From the completeness proof in [18] it follows that
all abstract reduction systems having the cofinality property, including all countable systems,
belong to DCRω. In other words, for confluence of countable systems it suffices to label steps
with natural numbers.

Contribution and outline

Our main result is that all systems with the cofinality property are in the class DCR2, see
Section 4. In particular, for proving confluence of countable abstract reduction systems it
always suffices to label steps with 0 or 1 using the order 0 < 1. So for countable systems,
the hierarchy (3) collapses at level DCR2. This is somewhat surprising, as one might expect
that decreasing diagrams draws its strength from a rich labelling of the steps.

Interestingly, there is a stark contrast with commutation. For commutation the hierarchy
does not collapse, see Section 5. We prove that, for commutation of countable systems, all
inclusions are strict up to level DCω.

Our findings also provide new ways to approach the long-standing open problem of
completeness of decreasing diagrams for uncountable systems, see Section 6.

2 Preliminaries

We repeat some of the main definitions, for the sake of self-containedness, and to fix notations.
Let A be a set. For a relation→ ⊆ A×A we write→∗ or� for its reflexive transitive closure.
We write ≡ for the empty step, that is, ≡ = {(a, a) | a ∈ A}, and we define →≡ =→ ∪ ≡.

I Definition 1 (Abstract Reduction System). An abstract reduction system (ARS) A = (A,→)
consists of a non-empty set A together with a binary relation → ⊆ A× A. For B ⊆ A we
define A|B , the restriction of A to B, by A|B = (B, →∩ (B ×B)).

I Definition 2 (Indexed ARS). An indexed ARS A = (A, {→α}α∈I) consists of a non-empty
set A of objects, and a family {→α}α∈I of relations →α ⊆ A×A indexed by some set I.

I Definition 3 (Confluence). An ARS (A,→) is confluent (CR) if � ·� ⊆� ·�, that is,
every pair of finite, coinitial rewrite sequences can be joined to a common reduct.

I Definition 4 (Commutation). Let (A,→, ) be an indexed ARS. Then the relation →
commutes with  if ←∗ · ∗ ⊆ ∗ · ←∗; see Figure 2.

I Definition 5 (Countable). An ARS (A,→) is countable (CNT) if there exists a surjective
function from the set of natural numbers N to A.

I Definition 6 (Cofinal Reduction). Let A = (A,→) be an ARS. A set B ⊆ A is cofinal in A
if for every a ∈ A we have a � b for some b ∈ B. A finite or infinite reduction sequence
b0 → b1 → b2 → · · · is cofinal in A if the set B = { bi | i ≥ 0 } is cofinal in A.

I Definition 7 (Cofinality Property). An ARS A = (A,→) has the cofinality property (CP) if

FSCD 2018
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14:4 Decreasing Diagrams: Two Labels Suffice

for every a ∈ A, there exists a reduction a ≡ b0 → b1 → b2 → · · · that is cofinal in A|{b | a�b}.

I Lemma 8. Let A = (A,→) be a confluent ARS and a ∈ A. If a rewrite sequence is cofinal
in A|{b | a�b}, then it is also cofinal in A|{b | a↔∗b}. J

I Theorem 9 (Klop [9]). Every confluent countable ARS has the cofinality property. J

3 First-order Definability of Confluence

As we are investigating a confluence hierarchy, the question of first-order definability of
confluence arises naturally. Namely, if confluence were definable by a set of first-order
formulas, then we could obtain a confluence hierarchy by imposing syntactic restrictions on
this set of formulas.

At first glance this question may appear trivial since confluence is typically defined via
the first-order formula (1). However, this formula involves the transitive closure � of the
one-step relation → which is itself not first-order definable. We show that confluence is not
first-order definable over the one-step relation →.
I Remark. In [16] it is shown that the first-order theory of linear one-step rewriting is
undecidable. In this paper it is mentioned as a conjecture that undecidable properties like
confluence and weak termination (see further [2]) cannot be expressed in the first-order logic
of one-step rewriting.

I Theorem 10. Confluence and local confluence cannot be defined in the first-order logic
with equality and the predicate → (one-step rewriting), neither by a single formula nor by a
set of formulas.

Proof. Assume, for a contradiction, that there is a set ∆ of first-order formulas over the
predicate → such that for every ARS A = (A,→) it holds that:

A is confluent ⇐⇒ A |= ∆

Here A |= ∆ means that A is a model of ∆, that is, A satisfies all formulas in ∆. In what
follows, we write [c] for the interpretation of a constant c. For convenience, we write → for
the predicate symbol in formulas as well as for the actual one-step rewrite relation or A.

Our goal is to describe the following non-confluent structure using formulas:

a

b0

c0

b1 b2 b3 · · ·

c1 c2 c3 · · ·

We start by describing each single step by a formula:

Λ = { a→ b0, a→ c0 } ∪ { bi → bi+1 | i ∈ N } ∪ { cj → cj+1 | j ∈ N }

We need to ensure that the interpretation of distinct constants is distinct:

Λ6= = {x 6= y | x, y ∈ N } where N = { a } ∪ { bi | i ∈ N } ∪ { cj | j ∈ N }

Finally, the following formula requires all elements, except for [a], to be deterministic:

ξ = ∀xyz. (x 6= a ∧ x→ y ∧ x→ z)⇒ y = z

This simple trick excludes that elements {[bn] | n ∈ N} ∪ {[cn] | n ∈ N} admit steps other
than the ones specified in Λ.
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Endrullis, Klop and Overbeek 14:5

Now consider the following set of formulas:

Γ = ∆ ∪ Λ ∪ Λ 6= ∪ { ξ }

By the above construction, any model of Λ ∪ Λ6= ∪ { ξ } cannot be confluent. However, any
model of ∆ must be confluent. Thus Γ does not have a model.

On the other hand, any finite subset Γ′ of Γ has a model. This can be seen as follows.
There exists a k ∈ N such that none of the constants { bi | i ≥ k } ∪ { cj | j ≥ k } appears in
Γ′. Then the following structure is a model of Γ′:

a

b0

c0

b1 b2 · · · bk

c1 c2 · · · ck

d

This is a contradiction! Due to the compactness theorem, Γ has a model if and only if every
finite subset of Γ has a model. Thus confluence is not first-order definable.

Note that the same proof also shows undefinability of local confluence. J

I Theorem 11. For α ≥ 2, DCRα cannot be defined in the first-order logic with equality and
the predicate → (one-step rewriting), neither by a single formula nor by a set of formulas.

Proof. Follows by an extension of the proof for Theorem 10, noting that the model of Γ′
admits a decreasing labelling with 2 labels. J

Note that DCR1 is equivalent to the diamond property for the reflexive closure of the
rewrite relation, and thus is first-order definable.

4 Decreasing Diagrams for Confluence with Two Labels

In this section we show that two labels suffice for proving confluence using decreasing diagrams
for any abstract reduction system having the cofinality property. We start by introducing
the decreasing diagrams technique.

I Notation 12. For an indexed ARS A = (A, {→α}α∈I) and a relation < ⊆ I × I, we define

→ =
⋃
α∈I →α →<β =

⋃
α<β →α →≤β =

⋃
α≤β →α

Moreover, we use →<α∪<β as shorthand for (→<α ∪ →<β).

I Definition 13 (Decreasing Church–Rosser [17]). An ARS A = (A, ) is called decreasing
Church–Rosser (DCR) if there exists an ARS B = (A, {→α}α∈I) indexed by a well-founded
partial order (I,<) such that  = → and every peak c ←β a →α b can be joined by
reductions of the form shown in Figure 3.2

The following is the main theorem of decreasing diagrams.

I Theorem 14 (Decreasing Diagrams – De Bruijn [1] & Van Oostrom [17]). If an ARS is
decreasing Church–Rosser, then it is confluent. J

2 Van Oostrom [19] generalises the shape of the decreasing elementary diagrams by allowing the joining
reductions to be conversions. This can be helpful to find suitable elementary diagrams. However, if
there are conversions then we can always obtain joining reductions by diagram tiling. So a system
is locally decreasing with respect to conversions if and only if it is locally decreasing with respect to
reductions (using the same labelling of the steps).

FSCD 2018
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14:6 Decreasing Diagrams: Two Labels Suffice

a b

c d

α

β

< α

β or ≡

< α ∪ < β

< β α
or ≡

< α
∪ < β

Figure 3 Decreasing elementary diagram.

In other words DCR =⇒ CR.
As already suggested in the introduction, we introduce classes DCRα restricting the

well-founded order (I,<) in Definition 13 to the ordinal α.

I Definition 15. For ordinals α, let DCRα denote the class of ARSs A that are decreasing
Church–Rosser (Definition 13) with label set {β | β < α } ordered by the usual order < on
ordinals. We say that A has the property DCRα, denoted DCRα(A), if A ∈ DCRα.

The remainder of this section is devoted to the proof that every system with the cofinality
property is DCR2. Put differently, it suffices to label steps with I = { 0, 1 }. Let A = (A,→)
be an ARS having the cofinality property. Note that, for defining the labelling, we can
consider connected components with respect to ↔∗ separately. Thus assume that A consists
of a single connected component, that is, for every a, b ∈ A we have a↔∗ b. By the cofinality
property, which implies confluence, and Lemma 8 there exists a rewrite sequence

m0 → m1 → m2 → m3 → · · ·

that is cofinal in A; we call this rewrite sequence the main road. Without loss of generality
we may assume that the main road is acyclic, that is, mi 6≡ mj whenever i 6= j. (We can
eliminate loops without harming the cofinality property. Note that the main road is allowed
to be finite.)

The idea of labelling the steps in A is as follows. For every node a ∈ A, we label precisely
one of the outgoing edges with 0 and all others with 1. The edge labelled with 0 must be
part of a shortest path from a to the main road. For the case that a lies on the main road,
the step labelled 0 must be the step on the main road. This is illustrated in Figure 4.

m0
m1

m2

m3
m4

m5 · · ·
0

0

0
0

0
0

n0

n1
n2

n3

1

0

1
0

0

n4

n5

n6

10

1

0

0

0

1

n7

1
1

0

1

main road

minimizing

non-minimizing

Figure 4 Example labelling.
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Endrullis, Klop and Overbeek 14:7

Note that there is a choice about which edge to label with 0 whenever there are multiple
outgoing edges that all start a shortest path to the main road. To resolve this choice, the
following definition assumes a well-order < on the universe A, whose existence is guaranteed
by the well-ordering theorem. Then, whenever there is a choice, we choose the edge for which
the target is minimal in this order.
I Remark. Recall that the Axiom of Choice is equivalent to the well-ordering theorem. In
many practical cases, however, the existence of such a well-order does not require the Axiom
of Choice. If the universe is countable, then such a well-order can be derived directly from
the surjective counting function f : N→ A.

In the following definition we follow the proof in [15, Proposition 14.2.30, p. 766], employing
the notion of a cofinal sequence and the rewrite distance from a point to this sequence.
While the proof in [15] labels steps by their distance to the target node, we need a more
sophisticated labelling.

I Definition 16. Let A = (A,→) be an ARS and M : m0 → m1 → m2 → · · · be a finite or
infinite rewrite sequence in A. For a, b ∈ A, we write

(i) a ∈M if a ≡ mi for some i ≥ 0, and
(ii) (a→ b) ∈M if a ≡ mi and b ≡ mi+1 for some i ≥ 0.

If M is cofinal in A, we define the distance d(a,M) as the least natural number n ∈ N such
that a→n m for some m ∈M . If M is clear from the context, we write d(a) for d(a,M).

I Definition 17 (Labelling with two labels). Let A = (A,→) be an ARS equipped with a
well-order < on A such that there exists a cofinal reduction M : m0 → m1 → m2 → · · · that
is acyclic (that is, for all i < j, mi 6≡ mj).

We say that a step a→ b is

(i) on the main road if (a→ b) ∈M ;
(ii) minimizing if d(a) = d(b) + 1 and b′ ≥ b for every a→ b′ with d(b′) = d(b).

We define an indexed ARS A{0,1} = (A, {→i}i∈I) where I = { 0, 1 } as follows:

a→0 b ⇐⇒ a→ b and this step is on the main road or minimizing
a→1 b ⇐⇒ a→ b and this step is not on the main road and not minimizing

for every a, b ∈ A.

I Lemma 18. Let A = (A,→) be an ARS with a cofinal rewrite sequence M : m0 → m1 →
· · · that is acyclic. Furthermore, let < be a well-order over A. Then for A{0,1} = (A,→0,→1)
we have:

(i) → = →0 ∪ →1 ;
(ii) for every a, b ∈M we have a�0 ·�0 b ;
(iii) for every a ∈ A, there is at most one b ∈ A such that a→0 b ;
(iv) for every a /∈M , there exists b ∈ A with a→0 b and d(a) > d(b) ;
(v) for every a ∈ A, there exists m ∈M such that a�0 m ;
(vi) every peak c←β a→α b can be joined as in Figure 3, and, explicitly for labels {0, 1}, as

in Figure 5.

Proof. Properties (i) and (ii) follow from the definitions.
For (iii) assume that b←0 a→0 c. We show that b ≡ c. The steps a→ b and a→ c are

either minimizing or on the main road. We distinguish cases a ∈M and a 6∈M :

FSCD 2018
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14:8 Decreasing Diagrams: Two Labels Suffice

(i) Assume that a ∈M . Then d(a) = 0, and thus neither a→ b nor a→ c is a minimizing
step. Hence (a→ b) ∈M and (a→ c) ∈M . Since M is acyclic, we get b ≡ c.

(ii) If a /∈M , both steps a→ b and a→ c must be minimizing. If d(b) 6= d(c), then we have
either d(a) 6= d(b) + 1 or d(a) 6= d(c) + 1, contradicting minimization. Thus d(b) = d(c).
Then by minimization we have b ≥ c and c ≥ b, from which we obtain b ≡ c.

For (iv), consider an element a /∈M . Let B = {b′ | a→ b′ ∧ d(a) = d(b′) + 1}. By definition
of the distance d(·), B 6= ∅. Define b as the least element of B in the well-order < on A.
It follows that a→ b is a minimization step. Hence a→0 b and d(a) > d(b). Property (v)
follows directly from (iv) using induction on the distance.

For (vi), consider a peak c←β a→α b. If b ≡ c, then the joining reductions are empty
steps. Thus assume that b 6≡ c. By (iii) we have either α = 1 or β = 1. By (v) there
exist mb,mc ∈ M such that b �0 mb and c �0 mc. By (ii) we have mb �0 · �0 mc.
Hence b �0 · �0 c. These joining reductions are of the form required by Figure 3 since
�0 =�<α∪<β . J

I Theorem 19. If an ARS A = (A,→) satisfies the cofinality property, then there exists an
indexed ARS (A, (→α)α∈{0,1}) such that → =→0 ∪ →1 and every peak c←β a→α b can be
joined according to the elementary decreasing diagram in Figure 3, and, explicitly for labels
{0, 1}, as in Figure 5.

Proof. It suffices to consider a connected component of A. Let B = (B,→) be a connected
component of A: we have a↔∗ b for all a, b ∈ B. By the cofinality property and Lemma 8,
there exists a cofinal reduction m0 → m1 → · · · in B. By the well-ordering theorem, there
exists a well-order < over B. Then B has the required properties by Lemma 18(vi). J

I Corollary 20. DCR2 is a complete method for proving confluence of countable ARSs.

Proof. Immediate from Theorems 9 and 19. J

Theorem 19 also holds for De Bruijn’s weak diamond property. Note the following
caveat: when restricting the index set I to a single label, the decreasing diagram technique
is equivalent to ← · → ⊆ →≡ · ←≡, i.e. the diamond property for → ∪ ≡, while the weak
diamond property with one label is equivalent to strong confluence ← · → ⊆ →≡ ·�.

0

0 0≡

0
≡

0

1

1≡

0

0

1

1

0

1≡

0

0 1
≡

0
Figure 5 Decreasing diagrams with labels 0 and 1 where 0 < 1.

The property DCR2 is given implicitly by the decreasing diagrams as in Figure 3, but
it is also instructive to give explicitly the elementary reduction diagrams making up the
property DCR2. These are shown in Figure 5. Note that the 1-steps do not split in the
diagram construction, i.e. they cross over in at most one copy. This facilitates a simple proof
of confluence.
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Endrullis, Klop and Overbeek 14:9

Actually, from our proof it follows that the joining reductions can be required to only
contain steps with label 0. Thus even the simple shape of diagrams shown in Figure 6 is
complete for proving confluence of systems having the cofinality property. Here the 1-steps
do not cross over at all! Note that while this set of elementary diagrams has a trivial proof
of confluence, the work to prove DCR2 =⇒ CR from the original elementary diagrams as in
Figure 5, consists in showing from our earlier construction that it actually suffices to join by
using only 0’s.

0

0 ≡

≡

0

1 0

0

1

1 0

0
Figure 6 A simple set of diagrams that is complete for confluence of countable systems.

I Remark. We note a certain similarity between the notion of a decreasing diagram based
on labels { 0, 1 } with 0 < 1 and the classical ‘requests’ lemma of J. Staples [10, 15, Exercise
2.08.5, p. 9]. In A = (A,→1,→2) define: →1 requests →2 if

2

1
1

2

2

If in addition →1 and →2 are confluent, then →1,2 =→1 ∪ →2 is confluent.
The requests lemma states that the ‘dominant’ reduction �1 needs the ‘support’ of the

secondary reduction �2 for making the divergence �1 ·�2 convergent. Similarly for the
property DCR2, the dominant reduction →1 needs support by �0 for making the divergence
←1 · →0 convergent. However, the requests lemma employs �, not →.

5 Decreasing Diagrams for Commutation

The decreasing diagram technique can also be used for proving commutation, see [17]. It
turns out that the situation for commutation stands in sharp contrast to that for confluence.
For commutation the hierarchy does not collapse. In particular, we show that, for every
n ≤ ω, decreasing diagrams for commutation with n labels is strictly stronger than decreasing
diagrams with less than n labels.

The elementary decreasing diagram for commutation is shown in Figure 7, which is very
similar to Figure 3, but now refers to two ‘basis’ relations →,  .

I Definition 21 (Decreasing Commutation). An ARS A = (A,→, ) is called decreasing
commuting (DC) if there is an ARS B = (A, {→α}α∈I , { α}α∈I) indexed by a well-founded
partial order (I,<) such that →A =→B and  A = B, and every peak c←β a α b in B
can be joined by reductions of the form shown in Figure 7.

If all conditions are fulfilled, we call B a decreasing labelling of A.
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14:10 Decreasing Diagrams: Two Labels Suffice

a b

c d

α

β

< α

β≡

< α ∪ < β

< β α
≡

< α
∪ < β

Figure 7 Decreasing elementary diagram for proving commutation.

I Theorem 22 (Decreasing Diagrams for Commutation – Van Oostrom [17]). If an ARS
A = (A,→, ) is decreasing commuting, then → commutes with  . J

Analogous to the classes DCRα for confluence, we introduce classes DCα for commutation.

I Definition 23. For ordinals α, let DCα denote the class of ARSs A = (A,→, ) that
are decreasing commuting (Definition 21) with label set {β | β < α } ordered by the usual
order < on ordinals. We say that A has the property DCα, denoted DCα(A), if A ∈ DCα.

In Definition 23 it suffices to consider total orders since every partial well-founded order
can be transformed into a total well-founded order. This transformation [4] preserves the
decreasing elementary diagrams and does not need the Axiom of Choice.

In order to show that the hierarchy for commutation does not collapse, we inductively
construct, for every n ∈ N, an ARS An that is DC5n+1, but not DCn.

I Definition 24. For every n ∈ N we define a tuple Φn = (An, a1, a, c, b, b1) consisting of an
ARS An = (An,→n, n) and distinguished elements a1, a, c, b, b1 ∈ An by induction on n:

1. Let Φ0 = (A0, a1, c, c, c, b1) where A0 is the ARS displayed in Figure 8.
2. Let Φn = (An, a, a′, c, b′, b). We obtain An+1 as an extension of An as shown in Figure 9.

The inner dark part with the darker background is An. The extension consists of the
addition of fresh elements a1, . . . , a7 and b1, . . . , b7 and rewrite steps as shown in the
figure. We define Φn+1 = (An+1, a1, a, c, b, b1).

We start with a few important properties of the construction.

I Lemma 25. For every n ∈ N and Φn = (An, a1, a, c, b, b1) with An = (An,→, ) we have
the following properties:

(i) The relations → and  are deterministic.
(ii) For every element x ∈ An we have x→∗ c and x ∗ c.
(iii) For x ∈ An, we have a1  ∗ x←∗ b1 if and only if a ∗ x and a→∗ x.
(iv) For x ∈ An, we have a1 →∗ x  ∗ b1 if and only if b ∗ x and b→∗ x.

Proof. We use induction on n ∈ N. For the base case n = 0, we have Φ0 = (A0, a1, c, c, c, b1)
where A0 is given in Figure 8. The properties follow from an inspection of the figure.

For the induction step, let n ∈ N and assume that Φn = (An, a, a′, c, b′, b) satisfies the
properties. By construction, An+1 is an extension of An as shown in Figure 9, and we
have Φn+1 = (An+1, a1, a, c, b, b1). The fresh elements introduced by the extension are
X = { a1, . . . , a7, b1, . . . , b7 }. We check the validity of each property for An+1:
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a1

a2 a3

c

b2 b3

b1

Figure 8 Base case:
one label suffices.

a1

a2

a3

a4

a5

a6

a7

a

b

c b7

b5

b6

b4

b2

b3

b1

Figure 9 From n to n + 1 labels for commutation. Rough proof sketch:
Assume that at least one of the reductions a→∗ c, b ∗ c, a ∗ c or

b→∗ c contains two steps labelled with n. Then each of the peaks at a1,
a4 and a7, or each of the peaks at b1, b4 and b7 must contain a step
labelled with n + 1. As a consequence, one of the reductions a1 →∗ c,
b1  ∗ c, a1  ∗ c or b1 →∗ c contains two steps labelled with n + 1.

(i) There are no fresh steps with sources in An. Every element x ∈ X admits precisely one
outgoing step→ and one outgoing step . So both rewrite relations remain deterministic,
establishing property (i).

(ii) For every element x ∈ X we have x →∗ a or x →∗ b, and x  ∗ a or x  ∗ b. Together
with the induction hypothesis (ii) for n, this yields property (ii) for n+ 1.

(iii) From Figure 9 it follows immediately that any reduction a1  ∗ x←∗ b1 must be of the
form a1  ∗ a ∗ x←∗ a←∗ b1. The reductions from both sides are deterministic and
the first joining element is a.

(iv) Analogous to property (iii). J

From Lemma 25 (ii) it follows that → and  commute in An. However, commutation is
not sufficient to conclude that An is decreasing commuting. Decreasing diagrams are not
complete for proving commutation as shown in [4].

We prove that An is decreasing commuting by constructing a labelling with 5n labels.
This bound is by no means optimal, but easy to verify and sufficient for our purpose.

I Lemma 26. For every n ∈ N, An is DC5n+1.

Proof. We use induction on n ∈ N. For the base case n = 0, consider A0 shown in Figure 8.
For this system a single label suffices since the joining reductions in the elementary diagrams
have length at most 1.

For the induction step, assume that An has the property DC5n+1. So An is decreasing
commuting with labels { 0, . . . , ` } where ` = 5n. By construction, An+1 is an extension of
An as shown in Figure 9. We extend the labelling of An with labels { 0, . . . , ` } to a labelling
of An+1 with labels { 0, . . . , `+ 5 } as follows:

a1

a2

a3

a4

a5

a6

a7

a

b

c b7

b5

b6

b4

b2

b3

b1
`+

5 `+
4 `+

3 `+
2 `+

1

`+
5 `+

4 `+
3 `+

2 `+ 1

`+ 4 `+ 2

`+ 4 `+ 2

`+
5`+

4`+
3`+

2`+ 1

`+
5`+

4`+
3`+

2`+
1

`+ 4`+ 2

`+ 4`+ 2
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14:12 Decreasing Diagrams: Two Labels Suffice

Here An is the darker inner part. From the picture it is easy to verify that every peak ← · 
in the extension can be joined by reductions that only contain labels strictly smaller than
labels of the peak. As a consequence, An+1 is DC5(n+1)+1. J

Next, we show that An does not admit a decreasing labelling with n labels.

I Lemma 27. For every n ∈ N, An is not DCn.

Proof. We prove the following stronger claim: for every n ∈ N and Φn = (An, a1, a, c, b, b1),
and every decreasing labelling of An with labels from N it holds that at least one of the four
paths a1 →∗ b, a1  ∗ a, b1 →∗ a or b1  ∗ b contains two labels ≥ n. Note that these paths
exist by Lemma 25. We prove this claim by induction on n ∈ N.

For the base case n = 0, we have Φ0 = (A0, a1, c, c, c, b1) where A0 is given in Figure 8.
It suffices to consider one of the four paths. For instance, the rewrite sequence a1 →∗ c has
length 2 and both steps must have a label ≥ 0.

For the induction step, assume that the claim holds for n and Φn = (An, a, a′, c, b′, b).
Accordingly, the induction hypothesis is that, for every decreasing labelling of An with labels
from N, one of the four paths a→∗ b′, a ∗ a′, b→∗ a′ or b ∗ b′ contains two labels ≥ n.
We prove the claim for n+ 1. Let Φn+1 = (An+1, a1, a, c, b, b1) where An+1 is an extension
of An as shown in Figure 9. Let B be a decreasing labelling of the steps in An+1 with labels
from N. We show that at least one of the paths a1 →∗ b, a1  ∗ a, b1 →∗ a or b1  ∗ b
contains two labels ≥ n+ 1.

By construction, the systems An+1 and An contain the same steps with sources in An.
Thus the restriction of the labelling B to An is a decreasing labelling for An. By the induction
hypothesis, at least one of the paths (i) a →∗ b′, (ii) a  ∗ a′, (iii) b →∗ a′ or (iv) b  ∗ b′
contains two labels ≥ n. Without loss of generality, by symmetry, assume that the path (i)
or (iv) contain two labels ≥ n.

Consider the peak a3 ← a1  a2. As visible in Figure 9, every elementary diagram for
this peak must have joining reductions of the form a3  ∗ b  ∗ x ←∗ a ←∗ a2 for some
x ∈ An. From Lemma 25 (iv) we conclude that the joining reductions must be of the form

a3  
∗ b ∗ b′  ∗ x←∗ b′ ←∗ a←∗ a2

The path (i) a →∗ b′ or (iv) b  ∗ b′ contains two labels ≥ n. Thus, for the elementary
diagram to be decreasing, one of the steps in the peak a3 ← a1  a2 must have label ≥ n+ 1.

The same argument can be applied to the peaks a6 ← a4  a5 and b← a7  a. As a
consequence, each of the peaks a3 ← a1  a2, a6 ← a4  a5 and b← a7  a contains one
step with a label ≥ n+ 1. Hence at least one of the paths

1. a1 → a3 → a4 → a6 → a7 → b, or
2. a1  a2  a4  a5  a7  a

contains two steps with labels ≥ n+ 1.
If path (ii) a ∗ a′ or (iii) b→∗ a′ contains two labels ≥ n, then an analogous argument

can be applied to the peaks b2 ← b1  b3, b5 ← b4  b6 and a← b7  b, yielding that at
least one of the paths b1 →∗ a or b1  ∗ b contains two steps with labels ≥ n+ 1.

This proves the claim and concludes the proof. J

We have seen that, for every n ∈ N, An that is DC5n+1, but not DCn (Lemmas 26 & 27).
From this we can conclude that an infinite number of the inclusions DC0 ⊆ DC1 ⊆ DC2 ⊆ · · ·
are strict. The following proposition allows us to infer that all of them are strict.
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Roughly speaking, the following proposition states that if a level α+ 1 of the hierarchy
does not collapse, then also the level α does not collapse. We state the proposition for the
commutation hierarchy, but it also holds for the confluence hierarchy.

I Proposition 28. If DCα ( DCα+1 for an ordinal α, then DCβ ( DCα for every β < α.
This also holds when the classes are restricted to countable systems.

Proof. Let A = (A,→, ) be in DCα+1 \DCα. Then there exists a decreasing labelling B
of A with labels {β | β ≤ α }. As A is not DCα some steps must have the maximum label α.
Note that

? If the joining reductions in a decreasing elementary diagram contain a step with label α,
then the corresponding peak must also contain a step with label α.

Let B′ be obtained from B by dropping all steps with label α, and let A′ be obtained from
B′ by dropping the labels. By (?), B′ is a decreasing labelling of A′, and hence A′ is DCα.

For a contradiction, assume that DCβ = DCα for some β < α. Then A′ is DCβ . Let B′′
be obtained from B′ by adding all steps that we had previously removed from B, but we now
relabel the steps from α to β. It is straightforward to check that B′′ is a decreasing labelling
of A. Hence, A is in DCβ+1 ⊆ DCα. This is a contradiction. J

I Example 29. Assume that α is a limit ordinal and DCα+3 ( DCα+4. By Proposition 28
we conclude DCα+2 ( DCα+3. By repeated application of Proposition 28 we conclude

DCβ ( DCα ( DCα+1 ( DCα+2 ( DCα+3 ( DCα+4

for every β < α. However, the proposition does not help to conclude that DCβ ( DCβ′ for
every β < β′ ≤ α.

I Theorem 30. We have

(i) DCn ( DCn+1 for every n ∈ N, and
(ii)

⋃
n∈N DCn ( DCω.

These inclusions are strict also when the classes are restricted to countable systems.

Proof. By Lemmas 26 and 27 we know that DCn ( DCn+1 for infinitely many n ∈ N. Then
repeated application of Proposition 28 yields DCn ( DCn+1 for every n ∈ N.

Let A be the infinite disjoint union A0 ]A1 ]A2 ] · · · . As a consequence of Lemmas 26
and 27 the ARS A is DCω but not DCn for any n ∈ N. J

6 Conclusion

We study how the strength of decreasing diagrams is influenced by the size of the label
set. We find that all abstract reduction systems with the cofinality property (in particular,
all confluent, countable systems) can be proven confluent using the decreasing diagrams
technique with the almost trivial label set I = { 0, 1 }. So for confluence of countable ARSs,
we have the following implications:

CP DCR2 DCR CR

FSCD 2018
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14:14 Decreasing Diagrams: Two Labels Suffice

This is in sharp contrast to the situation for commutation for which we prove

DC0 ( DC1 ( DC2 ( DC3 ( · · · ( DCω

even for countable systems. So for commutation, for every n ≤ ω, there exists a system that
requires n labels. The structure of this hierarchy above level DCω remains open.

I Open Problem 31. What inclusions DCα ⊆ DCβ are strict for ω ≤ α < β?

Decreasing diagrams are complete for confluence of countable systems. However, it is a
long-standing open problem whether the method of decreasing diagrams is also complete
for proving confluence of uncountable systems [17]. Our observations provide new ways for
approaching this problem. In particular, it may be helpful to investigate the following:

I Open Problem 32. Is there a confluent, uncountable system that is CR but not DCR2?

I Open Problem 33. Is there a confluent, uncountable system that needs more than 2 labels
to establish confluence using decreasing diagrams? In other words, is there an uncountable
system that is DCR but not DCR2? Is there an uncountable system that is DCR3 but not
DCR2?

So we have the following situation for uncountable systems:

CP DCR2 DCR CR

fails3 new open open

new open

For a better understanding of this hierarchy, it would be interesting to investigate whether
Proposition 28 can be generalised as follows.

I Open Problem 34. Assume that DCα ( DCβ for ordinals α < β. Does this imply that
none of the lower levels of the hierarchy collapse? That is, does it imply that DCα′ ( DCβ′
for every α′ < β′ ≤ α?

Our findings indicate that the size of the label set in decreasing diagrams is not a suitable
measure for the complexity of a confluence problem. So the complexity arises rather from the
distribution of the labels, and the proof that every peak has suitable joining reductions. The
complexity of the label distribution can be measured in terms of the complexity of machine
required for computing the labels. For this purpose, one can consider Turing machines,
finite automata or finite state transducers. The complexity of Turing machines can be
measured in terms of time or space complexity, Kolmogorov Complexity [11] or degrees of
unsolvability [14]. For finite state transducers the complexity can be classified by degrees of
transducibility [5, 3].
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3 Already the implication DCR1 =⇒ CP fails. To see this, consider the ARS (2R,→) where the steps
are of the form X → X ∪ { y } for X ⊆ R and y ∈ R.
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