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Abstract
We show that LOGSPACE is characterised by finite orthogonal tail-recursive cons-free constructor
term rewriting systems, contributing to a line of research initiated by Neil Jones. We describe a
LOGSPACE algorithm which computes constructor normal forms. This algorithm is used in the
proof of our main result: that simple stream term rewriting systems characterise LOGSPACE-
computable stream functions as defined by Ramyaa and Leivant. This result concerns character-
ising logarithmic-space computation on infinite streams by means of infinitary rewriting.
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1 Introduction

The goal of the field of implicit computational complexity is to characterise computational
complexity classes without reference to external measuring conditions. One of the first
such implicit characterisations was that of LOGSPACE as the class of problems which
can be decided by deterministic two-way multihead finite automata [6]. Inspired by this
well-known characterisation, Neil Jones gave new characterisations of this class as “cons-
free” tail-recursive programs in several formalisms [9, 7, 8]. In cons-free programs data
constructors cannot occur in function bodies. Put differently, cons-free programs are read-
only: recursive data can only be read from input, but not created or altered (except
taking subterms). Cons-free programming was subseqently used to characterise a variety of
complexity classes [9, 7, 8, 2, 3, 10, 11, 12].

In this paper we extend the cons-free approach to computation on infinite streams.
In [14, 13] Ramyaa and Leivant define the class of LOGSPACE-computable stream functions
and show that it is characterised by ramified corecurrence in two tiers. Our main contribution
is a cons-free infinitary term-rewriting characterisation of this class. We show that a stream
function is computable in LOGSPACE, in the sense of Ramyaa and Leivant, if and only if it
is definable in a simple stream TRS. As an intermediate step, we also give infinitary rewriting
characterisations of stream functions computable by (jumping) finite stream transducers.

In order to obtain our characterisation of LOGSPACE-computability on streams, we give
an algorithm to compute the (finite) constructor normal form of a (finite) term of a certain
form in a finite orthogonal tail-recursive cons-free constructor TRS. Using this algorithm we
obtain a term rewriting characterisation of LOGSPACE (in the ordinary finite sense).

1 Supported by Marie Skłodowska-Curie action “InfTy”, program H2020-MSCA-IF-2015, number 704111.

© Łukasz Czajka;
licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Hélène Kirchner; Article No. 13; pp. 13:1–13:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luta@di.ku.dk
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


The official version will be available from July 9, 2018 at: 
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry 

an
d 

Unp
ub

lis
he

d 

Vers
ion

13:2 Term rewriting characterisation of LOGSPACE for finite and infinite data

In previous work [9, 8, 2] LOGSPACE was characterised by tail-recursive cons-free
programs. The idea to transpose characterisations obtained via cons-free programs into the
formalism of TRSs has already been exploited to characterise other complexity classes in [3,
11, 10], but there orthogonality was not assumed. Our method of introducing ⊥-reductions
may be seen as a degenerate case of the method in [3] (see also [10]), but the algorithm used
there to compute constructor normal forms in polynomial time is fundamentally different
from ours and does not easily adapt to logarithmic space computation. In the first part of
this paper, the main novelty is a trick to detect looping in logarithmic space, and using this
to obtain a LOGSPACE algorithm for computing constructor normal forms.

2 Term rewriting systems

We assume familiarity with term rewriting [1]. In this short section we fix the notation and
briefly recall some definitions.

I Definition 2.1. A term rewriting system (TRS) is a set of rules of the form l→ r where
l, r are terms and l is not a variable and Var(r) ⊆ Var(l), where Var(t) denotes the variables
occurring in t. Given a TRS R, the reduction relation →R is the compatible closure of the
contraction relation {(σl, σr) | l→ r ∈ R, σ a substitution}. We use →∗ for the transitive-
reflexive closure of →, and →= for the reflexive closure, and ⇒ for the parallel closure. For
precise definitions see [1]. In particular, ⇒ is reflexive.

A defined symbol in a TRS R is a function symbol which occurs at the root of a left-hand
side of a rule in R. A constructor symbol in a TRS R is a function symbol which is not a
defined symbol in R. A constructor term is a term which does not contain defined function
symbols (it may contain variables). A constructor normal form is a constructor term which
does not contain variables (so it contains only constructors). A constructor head normal
form (chnf) is a term of the from c(t1, . . . , tn) with c a constructor. A constructor TRS is
a TRS R such that for l→ r ∈ R we have l = f(l1, . . . , ln) where l1, . . . , ln are constructor
terms.

A redex is innermost if it does not contain other redexes. A reduction step is innermost
if it contracts an innermost redex.

A decision problem is a set of binary words A ⊆ {0, 1}∗. Assuming the signature contains
the constants 0, 1,nil and a binary constructor symbol cons, every w ∈ {0, 1}∗ may be
represented by a term w̄ in an obvious way. A TRS R accepts a decision problem A if there
is a function symbol f such that for every w ∈ {0, 1}∗ we have: f(w̄)→∗R 1 iff w ∈ A.

3 LOGSPACE for finite data

In this section we show that finite orthogonal tail-recursive cons-free constructor TRSs
characterise LOGSPACE, i.e., a decision problem is in LOGSPACE iff it is accepted by a
finite orthogonal tail-recursive cons-free constructor TRS. As part of the proof we give an
algorithm which computes the constructor normal form of a term of a certain form, if there
exists one, or rejects otherwise. This algorithm will also be used in Section 6.

I Definition 3.1. A constructor TRS R is cons-free if for each l→ r ∈ R every chnf subterm
of r either occurs in l or is a constructor normal form. A constructor TRS R is tail-recursive if
there is a preorder & on defined function symbols such that for every f(u1, . . . , un)→ r ∈ R
and every defined function symbol g the following hold:

if r = g(t1, . . . , tk) then f & g,
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Ł. Czajka 13:3

if g(t1, . . . , tk) is a proper subterm of r then f > g.
A TRS is strictly tail-recursive if it is tail-recursive and each right-hand side of a rule contains
at most one defined function symbol.

For terms t1, . . . , tn by B(t1, . . . , tn) we denote the sets of all constructor normal forms
occurring either in one of ti or in a right-hand side of a rule of R. Note that B(t1, . . . , tn) is
finite if R is.

Our definition of tail-recursiveness is based on standard definitions in the literature [8, 2],
adapted to the term rewriting framework.

I Proposition 3.2. Any problem decidable in LOGSPACE is accepted by a finite orthogonal
tail-recursive cons-free constructor TRS.

Proof. This is a straightforward adaptation of previous work [7, 2]. One may e.g. easily
encode any CM\+ program from [7] by a finite orthogonal strictly tail-recursive cons-free
constructor TRS. Because the obtained TRS is orthogonal and strictly tail-recursive, the
reduction strategy does not play a significant role. We skip the routine details. J

It is more difficult to show the other direction of the characterisation result, i.e., that any
decision problem accepted by a finite orthogonal tail-recursive cons-free constructor TRS is
in LOGSPACE. Indeed, if the TRS is tail-recursive but not strictly tail-recursive, then terms
which have a constructor normal form may also have arbitrarily large reducts. Consider
e.g. the following TRS R:

f(x)→R f(g(x)) h(x)→R a

Then h(f(a)) →R a but also h(f(a)) →∗R h(f(gn(a))) for any n ∈ N. This example also
shows that the innermost strategy may fail to give a normal form even if a term has one.

We will show that a constructor normal form may always be reached by an eager R⊥-
reduction, denoted →∗R⊥e, which contracts only innermost R-redexes and eagerly (as soon
as possible) replaces by ⊥ an innermost subterm with no constructor normal form in R.
For instance, in the example TRS R given above h(f(a)) →⊥ h(⊥) →R a is an eager
R⊥-reduction, but h(f(a))→R h(f2(a)) is not. The term f(a) does not have a constructor
normal form in R, so it cannot be R-contracted in an eager R⊥-reduction – it must be
contracted to ⊥.

Whether a subterm has a constructor normal form in R may be decided using a constant
number of logarithmic counters. An eager R⊥-reduction has the form

f1(w1
1, . . . , w

1
n1

)→∗R⊥e f1(t11, . . . , t1n1
)→ε

R f2(w2
1, . . . , w

2
n2

)→∗R⊥e f2(t21, . . . , t2n2
)→ε

R . . .

where tji is the constructor normal form w.r.t. eager R⊥-reduction of wji (⊥ is considered to
be a constructor) and fi & fj for i ≤ j. At some point either we reach a constructor normal
form or a term fi(ti1, . . . , tini

) repeats. Because of cons-freeness, there are only polynomially
many such terms. Hence, a logarithmic counter may be used to detect looping. Because of
tail-recursiveness, computing the constructor normal form (w.r.t. eager R⊥-reduction) tji
of wji may be done by a recursive invocation, and the recursion depth will be constant. The
rest of this section is devoted to making the above arguments precise.

I Definition 3.3. Let R be a constructor TRS and let ⊥ be a fresh constant, i.e., not
occurring in any of the rules of R. We define the ⊥-contraction relation →ε

⊥ by: t →ε
⊥ ⊥

if t does not R-reduce to a constructor normal form. The ⊥-reduction relation →⊥ is the
compatible closure of →ε

⊥. We set →R⊥ = →R ∪ →⊥. An R⊥-reduction is eager if only

FSCD 2018
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13:4 Term rewriting characterisation of LOGSPACE for finite and infinite data

innermost R⊥-redexes are contracted and priority is given to ⊥-reduction, i.e., an R-redex t
such that t→⊥ ⊥ is not R-contracted in the reduction. We use →R⊥e for an eager one-step
R⊥-reduction.

Note that ⊥ is a constructor. So a term of the form c(t1, . . . , tn) with c a constructor never
eagerly R⊥-reduces to ⊥, because if it does not have a constructor normal form in R then
there is a R⊥-redex in one of the ti. Note that a term is in normal form w.r.t. R⊥-reduction
iff it is a constructor normal form.

We first show that in a left-linear constructor TRS ⊥-reduction may be postponed after
R-reduction. This will imply that eager R⊥-reduction to a constructor normal form not
containing ⊥ may be replaced with R-reduction.

I Lemma 3.4. In a left-linear constructor TRS, if u ⇒⊥ t →R t′ then there is u′ with
u→R u

′ ⇒⊥ t′.

Proof. Without loss of generality we may assume that t→R t
′ occurs at the root by a rule

l → r with substitution σ. By the choice of ⊥ the term l does not contain ⊥. We have
t = σ(l). So ⊥ in t may occur only below a variable position of l. Since ⊥ are the contracta
in u⇒⊥ t, the expansions u⇒⊥ t in t occur below variable positions of l. Hence, there is σ′
such that σ′(x)⇒⊥ σ(x) for all x ∈ Var(l) and u = σ′(l). Then take u′ = σ′(r). J

I Corollary 3.5. In a left-linear constructor TRS, if t →∗R⊥ t′ then there is u with t →∗R
u→∗⊥ t′.

I Lemma 3.6. In a left-linear constructor TRS, if t →∗R⊥ s with s a constructor normal
form not containing ⊥, then t→∗R s.

Proof. Induction on the number n of ⊥-contractions in t→∗R⊥ s. If n > 0 then consider the
last ⊥-contraction: t →∗R⊥ t′ →⊥ t′′ →∗R s. By Lemma 3.4 there is s′ with t′ →∗R s′ ⇒⊥ s.
Because s does not contain ⊥, we have s′ = s. So t→∗R⊥ s with n− 1 ⊥-contractions. Hence
t→∗R s by the inductive hypothesis. J

The following lemma shows that eager R⊥-reduction in σ(t), with t a linear constructor
term, occurs below variable positions.

I Lemma 3.7. In a constructor TRS R, if t is a linear constructor term and σ(t)→∗R⊥e t′
then there is σ′ such that t′ = σ′(t) and σ(x)→∗R⊥e σ′(x) for all x ∈ Var(t).

Proof. Induction on t. If t = x then take σ′(x) = t′. Otherwise t = c(t1, . . . , tn) and
t′ = c(t′1, . . . , t′n) with σ(ti) →∗R⊥e t′i and c a constructor. By the inductive hypothesis for
i = 1, . . . , n there is σ′i with σ′i(ti) = t′i and σ(x)→∗R⊥e σ′i(x) for x ∈ Var(ti). Because t is
linear, Var(ti)∩Var(tj) = ∅ for i 6= j. So the σ′is may be combined into a single substitution σ′
with the required properties. J

I Corollary 3.8. In a left-linear constructor TRS R, if f(t1, . . . , tn) →ε
R t and ti →∗R⊥e t′i

for i = 1, . . . , n, then there is t′ with f(t′1, . . . , t′n)→ε
R t
′ ∗
R⊥e← t. Moreover, the contraction

f(t′1, . . . , t′n)→ε
R t
′ is by the same rule as f(t1, . . . , tn)→ε

R t.

Proof. Assume f(t1, . . . , tn)→ε
R t by a rule f(l1, . . . , ln)→ r with substitution σ. Because

each li is a linear constructor term and Var(li) ∩ Var(lj) = ∅ for i 6= j, by Lemma 3.7
there is σ′ such that for i = 1, . . . , n we have σ′(li) = t′i and σ(x) →∗R⊥e σ′(x). Thus u =
f(σ′(l1), . . . , σ′(ln))→R σ

′(r). Also t′ = σ(r)→∗R⊥e σ′(r), because Var(r) ⊆ Var(l1, . . . , ln).
So we may take t′ = σ′(r). J
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Ł. Czajka 13:5

The next lemma shows a strengthening of the diamond property for eager R⊥-reduction
in orthogonal TRSs.

I Lemma 3.9. In an orthogonal TRS R, if t→R⊥e t1 and t→R⊥e t2 then either t1 = t2 or
there is t′ with t1 →R⊥e t

′ and t2 →R⊥e t
′.

Proof. If the redexes are parallel then the second part of the disjunction holds. Because both
redexes are innermost, if they are not parallel we may assume without loss of generality that
both of them are at the root. If both of them are R-redexes, then t1 = t2 by orthogonality.
If both are ⊥-redexes then t1 = t2 = ⊥. It is not possible that one redex is a ⊥-redex and
the other an R-redex, because the reductions are eager. J

The following simple lemma is needed in the proof of Lemma 3.11.

I Lemma 3.10. In a cons-free constructor TRS, if every subterm of t in chnf is in constructor
normal form and t→∗R t′ and t′ is in chnf, then t′ is in constructor normal form.

Proof. Because the TRS is cons-free, any chnf subterm of any R-reduct of t must be in B(t).
More precisely, one shows that if t→R u then still every subterm of u in chnf is in constructor
normal form. J

In the rest of this section we assume that R is a finite orthogonal tail-recursive cons-free
constructor TRS.

Note that because R is finite and tail-recursive the partial order on the equivalence classes
determined by & may be extended to a well order >E . We write t1 >E t2 (t1 ≥E t2) if the
greatest equivalence class of a defined function symbol in t1 is greater (greater or equal) than
the greatest equivalence class of a defined function symbol in t2. We write f ≤E t if the
equivalence class of the defined function symbol f is less or equal to the greatest equivalence
class of a defined function symbol in t. Note that if t →∗R⊥ t′ then t ≥E t′, because R is
tail-recursive.

Our next goal is to show that every term has a constructor normal form (possibly
containing ⊥) reachable by eager R⊥-reduction. This will imply that eager R⊥-reduction
commutes with R-reduction, and that eager R⊥-reduction is terminating.

I Lemma 3.11. Assume that for all t′ with t′ ≤E t there is s in constructor normal form
such that t′ →∗R⊥e s. If t′ R← t→R⊥e u then there is u′ with t′ →∗R⊥e u′ =

R← u.

Proof. Note that because the redex contracted in t→R⊥e u is innermost, it cannot happen
that the redex contracted in t →R t′ occurs strictly inside this redex. So we may assume
without loss of generality that the redex contracted in t→R t

′ occurs at the root.
If u = ⊥ then t = f(s1, . . . , sn) with s1, . . . , sn in constructor normal form, because the

R⊥-reduction is innermost. Since t′ ≤E t, there is a constructor normal form s such that
t′ →∗R⊥e s. If s = ⊥ then we may take u′ = ⊥. Otherwise, s = c(s′1, . . . , s′m) with c 6= ⊥ a
constructor. By Corollary 3.5 there is w with t→R t

′ →∗R w →∗⊥ s. Then w is in chnf. But
then by Lemma 3.10 it is in constructor normal form. This contradicts t→⊥ ⊥.

If t →R⊥e u contracts an R-redex at the root, then u = t′ because R is orthogonal, so
take u′ = t′. The remaining case, when the eager R⊥-contraction occurs strictly below the
root, follows from Corollary 3.8. J

I Lemma 3.12. Assume that for all t with t <E g there is s in constructor normal form such
that t→∗R⊥e s. If g(t1, . . . , tn)→∗R s with g a defined function symbol and s in constructor
normal form and ti <E g and ti →∗R⊥e wi for i = 1, . . . , n, then g(w1, . . . , wn)→∗R s.

FSCD 2018
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13:6 Term rewriting characterisation of LOGSPACE for finite and infinite data

Proof. Induction on the number of root steps in g(t1, . . . , tn)→∗R s. There is at least one
root step, so g(t1, . . . , tn) →∗R g(t′1, . . . , t′n) →ε

R t →∗R s and, because R is cons-free and
tail-recursive, either t = s or t = g′(u1, . . . , um) with g′ ≤E g and ui <E g. By Lemma 3.11
there are w′1, . . . , w′n such that wi →∗R w′i and t′i →∗R⊥e w′i for i = 1, . . . , n. By Corollary 3.8
there is t′ with g(w′1, . . . , w′n) →ε

R t′ and t →∗R⊥e t′. If t = s then t′ = s and we are
done. Otherwise, by Corollary 3.8, t′ = g′(u′1, . . . , u′m) and ui →∗R⊥e u′i. By the inductive
hypothesis t′ →∗R s. Hence g(w1, . . . , wn)→∗R g(w′1, . . . , w′n)→R t

′ →∗R s. J

I Lemma 3.13. Assume that for all t with t <E g there is s in constructor normal form such
that t→∗R⊥e s. If g(t1, . . . , tn)→∗R s with g a defined function symbol and s in constructor
normal form and ti <E g for i = 1, . . . , n, then g(t1, . . . , tn)→∗R⊥e s.

Proof. The reduction g(t1, . . . , tn)→∗R s has the form:

g(t1, . . . , tn)→∗R g(u1, . . . , un)→ε
R g1(t11, . . . , t1n1

)→∗R g1(u1
1, . . . , u

1
n1

)→ε
R . . .→ε

R s.

We proceed by induction on the number of root steps in this R-reduction. Since ti <E g

for i = 1, . . . , n, there are s1, . . . , sn in constructor normal form such that ti →∗R⊥e si. By
Lemma 3.11 we also have ui →∗R⊥e si. By Corollary 3.8 there is t′ with g(s1, . . . , sn)→ε

R t
′ and

either t′ = s, or t′ = g1(w1, . . . , wn1) and t1i →∗R⊥e wi. We have g(s1, . . . , sn)→R⊥e s because
the R-reduction to t′ is innermost and g(s1, . . . , sn)→∗R s by Lemma 3.12. Hence if t′ = s then
g(t1, . . . , tn) →∗R⊥e s. So assume t′ = g1(w1, . . . , wn1) with t1i →∗R⊥e wi. By the inductive
hypothesis g1(t11, . . . , t1n1

)→∗R⊥e s. By Lemma 3.9 we obtain g1(w1, . . . , wn1)→∗R⊥e s. Thus
g(t1, . . . , tn)→∗R⊥e g(s1, . . . , sn)→R⊥e g1(w1, . . . , wn1)→∗R⊥e s. J

I Lemma 3.14. For every term t there exists s in constructor normal form2 such that
t→∗R⊥e s.

Proof. We proceed by induction on pairs 〈e, n〉 ordered lexicographically, where e is the
greatest, w.r.t. >E , equivalence class of a defined function symbol in t, and n is the size
of t. This is obvious if t is a variable. So assume t = f(t1, . . . , tn). Since each tk is smaller
than t, by the inductive hypothesis for each k = 1, . . . , n there is a constructor normal
form sk with tk →∗R⊥e sk. If f is a constructor then we are done, so assume it is a defined
function symbol. If f(s1, . . . , sn) does not R-reduce to a constructor normal form, then
f(s1, . . . , sn)→R⊥e ⊥, so we may take s = ⊥. Otherwise f(s1, . . . , sn)→∗R s for some s in
constructor normal form. Of course, f ≤E t, so the inductive hypothesis implies that for
all t′ with t′ <E f there is s′ in constructor normal form such that t′ →∗R⊥e s′. Thus by
Lemma 3.13: t→∗R⊥e f(s1, . . . , sn)→∗R⊥e s. J

I Corollary 3.15. If t′ ∗R← t→∗R⊥e u then there is u′ with t′ →∗R⊥e u′ ∗R← u.

Proof. Follows from Lemma 3.11 and Lemma 3.14. J

I Remark. Corollary 3.15 fails if the R⊥-reduction is not required to be eager (though
innermost would suffice). Consider the TRS R:

f(x)→R f(x) g(c(x))→R a

We have g(c(f(x))) →R a, but also g(c(f(x))) →⊥ g(⊥) →⊥ ⊥, because c(f(x)) does not
R-reduce to a constructor normal form.

2 Recall that ⊥ is considered to be a constructor.
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Ł. Czajka 13:7

The corollary also fails if R is not required to be cons-free. Consider the TRS R:

f(x)→R f(x) g(x)→R c(f(x))

Then g(x)→∗R⊥e ⊥. On the other hand g(x)→R c(f(x)) and c(f(x)) 6→∗R⊥e ⊥.
If R is not required to be tail-recursive then this also fails. Consider the TRS R:

h(x)→R h(f(x)) f(x)→R g(x, f(x)) g(x, y)→R x

Then h(a)→R⊥e ⊥, because h(t) does not have a constructor normal form for any t. Also
h(a)→R h(f(a)). The term h(f(a)) has no constructor normal form, but h(f(a)) 6→R⊥e ⊥
because the ⊥-redex is not innermost. And there is no constructor normal form s with
f(a) →∗R⊥e s (note that f(a) →R g(a, f(a)) →R a but the reduction is not innermost).
Hence, there is no eager R⊥-reduction from h(f(a)) to ⊥.

The proof of the next lemma is an adaptation of the standard argument that in an
orthogonal TRS if a term is weakly innermost normalising then it is innermost terminating.

I Lemma 3.16. Eager R⊥-reduction is terminating.

Proof. Follows from Lemma 3.14 and Lemma 3.9. Assume there is an infinite eager R⊥-
reduction t0 →R⊥e t1 →R⊥e t2 →R⊥e . . .. By Lemma 3.14 there is u in constructor normal
form with t0 →∗R⊥e u. Using Lemma 3.9 one shows by induction on the length of t0 →∗R⊥e u
that there is an infinite eager R⊥-reduction starting at u. This contradicts that u is a
constructor normal form. J

Termination of eager R⊥-reduction is crucial in justifying the correctness of the algorithm
described in the proof of the following theorem.

I Proposition 3.17. Let R be a finite orthogonal tail-recursive cons-free constructor TRS.
There is a LOGSPACE algorithm which given a term t = f(t1, . . . , tn), with t1, . . . , tn in
constructor normal form (possibly containing ⊥), computes the constructor normal form s ∈
B(t,⊥) such that t→∗R⊥e s.

Proof. Note that because R is cons-free, if t→∗R⊥ t′ then any subterm of t′ with a constructor
symbol at the root is in B(t,⊥). Because the size of B(t,⊥) is polynomial (there is only a
constant number of constructor normal forms occurring in right-hand sides of rules in R),
constructor normal forms occurring in R⊥-reducts of t may be represented using a logarithmic
number of bits.

Because R is a tail-recursive constructor TRS, f(t1, . . . , tn) either is R-irreducible, in
which case it may be contracted to ⊥, or it R-contracts (eagerly) to a constructor normal
form, or it R-contracts (not necessarily eagerly) to a term f ′(t′1, . . . , t′m) where f ′ is a defined
function symbol and f & f ′ and for each defined function symbol g in one of t′1, . . . , t′m we
have f > g. Apply the procedure recursively, in depth-first order, to subterms of t′1, . . . , t′m of
the form g(u1, . . . , uk) with g a defined function symbol and u1, . . . , uk in constructor normal
form. This results in s1, . . . , sm in constructor normal form such that t′k →∗R⊥e sk. Note
that the number of defined function symbols in t′1, . . . , t′m is constant and depends only on
the rule of R applied to t. Hence only logarithmic space is needed to store (representations
of) intermediate results. Note also that f > g for g a defined symbol in t′1, . . . , t′m, which
guarantees termination of the recursion.

So f(t1, . . . , tn) →ε
R f ′(t′1, . . . , t′m) →∗R⊥e f ′(s1, . . . , sm) with s1, . . . , sm again in con-

structor normal form. We keep repeating the steps described in the previous paragraph,
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13:8 Term rewriting characterisation of LOGSPACE for finite and infinite data

starting with f ′(s1, . . . , sm) now, until we reach a constructor normal form or we detect
looping in which case ⊥ is returned. Looping detection may be realised using a single counter
with a logarithmic number of bits. Indeed, by repeating the steps described in the previous
paragraph we obtain a reduction of the form

t→ε
R f1(w1

1, . . . , w
1
n1

)→∗R⊥e f1(t11, . . . , t1n1
)→ε

R f2(w2
1, . . . , w

2
n2

)→∗R⊥e f2(t21, . . . , t2n2
)→ε

R ..

where the R⊥e-reductions occur strictly below the root. Let M be the maximum arity
of a defined function symbol in R, and K the number of defined function symbols in R,
and N the size of B(t) (note that N is bounded by the size of t plus a constant). There
are at most N different constructor normal forms occurring in the R⊥-reducts of t, so if
the above reduction contains more than KNM root steps, then one of the root R-redexes
fi(ti1, . . . , tini

) must repeat. So we keep a counter and return ⊥ after performing KNM

root steps if we do not stop with a constructor normal form earlier. To see that this is
correct, note that if a root redex repeats then an infinite reduction of the above form may be
constructed. Assume t→∗R s for a constructor normal form s. Then the initial R-contraction
t →ε

R f1(w1
1, . . . , w

1
n1

) is eager, so t →∗R⊥e f1(t11, . . . , t1n1
), and thus f1(t11, . . . , t1n1

) →∗R s by
Corollary 3.15. By induction on k we show that fk(tk1 , . . . , tknk

)→∗R s and each of the root
R-contractions fk(tk1 , . . . , tknk

)→ε
R fk+1(wk+1

1 , . . . , wk+1
nk+1

) is eager, i.e.

t→+
R⊥e f1(t11, . . . , t1n1

)→+
R⊥e f2(t21, . . . , t2n2

)→+
R⊥e f3(t31, . . . , t3n3

)→+
R⊥e . . .

Hence, there exists an infinite eager R⊥-reduction from t, which contradicts Lemma 3.16.
Thus, if a root redex repeats then t→⊥ ⊥. So returning ⊥ is correct in this case.

The above algorithm terminates and the recursion depth (the maximum nesting of
recursive calls) is constant, because in the recursive calls for subterms of t′1, . . . , t′m the
defined function symbol at the root is strictly smaller in the preorder &. Also note that in
each recursive call on a subterm g(u1, . . . , un) of one of t′1, . . . , t′m the constructor normal
forms u1, . . . , un are in B(t,⊥), because then g(u1, . . . , un) is a subterm of an R⊥-reduct
of t. So u1, . . . , un may still be represented in logarithmic space. Hence, at each recursive
invocation the algorithm uses logarithmic space to store the representations of the function
symbol arguments, a constant number of logarithmic-space variables to store the intermediate
results of recursive calls, and a logarithmic counter to detect looping. Since the recursion
depth is constant, the algorithm altogether uses logarithmic space. J

I Theorem 3.18. A decision problem is in LOGSPACE iff it is accepted by a finite orthogonal
tail-recursive cons-free constructor TRS.

Proof. The direction from left to right follows from Proposition 3.2. For the other direction
it suffices to show an algorithm which given a finite orthogonal tail-recursive cons-free
constructor TRS R and a term t = f(t1, . . . , tn) with t1, . . . , tn in constructor normal form
not containing ⊥, computes in LOGSPACE the constructor normal for of t, if it has one,
or rejects otherwise. The algorithm is to run the procedure from Proposition 3.17 to find a
constructor normal form s with t→∗R⊥e s. If s does not contain ⊥ then t→∗R s by Lemma 3.6.
Otherwise, t does not have a constructor normal form in R and we reject. Indeed, if t→∗R s′
with s′ in constructor normal form then s′ does not contain ⊥ because t does not. But s = s′

by Corollary 3.15. J

4 Stream Term Rewriting Systems

In this section we define stream TRSs which allow possibly infinite stream terms. We define
infinitary reduction in a stream TRS which captures the notion of a “limit” of an infinite
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Ł. Czajka 13:9

reduction sequence.

I Definition 4.1. A stream TRS is a two-sorted constructor TRS with sorts s (the sort of
streams) and d (the sort of finite data), finitely many defined function symbols, finitely many
data constructors ci : dn → d, and one binary stream constructor cons : d× s→ s. Terms of
sort s are stream terms. Terms of sort d are data terms. For stream TRSs we allow terms
to be infinite. We write t1 :: t2 instead of cons t1 t2. If l→ r ∈ R is a rule, then we require
that l and r have the same sort.

Stream rules are the rules l → r such that l is a stream term. Data rules are the rules
l→ r such that l is a data term. A stream (resp. data) function symbol is a defined function
symbol of type τ1 × . . .× τn → s (resp. τ1 × . . .× τn → d).

A simple stream rule has the form:

f(u1, . . . , un)→ t1 :: . . . :: tk :: g(w1, . . . , wm)

where k ≥ 0 and we require:
1. u1, . . . , un are constructor terms,
2. every stream subterm of one of t1, . . . , tk, w1, . . . , wm occurs (as a subterm) in u1, . . . , un,
3. if k = 0 then every data subterm c(v1, . . . , vj) of each of w1, . . . , wm, with c : dj → d a

data constructor, either occurs in u1, . . . , un or is a constructor normal form.

The intuitive interpretation of the restrictions of a simple stream rule is that it is cons-free
with respect to stream subterms, and if the rule does not produce a new stream element
then it is also cons-free with respect to data subterms.

Note that by requiring u1, . . . , un to be constructor terms and every stream subterm of
each of t1, . . . , tk, w1, . . . , wm to occur in u1, . . . , un, we ensure that stream function symbols
cannot occur in t1, . . . , tk, w1, . . . , wm, i.e., g is the only stream function symbol in the
right-hand side. Hence, the only function symbols present in t1, . . . , tk, w1, . . . , wm are of
data sort.

I Example 4.2. Here are some examples of simple stream rules, where x, x′ are stream
variables, and y is a data variable, and c is a data constructor, and h is a defined data
function symbol:

f(a :: x, y) → a :: f(x, c(y))
f(a :: x, b :: x′) → a :: b :: f(b :: x′, a :: x)

f(a :: x) → a :: g(x, c(a))
f(a :: x, y) → f(x, h(y))

Here are some non-examples:

f(a :: x, y) → f(x, c(y))
f(a :: x, b :: x′) → a :: b :: f(g(x′), a :: x)

f(a :: x) → a :: g(b :: x, c(a))
f(a :: x, h(y)) → f(x, h(y))

I Definition 4.3. Given a stream TRS R, infinitary R-reduction is defined coinductively.

t→∗R t′

t→∞R t′
t→∗R u :: w w →∞R w′

t→∞R u :: w′

FSCD 2018
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13:10 Term rewriting characterisation of LOGSPACE for finite and infinite data

Coinductive definitions of infinitary rewriting originate from [4, 5]. Intuitively, the
definition means that t →∞R t′ holds if this may be derived using the above rules in a
possibly infinite derivation. For example, if f(x)→ x :: f(S(x)) is a stream rule in R, then
f(0) →∞R 0 :: S(0) :: S(S(0)) :: . . ., i.e., f(0) infinitarily reduces to an infinite stream of
consecutive natural numbers.

The above definition differs from the standard definition of infinitary reduction via
strongly convergent reduction sequences. The difference is mainly because we effectively
disallow an infinitary reduction to produce an infinite nesting of defined function symbols.
This eliminates the problems with confluence in infinitary rewriting. Infinitary R-reduction,
defined as above, is confluent if R is finite and orthogonal. First of all, confluence holds also
for finitary R-reduction.

I Lemma 4.4. If R is finite and orthogonal then the finitary reduction relation →R is
confluent.

Proof. Note that the terms may be infinite. But because both the left- and right-hand
sides of all rules are finite, we may use virtually the same proof as in the case of ordinary
orthogonal term rewriting systems, mutatis mutandis. J

Because of space limits we delegate the proof of confluence of infinitary reduction to
Appendix A. Here we only state the result.

I Theorem 4.5. If R is finite and orthogonal then →∞R is confluent, i.e., if t →∞R t1 and
t→∞R t2 then there exists t′ such that t1 →∞R t′ and t2 →∞R t′.

Let Σ be an alphabet. Assuming all elements of Σ are data constants in the rewriting
system, each Σ-stream (infinite word in Σω) may be treated as an infinite stream term.
Also, finite words over Σ may be represented as stream terms in the TRS, where after the
symbols representing the word there is a term with no constructor head normal form, e.g.,
a :: b :: c :: Ω represents the word abc, where Ω has no chnf. Note that a stream term in
chnf (Definition 2.1) has the form u :: w. We denote the set of terms representing finite and
infinite words over Σ by S+(Σ), and the set of terms representing infinite words by S(Σ).
More precisely, the set S+(Σ) is defined coinductively as follows.

t has no chnf
t ∈ S+(Σ)

c ∈ Σ t ∈ S+(Σ)
(c :: t) ∈ S+(Σ)

For each term t in S+(Σ) there is exactly one corresponding finite or infinite word |t|
in Σ≤ω = Σω ∪ Σ∗ which this term represents.

I Lemma 4.6. Assume t→∞R t′. Then t has a chnf iff t′ has a chnf.

Proof. Follows from definitions and Lemma 4.4. J

I Corollary 4.7. Let R be a finite orthogonal stream TRS. If t →∞R s and t →∞R s′ and
s, s′ ∈ S+(Σ) then |s| = |s′|.

I Definition 4.8. A stream function F : (Σω)n → Σ≤ω is defined by an n-ary stream
function symbol f if for any w1, . . . , wn ∈ Σω and s1, . . . , sn ∈ S(Σ) with |si| = wi we
have f(s1, . . . , sn) →∞R s where |s| = F (w1, . . . , wn). A stream function is definable in a
stream TRS if it is defined by one of its stream function symbols.

A stream TRS R is data tail-recursive if the data rules of R form a single-sorted (i.e. neither
left- nor right-hand sides of data rules of R contain stream subterms) finite tail-recursive
cons-free constructor TRS.
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Ł. Czajka 13:11

Note that if R is data tail-recursive then data terms do not contain stream subterms,
because then neither data constructors nor data function symbols can have stream arguments.
In particular, if l→ t :: r is a rule in R, then t does not contain stream subterms.

I Definition 4.9. A pure stream TRS is a finite orthogonal stream TRS with simple stream
rules, no data rules and no data constructors of arity > 0.

A stream TRS has simple data if there exists a unary data constructor S : d→ d such
that for every stream rule l→ r ∈ R, if t is a data subterm of r such that Var(t) 6= ∅ then
t = S(t′) or t is a variable.

A simple stream TRS is a finite orthogonal data tail-recursive stream TRS with simple
stream rules and simple data.

I Example 4.10. Here is an example of a simple stream TRS, where x, x′ are stream variables
and y, y′ are data variables.

f(x) → g(x, x, 0, 0)
g(y :: x, x′, 0, y′) → y :: g(x′, x′, S(y′), S(y′))

g(0 :: x, x′, S(y), y′) → g(x, x′, y, y′)
g(1 :: x, x′, S(y), y′) → g(x, x′, y′, y′)

In this stream TRS the stream function symbol f defines a function F : Σω → Σ≤ω such
that F (s) has in position n the first element of s following a block of n consecutive 0’s.

The following simple stream TRS defines the Thue-Morse sequence T :

T → f(0) f(x) → h(x, x) :: f(S(x))
h(0, 0) → 0 h̃(0, 0) → 1
h(0, x) → h(x, x) h̃(0, x) → h̃(x, x)

h(S(0), S(x)) → h̃(x, x) h̃(S(0), S(x)) → h(x, x)
h(S(S(x)), S(y)) → h(x, y) h̃(S(S(x)), S(y)) → h̃(x, y)

The n-th element Tn of T is defined by the recurrence:

T0 = 0 T2n = Tn T2n+1 = 1− Tn

Identifying natural numbers with their representations in the TRS, it may be shown by
induction on 〈2m − n, n〉 ordered lexicographically that the data term h(n,m) reduces
to T2m−n and h̃(n,m) to 1− T2m−n.

5 Finite Stream Transducers

In this section we characterise the classes of stream functions computable by (jumping) finite
stream transducers. In short, pure stream TRSs characterise the class of stream functions
computable by jumping finite transducers, and right-linear pure stream TRSs characterise
the class of stream functions computable by finite transducers. We first recall the definitions
of (jumping) finite transducers from [14, 13].

I Definition 5.1. An n-ary jumping finite transducer (JFT) over Σ-streams with m cursors is
a tuple 〈Q, q0, C, γ, δ〉 where Q is a finite set of states, q0 is the start state, C = {c1, . . . , cm}
is the set of cursors, γ : C → {1, . . . , n} is the initial cursor configuration, and

δ : Q× Σm → Q× (C → C ∪ {+})× (Σ ∪ {ε})

FSCD 2018
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13:12 Term rewriting characterisation of LOGSPACE for finite and infinite data

is the transition function. Intuitively, δ(q, σ1, . . . , σm) consists of the next state, an indication
of cursor movement, and an optional output symbol. A cursor may either move forward or
jump to the position of another cursor. In other words, an n-ary JFT is a finite automaton
with n read-only input tapes and one write-only output tape, and m cursors which can move
forward on the input tapes and jump to positions of other cursors, but cannot be compared.

A finite transducer (FT) is a JFT such that no cursor ever jumps to the position of
another (except to itself, which is equivalent to not moving). A configuration of a JFT
consists of a state and a function π : C → {1, . . . , n} × N which assigns to each cursor c a
stream index i ∈ {1, . . . , n} and a position in the stream. The successor configuration K ′ of
a configuration K is determined in the obvious way by the transition function δ. The initial
configuration is 〈q0, π0〉 where π0(c) = 〈γ(c), 0〉 for c ∈ C. A run of a JFT 〈Q, q0, C, γ, δ〉 is
an infinite sequence of configurations K0,K1,K2, . . . such that K0 is the initial configuration
andKn+1 is the successor configuration ofKn for each n ∈ N. The function F : (Σω)n → Σ≤ω
computed by a given n-ary FT (JFT) is defined in an obvious way, with F (w1, . . . , wn) being
the output of the transducer on inputs w1, . . . , wn. The output may be finite, because the
transducer may loop.

I Theorem 5.2. An n-ary stream function is definable in a pure stream TRS with maximum
function symbol arity m iff it is computable by an n-ary JFT with m cursors.

Proof. Let 〈Q, q0, C, γ, δ〉 be an n-ary JFT with m cursors. Without loss of generality
C = {1, . . . ,m}. In the TRS we have a stream function symbol fq : sm → s for each state
q ∈ Q. There is also the “start” stream function symbol g : sn → s. We have the rules e.g.

fq(σ1 :: x1, . . . , σm :: xm)→ σ :: fq′(σρ(1) :: xρ(1), x2, σρ(3) :: xρ(3), . . .)

when δ(q, σ1, . . . , σm) = 〈q′, ρ, σ〉 and ρ(1), ρ(3), . . . ∈ C and ρ(2) = +. Intuitively, the
arguments of fq encode the m cursors. We also have the “start” rule:

g(x1, . . . , xn)→ fq0(xγ(1), . . . , xγ(n)).

Note that all of the above rules are simple stream rules and the TRS is orthogonal, so it
is a pure stream TRS. It is easy to see that for each s1, . . . , sn ∈ S(Σ) there is a bijective
correspondence between the infinite runs of the JFT on |s1|, . . . , |sn| and infinite reductions
starting at g(s1, . . . , sn). This implies that the function defined by g is the same as the
function computed by the JFT.

For the other direction, let R be a pure stream TRS with maximum function symbol
arity m, and let the n-ary symbol g define a function F : (Σω)n → Σ≤ω where Σ is the set of
data constants in R. We construct an n-ary JFT with m cursors.

Because there are no data rules or data constructors of arity > 0, each rule is a simple
stream rule of the form e.g.

f(a :: u :: b :: x, a :: y, c)→ d :: g(u :: b :: x, e)

where a, b, c, d, e ∈ Σ, and u is a data variable. We will encode stream function symbols by
(possibly many) states. Stream arguments will correspond to cursor positions.

Let N be the maximum size of the left-hand side l of a rule l → r ∈ R. For a function
symbol f with k stream and j data arguments, and words w1, . . . , wk ∈ ΣN , and constants
c1, . . . , cj ∈ Σ, we add a state qw1,...,wk,c1,...,cj

f . The words w1, . . . , wk buffer the last N
symbols read from each of the cursors. Let si be a stream term representing the word wi,
with a variable xi at the tail, e.g., if wi = abc then si = a :: b :: c :: xi. Without loss of
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generality assume the stream arguments of f occur before the data arguments. Because R is
orthogonal, there is at most one rule l→ r ∈ R such that l matches f(s1, . . . , sk, c1, . . . , cj)
with some substitution σ, i.e., σl = f(s1, . . . , sk, c1, . . . , cj). Note that because of the choice
of N , if there is no rule l→ r ∈ R with l matching f(s1, . . . , sk, c1, . . . , cj), then no left-hand
side of a rule unifies with f(s1, . . . , sk, c1, . . . , cj). Assume e.g.

σl = f(a :: b :: x, c :: d :: y, c1)

and

σr = d :: g(c :: d :: y, b :: x, d :: y, c).

Then in the state qab,cd,c1
f the JFT outputs d and simultaneously sets the first cursor to the

second one, the second to the first, and the third to the second. Then it reads one symbol
from the second cursor and one from the third, moving them forward. Let the read symbols
be a1, a2 respectively. The JFT then enters the state qcd,ba1,da2,c

g . This behaviour may always
be encoded using a finite number of states.

The JFT starts in a state q0 with the i-th cursor initialised to the beginning of the i-th
input tape, for i = 1, . . . , n, and other cursors initialised arbitrarily. Then the JFT reads N
symbols from each of the n input tapes, and reaches the state qw1,...,wn

g where wi ∈ ΣN is
the word consisting of the symbols read from the i-th input tape.

We also add a “trash” state qT and add appropriate transitions to qT from other states
to make δ a total function.

For any s1, . . . , sn ∈ S(Σ) there is a bijective correspondence between the runs of the
JFT on |s1|, . . . , |sn| and the infinite reductions starting at g(s1, . . . , sn), and the function
computed by the JFT is the same as the function defined by g. J

I Theorem 5.3. An n-ary stream function is definable in a right-linear pure stream TRS
with maximum function symbol arity m iff it is computable by an n-ary FT with m cursors.

Proof. An adaptation of the proof of Theorem 5.2. More details are in Appendix B. J

6 LOGSPACE for streams

In this section we show that stream functions definable in simple stream TRSs are exactly
the stream functions computable in LOGSPACE as defined by Ramyaa and Leivant [14, 13].
First, we recall the definition of jumping Turing transducers from [14].

I Definition 6.1. A jumping Turing transducer (JTT) is defined analogously to a JFT,
except that it has additional read-write work tapes with two-way cursors on them. The
function computed by a JTT is defined in an obvious way. A JTT operates in space f(n) if
the computation for the first n output symbols does not involve work-tapes of length > f(n).
A stream function is computable in LOGSPACE if there is a JTT computing this function
which operates in space O(logn).

Note that the space used by a JTT is defined in terms of the output. Time restrictions
defined in terms of the output do not make much sense for JTTs, because even for FTs no
restriction is placed on how long it takes to output the next symbol (e.g. consider an FT
over binary streams skipping all zeros and copying all ones).

We will show that JTTs operating in LOGSPACE compute exactly the stream functions
definable in simple stream TRSs. First, we generalise eager R⊥-reduction from Section 3 to
stream TRSs.

FSCD 2018
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13:14 Term rewriting characterisation of LOGSPACE for finite and infinite data

I Definition 6.2. Let ⊥ be a fresh nullary data constructor. We define the relation →⊥
by: t→⊥ ⊥ if t is a data term and it does not R-reduce to a constructor normal form. We
set →R⊥ =→R ∪→⊥. A finitary R⊥-reduction is eager if only innermost R⊥-redexes are
contracted and priority is given to ⊥-reduction. We denote one-step eager R⊥-reduction
by →R⊥e. The relation →∞R⊥e of infinitary eager R⊥-reduction is defined coinductively.

t→∗R⊥e t′

t→∞R⊥e t′
t→∗R⊥e u :: w w →∞R⊥e w′

t→∞R⊥e u :: w′

Because of space limits, the proofs of lemmas concerning infinitary eager R⊥-reduction
are delegated to Appendix C.

In the rest of this section we assume R to be a simple stream TRS.

I Definition 6.3. A term is proper if all its data subterms are finite.

If t is proper and t→R t
′ then t′ is also proper, because R is finite.

I Lemma 6.4. If t is proper and t→∞R t1 and t→∞R⊥e t2 then there is t′ with t2 →∞R t′ and
t1 →∞R⊥e t2.

I Lemma 6.5. If s ∈ S+(Σ) and s→∞R⊥e s′ (resp. s→∞R s′), then s ∼ s′ and s′ ∈ S+(Σ).

I Theorem 6.6. If a stream function is definable in a simple stream TRS then it is computable
in LOGSPACE.

Proof. Let F : (Σω)n → Σ≤ω be a function defined by an n-ary stream function symbol f0 in
a simple stream TRS R, i.e., a finite orthogonal data tail-recursive stream TRS with simple
stream rules and simple data. We describe how to construct a JTT operating in LOGSPACE
which computes F .

For s1, . . . , sn ∈ S(Σ) we have f0(s1, . . . , sn)→∞R s ∈ S+(Σ) where F (|s1|, . . . , |sn|) = |s|.
The constructed JTT will essentially compute an s′ ∈ S+(Σ) such that f0(s1, . . . , sn)→∞R⊥e s′,
for a certain fixed infinitary eager R⊥-reduction. By Lemma 6.4 and Lemma 6.5 we then
have |s| = |s′|.

Note that because the TRS is finite and has simple data, all constructor normal form
data terms occurring in any reduction f0(s1, . . . , sn) →∞R⊥e s have the form Sm(t) where
either t ∈ Σ or it is one of the finitely many constructor normal form data terms occurring in
the right-hand sides of the stream or data rules. Because S cannot occur in the right-hand side
of a simple stream rule if no stream element is produced, and data rules are cons-free, m is at
most proportional to the number of output stream elements already produced. Hence Sm(t)
may be represented in logspace, using a logarithmic counter for m and a constant number
of bits to represent t. Because the reduction is eager and the size of right-hand sides of
stream rules is bounded by a constant, using an analogon of Proposition 3.17 we obtain
a JTT which computes in logarithmic space the constructor normal form of a given data
term occurring in the reduction, if it has one. This JTT computes the constructor normal
forms “inside-out”. For a term f(t1, . . . , tk) first the constructor normal forms t′1, . . . , t′k
are computed. Each t′i has the form Smi(u′i) where u′i is either ⊥ or one of the finitely
many constructor normal forms occurring in the right-hand sides of the rules. Then using
(an analogon of) Proposition 3.17 we compute the constructor normal form of f(t′1, . . . , t′k).
For S(t) first the constructor normal form Sm(t′) of t is computed using Proposition 3.17, and
then Sm+1(t′) is returned as the constructor normal form of t. Note that the only property
the constructor normal forms needed in Proposition 3.17 is that they can be represented
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using a logarithmic number of bits, and given a representation of S(t) the representation of t
may be computed in logarithmic space.

We construct the JTT like in Theorem 5.2, except that now the data arguments are
stored in memory instead of the state. We compute constructor normal forms of data terms
using Proposition 3.17. This is done eagerly, before transitioning to the state associated
with the stream function symbol in the right-hand side, which ensures that the size of the
“prefix” containing all defined function symbols of each data term occurring in the reduction
is constant – it is bounded by the size of the right-hand side of a rule in R. More details are
in Appendix C. J

I Theorem 6.7. If a stream function is computable in LOGSPACE then it is definable in a
simple stream TRS.

Proof. Let F : (Σω)n → Σ≤ω be a function computed by a JTT operating in LOGSPACE.
As shown in [14, Proposition 2.4], the function F is also computed by a JFT with a local
counter, i.e., a JFT with an additional input tape which contains 1n when computing the
n-th output symbol. In other words, a 1 is appended to the local counter whenever a symbol
is output by the JFT. Initially, the local counter contains the empty word. The JFT has a
fixed number of cursors on the local counter, which are reset to the beginning of the local
counter tape whenever a symbol is output. As with the cursors on the input, the cursors
on the local counter may move to the right or jump to other cursors. Hence, they may be
encoded in an analogous way as the cursors on the input stream.

A simple stream TRS defining a function computed by a JFT with a local counter may
be constructed in a way analogous to the construction of a pure stream TRS in the proof
of Theorem 5.2. The difference is that now every function symbol fq corresponding to a
state q has an additional data argument representing the local counter, and data arguments
encoding the cursors on the local counter. The local counter contents 1n is represented by
the data term Sn(0), where S : d→ d and 0 : d. If a rule associated with fq produces a new
output symbol, then in the right-hand side of the rule the local counter is “increased” by
prepending S, and the data arguments encoding cursors on the local counter are set to the
local counter. This may be encoded in a simple stream rule. The resulting stream TRS has
simple data.

Note that the constructed simple stream TRS actually has no data rules. It is not a pure
stream TRS because it has a unary data constructor S. J

I Corollary 6.8. A stream function is computable in LOGSPACE iff it is definable in a
simple stream TRS.

7 Conclusions

We have shown an infinitary rewriting characterisation of LOGSPACE-computable stream
functions as defined by Ramyaa and Leivant. In the realm of finite data, we proved that
finite orthogonal tail-recursive cons-free constructor TRSs characterise LOGSPACE.

Our proof could probably be adapted to show that finite semi-linear [10] tail-recursive
cons-free constructor TRSs characterise NLOGSPACE. In the nondeterministic case the
trick with logarithmic counters is not necessary as the procedure may simply guess when to
contract a subterm to ⊥. Semi-linearity ensures that subterms containing redexes cannot get
duplicated, which is crucial to show that a constructor normal form may always be reached
via an eager R⊥-reduction.

FSCD 2018
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A Confluence of infinitary reduction

I Lemma A.1. If t→∞R t′ →∗R t′′ then t→∞R t′′.

Proof. By coinduction. If t→∗R t′ then this is obvious. Otherwise t′ = u :: w′ and t→∗R u :: w
and w →∞R w′ and t′′ = u′′ :: w′′ and u →∗R u′′ and w′ →∗R w′′. Then t →∗R u′′ :: w. By
coinduction also w →∞R w′′. Hence t→∞R u′′ :: w′′ = t′′. J

I Lemma A.2. If t→∞R t′ →∞R t′′ then t→∞R t′′.

Proof. By coinduction, using Lemma A.1. J

I Lemma A.3. Let R be finite and orthogonal. If t→∞R t′ and t→∗R s then there is s′ with
s→∞R s′ and t′ →∞R s′.

Proof. By coinduction, analysing t →∞R t′. If t →∗R t′ then this follows from Lemma 4.4.
Otherwise t′ = u :: w′, and t →∗R u :: w and w →∞R w′. By Lemma 4.4 there are u1, w1
such that s →∗R u1 :: w1 and u →∗R u1 and w →∗R w1. By coinduction we obtain w2 with
w1 →∞R w2 and w′ →∞R w2. Hence s →∞R u1 :: w2, because s →∗R u1 :: w1 and w1 →∞R w2;
and t′ →∞R u1 :: w2, because t′ = u :: w′ →∗R u1 :: w′ and w′ →∞R w2. J

Note that t′ →∗R s′ would not suffice in the conclusion of the above lemma, because the
infinitary reduction t→∞R t′ may create in t′ infinitely many descendants of a redex in t.

The relation →2∞
R is defined coinductively.

t→∞R t′

t→2∞
R t′

t→∞R u :: w w →2∞
R w′

t→2∞
R u :: w′

I Lemma A.4. If t→∞R t′ →2∞
R t′′ then t→2∞

R t′′.

Proof. Follows directly from Lemma A.2 J

I Lemma A.5. If t→2∞
R t′ then t→∞R t′.

Proof. By coinduction, using Lemma A.4. J

t
∗ //

∗��

u1 :: w1

∗��
u2 :: w2

∗ // u :: w

u1

∗��
u2

∗ // u

w1
∞//

∗��

w′2

∞��
w2

∗ //

∞��

w
∞//

∞��

w′′1

2∞��
w′2

∞// w′′2
2∞// w′

ui :: w′i
∗ // u :: w′i w′i

∞// w′′i

ui :: w′i
∞// u :: w′′i w′′i

2∞// w′

Figure 1 Proof of confluence of infinitary reduction

I Theorem 4.5. If R is finite and orthogonal then →∞R is confluent, i.e., if t →∞R t1 and
t→∞R t2 then there exists t′ such that t1 →∞R t′ and t2 →∞R t′.

FSCD 2018
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13:18 Term rewriting characterisation of LOGSPACE for finite and infinite data

Proof. By coinduction we construct t′ such that t1 →2∞
R t′ and t2 →2∞

R t′. This suffices by
Lemma A.5. If t →∗R t1 or t →∗R t2 then the claim follows from Lemma A.3. Otherwise,
ti = ui :: w′i and t→∗R ui :: wi and wi →∞R w′i for i = 1, 2. By Lemma 4.4 there are u,w such
that ui →∗R u and wi →∗R w. By Lemma A.3 there are w′′1 , w′′2 such that w′i →∞R w′′i and
w →∞R w′′i . Hence ti = ui :: w′i →∞R u :: w′′i . By coinduction we obtain w′ with w′′i →2∞

R w′.
Thus ti →2∞

R u :: w′, so we may take t′ = u :: w′. See Figure 1. J

B Characterisation of Finite Stream Transducers

I Theorem 5.3. An n-ary stream function is definable in a right-linear pure stream TRS
with maximum function symbol arity m iff it is computable by an n-ary FT with m cursors.

Proof. First note that for an FT the construction of a stream TRS in the proof of Theorem 5.2
gives a right-linear system. Conversely, if the TRS is right-linear, then we may modify the
construction of a JFT in the proof of Theorem 5.2 to obtain an FT, by keeping in the
state the information which cursor a given function argument corresponds to. So a state
corresponding to a function symbol f is now q

w1,...,wk,c1,...,cj ,i1,...,ik
f where i1, . . . , ik indicate

the cursors corresponding to the stream arguments of f . For instance, if

σl = f(a :: b :: x, c :: d :: y, c1)

and

σr = d :: h(c :: d :: y, b :: x, c)

then the transition from the state qab,cd,c1,i1,i2
f is constructed as follows. First, output d

and read one symbol e from the i1-th cursor moving it forward. Then change the state
to qcd,be,c,i2,i1h . J

C Proofs for Section 6

In this section we assume that R is a simple stream TRS.

I Lemma C.1. If t is proper and t→∞R t1 and t→∗R⊥e t2 then there is t′ with t2 →∞R t′ and
t1 →∞R⊥e t2.

Proof. By coinduction, analysing t→∞R t1. If t→∗R t1 then this follows from Corollary 3.15.
Otherwise t →∗R u :: w and w →∞R w′ and t1 = u :: w′. By Corollary 3.15 there are u2, w2
with t2 →∗R u2 :: w2 and u→∗R⊥e u2 and w →∗R⊥e w2. Note that w is proper. By coinduction
we obtain w′2 with w2 →∞R w′2 and w′ →∞R⊥e w′2. Take t′ = u2 :: w′2. We have t2 →∗R u2 :: w2
and w2 →∞R w′2, so t2 →∞R t′. Also t1 = u :: w′ →∗R⊥e u2 :: w′ and w′ →∞R⊥e w′2, so
t1 →∞R⊥e t′. J

I Lemma 6.4. If t is proper and t→∞R t1 and t→∞R⊥e t2 then there is t′ with t2 →∞R t′ and
t1 →∞R⊥e t2.

Proof. By coinduction, analysing t →∞R⊥e t2. If t →∗R⊥e t2 then this is a consequence of
Lemma C.1. Otherwise t→∗R⊥e u :: w and w →∞R⊥e w′ and t2 = u :: w′. By Lemma C.1 there
are u1, w1 such that t1 →∗R⊥e u1 :: w1 and u→∗R u1 and w →∞R w1. Note that w is proper.
By coinduction we obtain w2 such that w′ →∞R w2 and w1 →∞R⊥e w2. Take t′ = u1 :: w2. We
have t1 →∗R⊥e u1 :: w1 and w1 →∞R⊥e w2, so t1 →∞R⊥e t′. Also t2 = u :: w′ →∗R u1 :: w′ and
w′ →∞R w2, so t2 →∞R t′. J
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I Lemma C.2. If t→∗R⊥ u :: w then t has a chnf (in R).

Proof. Induction on the number of ⊥-reduction steps in t →∗R⊥ u :: w. If there are none
then t →∗R u :: w. Otherwise by the inductive hypothesis t →∗R t′ →⊥ t′′ →∗R u′ :: w′.
Because R is finite, by the same argument as in the proof of Lemma 3.4 we conclude that
t→∗R t′ →∗R u′′ :: w′′ →∗⊥ u′ :: w′. J

I Lemma 6.5. If s ∈ S+(Σ) and s→∞R⊥e s′ (resp. s→∞R s′), then s ∼ s′ and s′ ∈ S+(Σ).

Proof. It suffices to notice that if t is a stream term without a chnf and t→∞R⊥e t′ (resp. t→∞R
t′) then t′ does not have a chnf either. This follows from Lemma C.2 (resp. Lemma 4.6). J

I Theorem 6.6. If a stream function is definable in a simple stream TRS then it is computable
in LOGSPACE.

Proof. We describe in more detail the construction of a JTT already sketched in Section 6.
The constructed JTT computes the stream c1 :: c2 :: c3 :: . . . where e.g.

f0(s1, . . . , sn)→ε
R t1 :: f1(w1

1, . . . , w
1
k1

)→∗R⊥e c1 :: f1(u1
1, . . . , u

1
k1

)→ε
R

c1 :: t2 :: t3 :: f2(w2
1, . . . , w

2
k2

)→∗R⊥e c1 :: c2 :: c3 :: f2(u1
1, . . . , u

1
k2

)→ε
R . . .

and none of the uji contain R⊥-redexes. So all of the root R-reduction steps are in fact eager
R⊥-reductions. Note that all terms appearing in this reduction are proper.

Let N be the maximum size of the left-hand side l of a rule l → r ∈ R. For a
stream function symbol f with k stream arguments, and words w1, . . . , wk ∈ ΣN we add a
state qw1,...,wk

f . Let si be a stream term representing the word wi, with a variable xi at the
tail, like in the proof of Theorem 5.2. Assume without loss of generality that the stream
arguments of f occur before the data arguments, and let y1, . . . , yj be data variables. Let
l1 → r1, . . . , ln → rn ∈ R be all rules such that f(s1, . . . , sk, y1, . . . , yj) unifies with li with
substitution σi. Let M be the maximum number of data arguments of any defined stream
function symbol in R. We keep the representations of data arguments in constructor normal
form on M separate work tapes: we call them argument work tapes.

Assume e.g. k = 2 and w1 = ab and w2 = cd and j = 2. In the state qab,cdf the JTT
first checks which of the left-hand sides l1, . . . , ln matches f(a :: b :: x1, c :: d :: x2, u1, u2)
where u is the first data argument – the data term whose representation is stored on the
first argument work tape. There is at most one matching li because R is orthogonal, and
this can be checked using only logarithmic space (it suffices to check whether the two data
arguments in li match u1, u2, respectively). If none of the li matches then the JTT loops.
Assume e.g. li matches with substitution σ and

σli = f(a :: b :: x1, c :: d :: x2, S(y), z)

and

σri = h1(a, b, y, z) :: g(c :: d :: x2, b :: x1, d :: x2, h2(y), y).

Then the JTT outputs the constructor normal form of h1(a, b, t1, t2), computed using
Proposition 3.17, where S(t1) is the constructor normal form of the first data argument,
stored on the first argument work tape, and t2 is the constructor normal form of the second
data argument, sored on the second argument work tape. If the constructor normal form
of h1(a, b, t1, t2) is not in Σ, then the JTT loops. Next, the JTT simultaneously sets the
first cursor to the second one, the second to the first, and the third to the second. Then it

FSCD 2018
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computes the constructor normal form of h2(t), using Proposition 3.17, and writes it to the
first argument tape, and also copies t to the second argument tape. Next, the JTT reads
one symbol from the second cursor and one from the third, moving them forward. Let these
symbols be a1, a2 respectively. The JTT then enters the state qcd,ba1,da2

g . This behaviour
may always be encoded using a finite number of states.

The rest of the construction is like in the proof of Theorem 5.2.
It is clear that the constructed JTT computes a stream |s′| ∈ Σ≤ω for an s′ ∈ S+(Σ)

such that f0(s1, . . . , sn)→∞R⊥e s′. As mentioned before, Lemma 6.4 and Lemma 6.5 imply
that this is correct. Indeed, we have f0(s1, . . . , sn)→∞R s where F (|s1|, . . . , |sn|) = |s|. By
Lemma 6.4 there is w with s →∞R⊥e w and s′ →∞R w. By Lemma 6.5 we have w ∈ S+(Σ)
and s ∼ w and s′ ∼ w. Thus |s| = |w| = |s′|. So the JTT computes the stream |s|, as
required. J
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