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Abstract
We consider anti-unification for simply typed lambda terms in associative, commutative, and associative-
commutative theories and develop a sound and complete algorithm which takes two lambda terms and
computes their generalizations in the form of higher-order patterns. The problem is finitary: the minimal
complete set of generalizations contains finitely many elements. We define the notion of optimal solution
and investigate special fragments of the problem for which the optimal solution can be computed in linear
or polynomial time.
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1 Introduction

Anti-unification algorithms aim at computing generalizations for given terms. A generalization of
t and s is a term r such that t and s are substitution instances of r. Interesting generalizations are
those that are least general (lggs). However, it is not always possible to have a unique least general
generalization. In these cases the task is either to compute a minimal complete set of generalizations,
or to impose restrictions so that uniqueness is guaranteed.

Anti-unification, as considered in this paper, uses both of these ideas. The theory is simply-typed
lambda calculus, where some function symbols may be associative, commutative, or associative-
commutative. A-, C-, and AC-anti-unification is finitary even for first-order terms, and a modular
algorithm has been proposed in [1] to compute the corresponding minimal complete set of generaliza-
tions. Anti-unification for simply typed lambda terms can be restricted to compute generalizations in
the form of Miller’s patterns [13], which makes it unitary, and the single least general generalization
can be computed in linear time by the algorithm proposed in [8]. These two approaches combine
nicely with each other when one wants to develop a higher-order equational anti-unification algorithm,
and we illustrate it in this paper. Basically, it extends the syntactic1 generalization rules from [8]
by equational decomposition rules inspired by those from [1], getting a modular algorithm in which
different equational axioms for different function symbols can be combined automatically. The
algorithm takes a pair of simply typed lambda terms and returns a set of their generalizations in
the form of higher-order patterns. It is terminating, sound, and complete. However, the number of

1 We refer to the higher-order anti-unification algorithm from [8] as syntactic, although it works modulo βη-conversion.
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12:2 Higher-order Equational Anti-unification

nondeterministic choices when decomposing may result in a large search tree. Although each branch
can be developed in linear time, there can be too many of them to search efficiently.

This is the problem that we address in the second part of the paper. The idea is to use a greedy
approach: introduce an optimality criterion, use it to select an anti-unification problem among
different alternatives obtained by a decomposition rule, and try to solve only that. In this way, we
would only compute one generalization. Checking the criterion and selecting the right branch should
be done “reasonably fast”. To implement this idea, we introduce conditions on the form of anti-
unification problems which are guarantee to compute “optimal” solutions, and study the corresponding
complexities. In particular, we identify conditions for which A-, C-, and AC-generalizations can be
computed in linear time. We also study how the complexity changes by relaxing these conditions.

Higher-order anti-unification has been investigated by various authors from different application
perspective. Research has been focused mainly on the investigation of special classes for which
the uniqueness of lgg is guaranteed. Some application areas include proof generalization [14],
higher-order term indexing [15], cognitive modeling and analogical reasoning [9, 17], recursion
scheme detection in functional programs [3], inductive synthesis of recursive functions [16], just to
name a few. Two higher-order anti-unification algorithms [6, 8] are included in an online open-source
anti- unification library [4, 5]. This related work does not consider anti-unification with higher-order
terms in the presence of equational axioms. However, such a combination can be useful, for instance,
for developing indexing techniques for higher-order theorem provers [12] or in higher order program
manipulation tools.

The organization of the paper is as follows: In Section 2 we introduce the main notions and
define the problem. In Section 3 we recall the higher-order anti-unification algorithm from [8].
In Section 4 we extend the algorithm with equational decomposition rules. Section 5 is devoted
to the introduction of computationally well-behaved fragments of anti-unification problems. The
next sections describe the behavior of equational anti-unification algorithms on these fragments: In
Section 6 we discuss associative generalization and speak about optimality. Sections 7 and 8 are
about C- and AC-generalizations. Sections 9 summarizes the results and contains a discussion of
future work and open problems.

2 Preliminaries

This work builds upon the formulations and results of [7, 8]. Higher-order signatures are composed of
types constructed from a set of base types (typically δ ) using the grammar τ ::“ δ | τ Ñ τ . We will
considerÑ to be associative right unless otherwise stated. Variables (typically X ,Y,Z,x,y,z,a,b, . . .)
as well as constants (typically f ,c, . . .) are assigned types from the set of types constructed using the
above grammar. λ -terms (typically t,s,u, . . .) are constructed using the grammar t ::“ x | c | λx.t | t1 t2
where x is a variable and c is a constant, and are typed using the type construction mentioned above.
Terms of the form p. . .ph t1q . . . tmq, where h is a constant or a variable, will be written as hpt1, . . . , tmq,
and terms of the form λx1. . . . .λxn.t as λx1, . . . ,xn.t. We use #»x as a short-hand for x1, . . . ,xn. This
basic language will be extended by higher-order constants satisfying equational axioms. When
necessary, we write a λ -term t together with its type α as t : α .

Every higher-order constant c will have an associated set of axioms, denoted by Axpcq. If Axpcq is
empty then c does not have any associated properties and is called free. Otherwise, Axp f q Ď tA,Cu
where A is associativity, i.e. f pa, f pb,cqq ” f p f pa,bq,cq and C is commutativity, i.e. f pa,bq ”
f pb,aq. Note that only functions of the type α Ñ α Ñ α are allowed to have equational properties.
We assume that terms are written in flattened form, obtained by replacing all subterms of the
form f pt1, . . . , f ps1, . . . ,smq, . . . tnq by f pt1, . . . ,s1, . . . ,sm, . . . tnq, where A PAxp f q. Also, by convention,
the term f ptq stands for t, if A P Axp f q. Other standard notions of the simply typed λ -calculus, like
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D. M. Cerna and T. Kutsia 12:3

bound and free occurrences of variables, α-conversion, β -reduction, η-long β -normal form, etc. are
defined as usual (see [2, 10]). By default, terms are assumed to be written in η-long β -normal form.
Therefore, all terms have the form λx1, . . . ,xn.hpt1, . . . , tmq, where n,mě 0, h is either a constant or a
variable, t1, . . . , tm have this form, and the term hpt1, . . . , tmq has a basic type.

The set of free variables of a term t is denoted by Varsptq. When we write an equality between
two λ -terms, we mean that they are equivalent modulo α , β and η equivalence.

The size of a term t, denoted |t|, is defined recursively as |hpt1, . . . , tnq| “ 1`
řn

i“1 |ti| and
|λx.t| “ 1`|t|. The depth of a term t, denoted depthptq is defined recursively as depthphpt1, . . . , tnqq “
1`maxiPt1,...,nu depthptiq and depthpλx.tq “ 1`depthptq. For a term t “ λx1, . . . ,xn.hpt1, . . . , tmqwith
n,mě 0, its head is defined as headptq “ h.

A higher-order pattern is a λ -term where, when written in η-long β -normal form, all free variable
occurrences are applied to lists of pairwise distinct (η-long forms of) bound variables. For instance,
λx. f pXpxq,Y q, f pc,λx.xq and λx.λy.Xpλ z.xpzq,yq are patterns, while λx. f pXpXpxqq,Y q, f pXpcq,cq
and λx.λy.Xpx,xq are not.

Substitutions are finite sets of pairs tX1 ÞÑ t1, . . . ,Xn ÞÑ tnu where Xi and ti have the same type and
the X’s are pairwise distinct variables. They can be extended to type preserving functions from terms
to terms as usual, avoiding variable capture. The notions of substitution domain and range are also
standard and are denoted, respectively, by Dom and Ran.

We use postfix notation for substitution applications, writing tσ instead of σptq. As usual, the
application tσ affects only the free occurrences of variables from Dompσq in t. We write #»x σ for
x1σ , . . . ,xnσ , if #»x “ x1, . . . ,xn. Similarly, for a set of terms S, we define Sσ “ ttσ | t P Su. The
composition of σ and ϑ is written as juxtaposition σϑ and is defined as xpσϑq “ pxσqϑ for all x.
Another standard operation, restriction of a substitution σ to a set of variables S, is denoted by σ |S.

A substitution σ1 is more general than σ2, written σ1 ĺσ2, if there exists ϑ such that Xσ1ϑ “Xσ2

for all X P Dompσ1qYDompσ2q. The strict part of this relation is denoted by ă. The relation ĺ is a
partial order and generates the equivalence relation which we denote by». We overload ĺ by defining
s ĺ t if there exists a substitution σ such that sσ “ t. The focus of this work is generalization in the
presence of equational axioms thus we need a more general concept of ordering of substitutions/terms
by their generality. We say that two terms s, t are s“E t if they are equivalent modulo E Ď tA,Cu.
For example, f pa, f pb,cqq ‰ f p f pa,bq,cq but, f pa, f pb,cqq “tAu f p f pa,bq,cq. Under this notion of
equality we can say that a substitution σ1 is more general modulo an equational theory E Ď tA,Cu
than σ2 written σ1 ĺE σ2 if there exists ϑ such that Xσ1ϑ “E Xσ2 for all X P Dompσ1qYDompσ2q

Note that ă and » and the term extension are generalized accordingly. Form this point on we will
use the ordering relation modulo an equational theory when discussing generalization.

A term t is called a generalization or an anti-instance modulo an equational theory E of two
terms t1 and t2 if t ĺE t1 and t ĺE t2. It is a higher-order pattern generalization if additionally t
is a higher-order pattern. It is the least general generalization (lgg in short), aka a most specific
anti-instance, of t1 and t2, if there is no generalization s of t1 and t2 which satisfies t ăE s. An
anti-unification problem (shortly AUP) is a triple Xp #»x q : t fi s where

λ
#»x .Xp #»x q, λ

#»x .t, and λ
#»x .s are terms of the same type,

t and s are in η-long β -normal form, and
X does not occur in t and s.

The variable X is called a generalization variable. The term Xp #»x q is called the generalization
term. The variables that belong to #»x , as well as bound variables, are written in the lower case
letters x,y,z, . . .. Originally free variables, including the generalization variables, are written with
the capital letters X ,Y,Z, . . .. This notation intuitively corresponds to the usual convention about
syntactically distinguishing bound and free variables. The size of a set of AUPs is defined as

FSCD 2018
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12:4 Higher-order Equational Anti-unification

|tX1p
#»x1q : t1 fi s1, . . . ,Xnp

#»xnq : tn fi snu| “
řn

i“1 |ti| ` |si|. Notice that the size of Xip
#»xi q is not con-

sidered. An anti-unifier of an AUP Xp #»x q : t fi s is a substitution σ such that Dompσq “ tXu and
λ

#»x .Xp #»x qσ is a term which generalizes both λ
#»x .t and λ

#»x .s.

An anti-unifier of Xp #»x q : t fi s is least general (or most specific) modulo an equational theory
E if there is no anti-unifier ϑ of the same problem that satisfies σ ăE ϑ . Obviously, if σ is a least
general anti-unifier of an AUP Xp #»x q : t fi s, then λ

#»x .Xp #»x qσ is a lgg of λ
#»x .t and λ

#»x .s.

Here we consider a variant of higher-order equational anti-unification problem:

Given: Higher-order terms t and s of the same type in η-long β -normal form and an equational
theory E Ď tA,Cu.

Find: A higher-order pattern generalization r of t and s modulo E Ď tA,Cu.

Essentially, we are looking for r which is least general among all higher-order patterns which
generalize t and s (modulo E ). There can still exist a term which is less general than r, generalizes
both s and t, but is not a higher-order pattern. In [8] there is an instance for syntactic anti-unification: if
t “ λx,y. f phpx,x,yq,hpx,y,yqq and s“ λx,y. f pgpx,x,yq, gpx,y,yqq, then r“ λx,y. f pY1px,yq,Y2px,yqq
is a higher-order pattern, which is an lgg of t and s. However, the term λx,y. f pZpx,x,yq,Zpx,y,yqq,
which is not a higher-order pattern, is less general than r and generalizes t and s.

Another important distinguishing feature of higher-order pattern generalization modulo E is that
there may be more than one least general pattern generalization (lgpg) for a given pair of terms. In
the syntactic case there is a unique lgpg. The main contribution of this paper is to find conditions on
the AUPs under which there is a unique lgpg for equational cases, and introduce weaker-optimality
conditions which allow one to greedily search the space for a less general generalization compared to
the syntactic one. We formalize these concepts in the following sections.

3 Higher Order Pattern Generalization in the Empty Theory

Below we assume that in the AUPs of the form Xp #»x q : t fi s and the term λ
#»x .Xp #»x q is a higher-order

pattern. We now introduce the rules for the higher-order pattern generalization algorithm from [8],
which works for E “H. It produces syntactic higher-order pattern generalizations in linear time and
will play a key role in our optimality conditions introduced in later sections.

These rules work on triples A;S;σ , which are called states. Here A is a set of AUPs of the form
tX1p

#»x1q : t1 fi s1, . . . ,Xnp
#»xnq : tn fi snu that are pending to anti-unify, S is a set of already solved AUPs

(the store), and σ is a substitution (computed so far) mapping variables to patterns. The symbol Z
denotes disjoint union.

Dec: Decomposition
tXp #»x q : hpt1, . . . , tmqfi hps1, . . . ,smquZA; S; σ ùñ

tY1p
#»x q : t1 fi s1, . . . ,Ymp

#»x q : tm fi smuYA; S; σtX ÞÑ λ
#»x .hpY1p

#»x q, . . . ,Ymp
#»x qqu,

where h is a free constant or h P #»x , and Y1, . . . ,Ym are fresh variables of the appropriate types.

Abs: Abstraction Rule
ttXp #»x q : λy.t fi λ z.suuZA; S; σ ùñ

tX 1p #»x ,yq : t fi stz ÞÑ yuuYA; S; σ tX ÞÑ λ
#»x ,y.X 1p #»x ,yqu ,

where X 1 is a fresh variable of the appropriate type.
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D. M. Cerna and T. Kutsia 12:5

Sol: Solve Rule
tXp #»x q : t fi suZA; S; σ ùñ A; tY p #»y q : t fi suYS; σ tX ÞÑ λ

#»x .Y p #»y qu

where t and s are of a basic type, headptq ‰ headpsq or headptq “ headpsq “ Z R #»x . The sequence
#»y is a subsequence of #»x consisting of the variables that appear freely in t or in s, and Y is a fresh
variable of the appropriate type.

Mer: Merge Rule
A; tXp #»x q : t1 fi t2,Y p #»y q : s1 fi s2uZS; σ ùñ

A; tXp #»x q : t1 fi t2uYS; σ tY ÞÑ λ
#»y .Xp #»x πqu

Where π : t #»x u Ñ t #»y u is a bijection, extended as a substitution with t1π “ s1 and t2π “ s2. Note that
in the case of the equational theory we will consider later we would use “E instead of “.

We will refer to these generalization rules as Gbase. To compute generalizations for two simply
typed lambda-terms in η-long β -normal form t and s, the algorithm from [8] starts with the initial
state tX : t fi su;H;H, where X is a fresh variable, and applies these rules as long as possible. The
computed result is the instance of X under the final substitution. It is the syntactic least general
higher-order pattern generalization of t and s, and is computed in linear time in the size of the input.

We will use this linear time procedure in the following section to obtain “optimal” least general
higher-order pattern generalizations of terms modulo an equation theory. These optimal generaliza-
tions are dependent on the generalizations the syntactic algorithm produces. When we need to check
more than one decomposition of a given AUP in order to compute the optimal generalizations modulo
an equational theory, we compute the optimal generalization for each decomposition path and than
compare the results. The details are explained below.

We assume that terms are written in flattened form, obtained by replacing all subterms of the
form f pt1, . . . , f ps1, . . . ,smq, . . . tnq by f pt1, . . . ,s1, . . . ,sm, . . . tnq, where A PAxp f q. Also, by convention,
the term f ptq stands for t, if A P Axp f q.

4 Equational Decomposition Rules

In this section we discuss an extension of the basic rules concerning higher-order pattern generalization
by decomposition rules for A, C, and AC function symbols. Here, we consider the general, unrestricted
case. Efficient special fragments are discussed in the subsequent section.

We start from decomposition rules for associative generalization:

Dec-A-L: Associative Decomposition Left
tXp #»x q : f pt1, . . . , tnqfi f ps1, . . . ,smquZA; S; σ ùñ

tY1p
#»x q : f pt1, . . . , tkqfi s1, Y2p

#»x q : f ptk`1, . . . , tnqfi f ps2, . . . ,smquYA;
S; σtX ÞÑ λ

#»x . f pY1p
#»x q,Y2p

#»x qqu,

where Axp f q “ tAu, 1ď k ď n´1, n,mě 2, and Y1 and Y2 are fresh variables of appropriate types.

Dec-A-R: Associative Decomposition Right
tXp #»x q : f pt1, . . . , tnqfi f ps1, . . . ,smquZA; S; σ ùñ

tY1p
#»x q : t1 fi f ps1, . . . ,skq,Y2p

#»x q : f pt2, . . . , tnqfi f psk`1, . . . ,smquYA;
S; σtX ÞÑ λ

#»x . f pY1p
#»x q,Y2p

#»x qqu,

where Axp f q “ tAu, 1ď k ď m´1, n,mě 2, and Y1 and Y2 are fresh variables of appropriate types.

We refer to the extension of Gbase by the above associativity rules as GA and extend the termination,
soundness and completeness results for Gbase to GA.

FSCD 2018
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12:6 Higher-order Equational Anti-unification

§ Theorem 1 (Termination). The set of transformations GA is terminating.

Proof. Termination follows from the fact that Gbase terminates [8] and the rules Dec-A-L and
Dec-A-R can be applied finitely many times. đ

§ Theorem 2 (Soundness). If tX : t fi su;H;Hùñ˚H;S;σ is a transformation sequence of GA,
then Xσ is a higher-order pattern in η-long β -normal form and Xσ ĺ t and Xσ ĺ s.

Proof. It was shown in [8] that Gbase is sound. Let us assume as a base case that all occurrences
of associative function symbols in t fi s have two arguments. Then the rules Dec-A-L and Dec-A-R
are equivalent to the Dec rule. As an induction hypothesis (IH), assume soundness holds when all
occurrences of associative function symbols in t fi s have ď n arguments. We show that it holds for
n`1. Let t fi s be of the form f pt1, . . . , tmqfi f ps1, . . . ,skq for maxtk,mu ď pn`1q and let associative
function symbols occurring in t1, . . . tm,s1, . . .sk have at most n arguments. Any application of Dec-A-
L or Dec-A-R will produce two AUPs for which the IH holds, and thus, the theorem holds. We can
extend this argument to an arbitrary number of associative function symbols with n`1 arguments
with another induction. đ

§ Theorem 3 (Completeness). Let λ
#»x .t1 and λ

#»x .t2 be higher-order terms and λ
#»x .s be a higher-

order pattern such that λ
#»x .s is a generalization of both λ

#»x .t1 and λ
#»x .t2 modulo associativity.

Then there exists a transformation sequence tXp #»x q : t1 fi t2u;H;Hùñ˚ H;S;σ in GA such that
λ

#»x .s ĺ Xσ .

Proof. We can reason similarly to the previous proof. It was shown in [8] that Gbase is complete.
Let us assume as a base case that all occurrences of associative function symbols in t fi s have two
arguments. Then the rules Dec-A-L and Dec-A-R are equivalent to the Dec rule and completeness
holds. When we have n`1 arguments there are n ways to group the arguments associatively and the
decompositions rules Dec-A-L and Dec-A-R allow one to consider all groupings. đ

The addition of associative function symbols allows for more than one decomposition and thus
more than one lgg in contrast to higher-order pattern generalization which results in a unique lgg . If
we wish to compute the complete set of lggs we would simply exhaust all possible applications of the
above rules. However, for most applications an “optimal” generalization is sufficient. We postpone
discussion till the next section.

The decomposition rule for commutative symbols is also pretty intuitive:

Dec-C: Commutative Decomposition
tXp #»x q : f pt1, t2qfi f ps1,s2quZA; S; σ ùñ

tY1p
#»x q : t1 fi si, Y2p

#»x q : t2 fi spi mod 2q`1uYA; S; σtX ÞÑ λ
#»x . f pY1p

#»x q,Y2p
#»x qqu,

where Axp f q “ tCu, i P t1,2u, and Y1 and Y2 are fresh variables of appropriate types.

We refer to the extension of Gbase by the commutativity rule as GC. We can easily extend
the termination, soundness, and completeness results to GC. Notice that also for commutative
generalization, the lgg is not necessarily unique.

Unlike commutativity, which considers a fixed number of terms, and associativity, which enforces
an ordering on terms, AC function symbols allow an arbitrary number of arguments with no fixed
ordering on the terms. The corresponding decomposition rules take it into account:
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Dec-AC-L: Associative-Commutative Decomposition Left
tXp #»x q : f pt1, . . . , tnqfi f ps1, . . . ,smquZA; S; σ ùñ

tY1p
#»x q : f pti1 , . . . , til qfi sk, Y2p

#»x q : f ptipl`1q , . . . , tinqfi f ps1, . . . ,sk´1, sk`1, . . . ,smquYA;
S; σtX ÞÑ λ

#»x . f pY1p
#»x q,Y2p

#»x qqu,

where Axp f q “ tA,Cu, ti1, . . . , inu ” t1, . . . ,nu, l P t1, . . . ,n´1u, k P t1, . . . ,mu, n,mě 2, and Y1 and
Y2 are fresh variables of appropriate types.

Dec-AC-R: Associative-Commutative Decomposition Right
tXp #»x q : f pt1, . . . , tnqfi f ps1, . . . ,smquZA; S; σ ùñ

tY1p
#»x q : tk fi f psi1 , . . . ,sil q, Y2p

#»x q : f pt1, . . . , tk´1, tk`1, . . . , tnqfi f psipl`1q , . . . ,simquYA;
S; σtX ÞÑ λ

#»x . f pY1p
#»x q,Y2p

#»x qqu,

where Axp f q “ tA,Cu, ti1, . . . , imu ” t1, . . . ,mu, l P t1, . . . ,m´ 1u, k P t1, . . . ,nu, n,m ě 2, and Y1

and Y2 are fresh variables of appropriate types.

We refer to the extension of Gbase by the AC decomposition rules as GAC. Again, termination,
soundness and completeness are easily extended to this case.

5 Towards Special Fragments

This section is devoted to computing special kind of “optimal” generalizations, which can be done
more efficiently than the general unrestricted cases considered in the previous section.

The idea is the following: The equational decomposition rules introduce branching in the search
space. Each branch can be developed in linear time, but there can be too many of them. However,
if the branching factor is bounded, we could choose one of the alternative states (produced by
decomposition) based on some “optimality” criterion, and develop only that branch. Such a greedy
approach will give one “optimal” generalization.

In order to have a “reasonable” complexity, we should be able to choose such an optimal state from
“reasonably” many alternatives in “reasonable” time. For this, our idea is to treat all the alternative
states obtained by an equational decomposition step as syntactic anti-unification problems, compute
lggs for each of them (which can be done in linear time), choose the best one among those lggs (e.g.,
less general than the others, or, if there are several such results, use some heuristics), and restart
equational anti-unification algorithm from the state which led to the computation of that best syntactic
lgg. When the branching factor is constant, this leads to a quadratic algorithm, and when it is linearly
bounded, we get a cubic algorithm. These are the cases we consider below. We would also need to
decompose in a more clever way than in the rules above, where the decomposition was based on an
arbitrary choice of a subterm.

Hence, we need to identify fragments of equational anti-unification problems which would
have the decomposition branching factor constant or linearly bounded. We start by introducing the
following concepts.

§ Definition 4 (E-refined generalization). Given two terms t and s and their E -generalizations
r and r1, we say that r is at least as good as r1 with respect to E if either r1 ĺE r or they are not
comparable with respect to ĺE .

An E -generalization r of t and s is called their E-refined generalization iff r is at least as good
(with respect to E ) as a syntactic lgg of t and s.

Note that every syntactic generalization is also an E -generalization. A direct consequence of this
definition is that every element of the minimal complete set of E -generalizations (where E is A, C,
or AC) of two terms is an E -refined generalization of t and s. However, there might exist E -refined
generalizations which do not belong to the minimal complete set of generalizations.
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12:8 Higher-order Equational Anti-unification

Looking back at the informal description of the construction above, we can say that at each
branching point we will be aiming at choosing the alternative that would lead to “the best” E -refined
generalization.

The concept of E-refined allows us to compute better generalizations than the base procedure
would do, without concerning ourselves with certain difficult to handle decompositions. We will
outline what we mean by “difficult” in later sections. Some of these difficult decompositions can be
handled by finding alignments between two sequences of terms.

§ Definition 5 (Alignment, Rigidity Function). Let w1 and w2 be strings of symbols. Then the
sequence a1ri1, j1s ¨ ¨ ¨anrin, jns, for ně 0 and ak are not variables, is an alignment if

i’s and j’s are integers such that 0ă i1 ă ¨¨ ¨ ă in ă |w1| and 0ă j1 ă ¨¨ ¨ ă jn ă |w2|, and
ak “ w1|ik “ w2| jk , for all 1ď k ď n. An alignment of the form a1ri, js will be referred to as a
singleton alignment, where t|α denote the subterm at position α .

The set of all alignments will be denoted by A. A (singleton) rigidity function R is a function that
returns, for every pair of strings of symbols w1 and w2, a set of (singleton) alignments of w1 and w2.

The main intuition behind the use of rigidity functions for generalization is to capture the structure
(modulo a given rigidity property) of as many nonvariable terms as possible.

§ Definition 6 (Pair of argument head sequences and multisets). Let t “ f pt1, . . . , tnq and s “
f ps1, . . . ,smq. Then the pair of argument head sequences and the pair of argument head multisets of t
and s, denoted respectively as pahspt,sq and pahmpt,sq, are defined as follows:

pahspt,sq “ xpheadpt1q, . . . ,headptnqq, pheadps1q, . . . ,headpsmqqy .

pahmpt,sq “ xttheadpt1q, . . . ,headptnquu, ttheadps1q, . . . ,headpsmquuy .
2

These notions extend to AUPs: A pair of argument head sequences (resp. multisets) of an AUP
Xp #»x q : t fi s is the pair of argument head sequences (resp. multisets) of the terms t and s.

There is a subset of AUPs, referred to as 1-Determined AUPs, which contain associative function
symbols and have interesting E -refined generalizations are computable in linear time. The more
general r-determined AUPs allow a bounded number of possible choices, that is r choices, whenever
associative decomposition may be applied. Even for 2-determined AUPs computing the set of lggs is
of exponential complexity. Therefore, we introduce the notion of pR,C,G q-optimal generalization
where R is a so called rigidity function [11] and C is a choice function picking one of available
decompositions. Under such optimality conditions, we are able to compute an E -refined generalization
in quadratic time for k-determined AUPs and in cubic time for arbitrary AUPs with associative function
symbols.

The equational decomposition rules above are too non-deterministic and the computed set of
generalizations has to be minimized to obtain minimal complete sets of generalizations. However,
even if we performed more guided decompositions, obtaining e.g., terms with the same head in
new AUPs (as in [11]), there would still be alternatives. For instance, consider the following
AUP where f is associative: Xp #»x q : f pt1, . . . ti, . . . , t j, . . . , tnq fi f ps1, . . .si, . . . ,s j, . . . ,smq. Now let
headptiq “ headps jq, headpsiq “ headpt jq, and for every other term comparison whose index is ď j
the head symbols are not equivalent. Under these assumptions there is not enough information to
decide which decomposition is less general. Furthermore, this can be generalized from two possible
decompositions to k possibilities.

Under certain conditions we can force a term to have a single decomposition path, what we will
refer to as a 1-determined condition which is equivalent to unique longest common subsequence of
head symbols. We formally define k-determined AUPs using the following sequence of definitions:
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D. M. Cerna and T. Kutsia 12:9

§ Definition 7 (k-determinate set). Given the pair of sequences of symbols xs1,s2y with s1 “

pa1, . . . ,anq and s2 “ pb1, . . . ,bmq, and a positive integer k, the (strict) k-determinate set of s1 and s2,
denoted det pk,s1,s2q (dets pk,s1,s2q), is defined as follows:

If n“ 0 and m‰ 0 or vice versa, then det pk,s1,s2q “H.
Otherwise, let 1ď iďminpn,mq be a number such that for the multiset Mi “ ptta1uuXttb1uuqY

ptta2, . . . ,aiuuXttb2, . . . ,biuuq ‰H we have MiXttbi`1, . . . ,bmuu “MiXttai`1, . . . ,anuu “H. Let
K (Ks) be the set of pairs ta j1r j1, j2s | a j1 “ b j2 and j1 “ 1 iff j2 “ 1u ( ta j1r j1, j2s | a j1 “ b j2u).
If K has at most k elements, then

detpk,s1,s2q :“
ď

a j1 r j1, j2sPK

addpa j1r j1, j2s,det
`

k,pa j1`1, . . . ,anq,pb j2`1, . . . ,bmq
˘

q.

addpa,Aq “
"

tpa,Aqu A‰H
H otherwise

Otherwise, detpk,s1,s2q “ tHu .
Note that dets pk,s1,s2q is defined analogously using Ks instead of K. We will refer to the pairs pa,Aq
where a is a singleton alignment and A a k-determinate set as blocks.

We will use dets pk,s1,s2q when considering commutativity in Section 7.

§ Example 8. We illustrate the previous definition:

det p1,pa,bq,pa,bqq “ tpar1,1s ; tpbr1,1s ; tHuququ.
det p1,pa,aq,pb,aqq “ tptar2,2s ; tHuqu.
det p1,pa,c,c,b,a,cq,pa,d,b,a,cqq “ tpar1,1s ; tpbr3,2s ; tpar1,1s ; tpcr1,1s ; tHuququququ.
det p1,pa,b,aq,pc,a,c,bqq “ tHu
det p1,pa,b,dq,pc,a,b,cqq “ tpbr2,3s ; tHuqu
det p2,pa,b,aq,pc,a,b,cqq “ tpbr2,3s ; tHuqu
dets p1,pa,bq,pb,aqq “ tpar1,2s ; tHuq ,pbr2,1s ; tHuqu
det p2,pc,a,b,cq,pd,b,a,dqq “ tpar2,3s ; tHuq ,pbr3,2s ; tHuqu.
det p3,pa,b,a,c,dq,pc,a,b,a,dqq “
tpbr2,3s ; tpar1,1s ; tHuquq ,par3,2s ; tpdr2,3s ; tHuquq ,par3,4s ; tHuqu.
det pk,pa,aq,pb,c,dqq “ tHu.
det pk,pa,bq,paqq “H.
det pk,pa,aq,paqq “ tHu.

Even though det pk,pa,bq,paqq and det pk,pa,aq,paqq are related the formalism does not handle them
as similar. This merely makes the formalism a little more restricted. Notice that a unique longest
common subsequence of two symbol sequences is not equivalent to k-determined. Consider the
following example:

det pk,pc,a,a,dq,pc,a,b,a,dqq “ tpcr1,1s ; tpar1,1s ; tpdr2,3s ; tHuquququ.
The alignment representing its longest common subsequence is

cr1,1sar2,2sar3,4sdr4,5s

§Definition 9 (k-determined term pairs). A pair of terms xt,sy is k-determined iff either headptq ‰
headpsq or headptq “ headpsq “ f and Axp f q “ H, or Axp f q “ tAu and det pk,pahspt,sqq ‰ H.
Furthermore we say that the pair xt,sy is total k-determined if t “ λx1, . . . ,xn.t 1, s“ λy1, . . . ,yn.s1 and
t 1 and s1 are η-equivalent to t2 and s2 with |t2| “ |s2| “ 1, or for each pari, js,Sq P det pk,pahspt,sqq
where ti is the term at the ith position of t and s j is the term at the jth position of s the term pair xti,s jy

is total k-determined.
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12:10 Higher-order Equational Anti-unification

§ Proposition 1. The complexity of checking if the terms of an AUP Xpx̄q : λx1, . . . ,xl . f pt1, . . . , tnqfi
λy1, . . . ,yk. f ps1, . . . ,smq is 1-determined is Opnq and total 1-determined is Opn2q, where n is maximum
of the length of the two terms.

Checking k-determinedness of an AUP is a harder problem complexity-wise. For example, given
the sequences pa, . . . ,aq and pa, . . . ,aq there are n2 ways to align the terms which have to be checked.
Moreover, if we want to check total k-determinedness we have to again do a quadratic check for each
pair of aligned terms resulting in an Opn4q procedure.

6 Associative Generalization: Special Fragments and Optimality

6.1 Associativity and 1-Determined AUPs
We provide a linear time algorithm for higher-order tAu-refined pattern generalization of AUPs which
are 1-determined. Essentially, at every step there is a single decomposition choice which can be made.

§ Theorem 10. A higher-order tAu-refined pattern generalizer for a total 1-determined AUP can
be computed in linear time.

Proof. If the AUP does not contain an associative function symbol, then its E-refined generalization,
which is also an lgg, can be computed in linear time [8]. If it does contain an associative function
symbol, we have two alternatives: either every occurrence of the associative function symbol has two
arguments (remember that our terms are in flattened form), or not. In the former case, the associative
decomposition rules do not differ from the syntactic decomposition rule Dec and we can only apply
the latter. It means that we can still use the linear algorithm from [8]. The rest of the proof is about
the case when there are occurrences of associative function symbols with more than two arguments.
The proof goes by induction on the maximal number of such arguments.

We assume for the induction hypothesis that if every instance of the associative function symbol
in the AUP has at most n arguments, then it is solvable in linear time, and show that the same
holds for n` 1. Let us assume that the AUP we are currently considering has the following form
Xp #»x q : f pt1, . . . , tmqfi f ps1, . . . ,skq where f is associative and maxtm,ku “ n`1. Assume without
loss of generality that k “ n`1. Also, assume that no other occurrence of f in the given AUP has
more than n arguments. We make this assumption in order to reduce the complexity of associative
decomposition in the AUP and thus, apply the induction hypothesis. If headpt1q “ headps1q,then
their lgg should not be a variable. Therefore, we can apply Dec-A-L, which results in the AUPs
Xp #»x q : t1 fi s1 (whose further decomposition will make sure that they t1 and s1 are not generalized by
a generalization variable) and Xp #»x q : f pt2, . . . , tmqfi f ps2, . . . ,sn`1q. Notice that both of the resulting
AUPs, by our assumptions, only contain f with not more than n arguments. Thus, by the induction
hypothesis the theorem holds in this case.

For the next step we assume s and t are the terms of the AUP and that phrl, ls,Sq P det p1,pahspt,sqq
s.t. Axphq “ tAu. Therefore, we can perform Dec-A-L only on the first argument l´1 times, which
gives the following new AUPs: tX1p

#»x q : t1 fi s1, . . . ,Xl´1p
#»x q : tl´1 fi sl´1, Xlp

#»x q : f ptl . . . , tmq fi
f psl , . . . ,sn`1qu. All the resulting AUPs, by our assumptions, only contain f with not more than n
arguments, thus by the induction hypothesis the theorem holds in this case.

For the next step we assume s and t are the terms of the AUP and that phri, js,Sq P det p1,pahspt,sqq
s.t. Axphq “ tAu and i‰ j. This is similar to the previous case except there is more than one possible
way to apply associative decomposition. More precisely, the number of possible ways is Fpl´ j`1q
where

Fp0q “ 1, Fpr`1q “
r`1
ÿ

w“1

Fpr`1´wq for r ě 0.
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D. M. Cerna and T. Kutsia 12:11

which is roughly Fprq “ 2pr´1q. Note that Fp¨q is derived from the combinatorics of the associative
decomposition rule and concerns the number of possible pairings with respect to 1-determinacy.
However, being that none of the head symbols of obtained term-pairs are equivalent nor can their
head symbols be equivalent to f , we know that none of the resulting AUPs will require further
decomposition. Thus, we need to apply associative decomposition. This can be easily performed
be performed by some heuristic. The result will be a set of AUPs containing Xp #»x q : f pt j . . . tmq fi
f psl , . . .sn`1q and thus by the induction hypothesis and our assumptions, the theorem holds.

For the final step we just need to apply a simple induction argument on the number of times in a
term the associative symbol f occurs with arity n`1. The above argument provides the step case and
base case being that we prove the theorem for one occurrence and can use the proof for p occurrences.
Thus, the theorem holds. đ

In the next section we consider AUPs which are k-determined for k ą 1. This will requires a new
concept of optimality based on a choice function greedily applied during decomposition.

6.2 Choice Functions and Optimality
In this section procedures and optimality conditions for total k-determined AUPs, for k ą 1, that is
AUPs where there are at most k ways to apply equational decomposition.

If we were to compute the set of E-refined generalizations for a total k-determined AUP by testing
every decomposition, even for k “ 2 the size of search space is too large to deal with efficiently.
However, we can find a pR,C,G q-optimal E-refined generalization (precisely defined below) in
quadratic time, where R is a singleton rigidity function, C a R-choice function, G is a set of state
transformation rules. Essentially, pR,C,G q-optimality means the R-choice function chooses the
“right” computation path via G based on the singleton rigidity function R. The effect is that we reduce
the problem of total k-determined AUPs to the case of total 1-determined AUPs with the additional
complexity of computing the choice function at each step. We will provide a choice function with
linear time complexity based on the procedure for Gbase.

We will denote the set of all AUPs by A. We will need the concept for the following definitions.

§Definition 11 (pP,aq-decomposition). Let P” Xpx̄q : λx1, . . . ,xl . f pt1, . . . , tnqfi λy1, . . . ,yk. f ps1,

. . . ,smq, a is an alignment of xw1,w2yP (see Definition 6). An pP,aq-decomposition of P is decpP,aq “
tYpi, jqp #»y pi, jqq : ti fi s j | hri, js P a u, where Ypi, jq are new variables of appropriate type and #»y pi, jq are
bound variables from #»x , which appear in ti fi s j.

§Definition 12 (G -feasible). Let A;S;σ be a state s.t. P P A where P” Xp #»x q : λx1, . . . ,xl . f pt1, . . . ,
tnqfi λy1, . . . ,yk. f ps1, . . . ,smq, a be an alignment of xw1,w2yP and Gbase Ď G be a set of state trans-
formation rules. We say that decpP,aq is G -feasible if there exists A;S;σ ùñ˚ A1;S1;σ 1 using G such
that A1 “ pAzPqYdecpP,aq.

§ Definition 13 (pR,P,G q-branching). Let P ” Xp #»x q : λx1, . . . ,xl . f pt1, . . . , tnq fi λy1, . . . ,yk.

f ps1, . . . ,smq, xw1,w2yP be its pair of argument head sequences, R be a singleton rigidity func-
tion, and Gbase Ď G be a set of state transformation rules. An pR,P,G q-branching is a set BpR,Pq “
tdecpP,aq | a PRpw1,w2q and decpP,aq is G -feasibleu.

§ Definition 14 (R-Choice function). Let R be a singleton rigidity function and Gbase Ď G be a
set of state transformation rules. An R-choice function CpR,G q : AÑ A is a partial function from
AUPs to alignments such that if for some P P A , CpR,G qpPq “ a, then decpP,aq P BpR,Pq.

§ Definition 15 (pR,C,G q-optimal generalization). Let A be tXpx̄q : t fi su, R be a singleton
rigidity function, C be an R-choice function, and Gbase Ď G be a set of state transformation rules,

FSCD 2018
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12:12 Higher-order Equational Anti-unification

which compute generalizations. We say that a generalization k of the terms t and s is an pR,C,G q-
optimal generalization if r “ Xσ , where σ is resulting from the derivation A;H;Hùñ˚ H;S;σ

using the rules of G , in which every decomposition is either syntactic or respects C-equivalence.

In the following subsection we show how the above definitions can lead to a more general result
(compared to the one in the previous section) concerning associative generalization.

6.3 k-Determined Associative Generalization
Before defining our concrete choice function, we must define the singleton rigidity function we will
use. Intuitively, it should select alignments from prefixes of involved sequences. The prefixes are
of the same length and should be maximal among those that contain at most k common elements.
Formally, it is defined as follows:

§ Definition 16. Let w1 “ pa1, . . . ,anq and w2 “ pb1, . . . ,bmq be sequences of symbols and k ě 1
be an integer. We define the singleton rigidity function Rk

A as

Rk
Apw1,w2q “

"

tal rl,ks | pal rl,ks ,Sq P det pk,w1,w2qu det pk,w1,w2q ‰H

H otherwise
(1)

Now we define a choice function taking an arbitrary singleton rigidity function.

§ Definition 17. Let P ” Xp #»x q : λx1, . . . ,xl . f pt1, . . . , tnq fi λy1, . . . ,yk. f ps1, . . . ,smq be an AUP
and f a function symbol such that Axp f q ıH. We define the choice function CpR,G q, where R is a
singleton rigidity function, and G is a set of state transformation rules containing Gbase, as follows:

CpR,G qpPq “
"

amin BpR,Pq ıH
undef otherwise

(2)

where amin is an alignment of pheadpt1q, . . . ,headptnqq and pheadps1q, . . . ,headpsmqq such that

decpP,aminq P BpR,Pq,
for decpP,aq PBpR,Pq, let Dpaq be the derivation Dpaq“ tPu;H;Hùñ˚

G decpP,aq;S1;σ 1ùñ˚
Gbase

H;S;σa.

Then for each a‰ amin, the corresponding Dpaq computes σa such that Xσa is more general than
Xσamin , where σamin is computed by Dpaminq. If there are several such amin’s, CpR,G qpPq is defined
as one of them (chosen by some heuristics).

The choice function outlined above uses the linear time procedure Gbase to make a choice between
the various possible alignments. Notice that we use associative decomposition for tPu;H;Hùñ˚

decpP,aq;S1;σ 1 and syntactic decomposition in the derivation decpP,aq;S1;σ 1 ùñ˚H;S;σa.

§ Theorem 18. A pRk
A,CpRk

A,GAq
,GAq-optimal higher-order tAu-refined pattern generalization for a

total k-determined AUP Xp #»x q : t fi s can be computed in Opn2q where n is the size of the AUP.

Proof. This follows from the existence of a linear algorithm for the computation of lggs using Gbase

and the linear time algorithm of theorem 10. Note that k is constant and thus does not show up in
complexity statement. đ

6.4 Step Optimal Generalization for Full Associativity
Completely dropping the determinedness restrictions on the AUPs containing associative function
symbols is the same as considering Opnq-determined AUPs. We have already shown that this problem
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is naively solvable by an exponential procedure, even when we consider Op1q-determined AUPs. In
this section we again consider the problem of finding a pR

Opnq

A ,C
pR

Opnq
A ,GAq

,GAq-optimal generalization

where n in the Landau-notation refers to the maximum number of arguments of any subterms in
the given AUP. However, this time the resulting algorithm is cubic in complexity being that r in
r–determined is no longer a constant. By R

Opnq

A we mean the singleton rigidity function which instead
of looking for an r-determined subsequence just considers the largest feasible multiset intersection.

§ Theorem 19. A pR
Opnq

A ,C
pR

Opnq
A ,GAq

,GAq-optimal higher-order tAu-refined pattern generalization

for an AUP Xp #»x q : t fi s can be computed in Opn3q time where n is the size the AUP.

Now that we have completed our analysis of associative function symbols, the simplest of the
cases we consider, we move on to the more interesting cases of unit and commutative decomposition
as well as the combinations of these algebraic properties.

7 Commutative Case

Notice that in the case of commutative decomposition if all four terms (or three terms) have the same
head symbol we end up with similar issues as in the associativity case. We can use strict 2-determined
to restrict the considered AUPs.

§ Theorem 20. A higher-order tCu-refined pattern generalization, for a total strict 1-determined
AUP can be computed in linear time.

Proof. Similar to the proof of Theorem 10. đ

Note that the case f pt1, t2q fi f ps1,s2q, where headpt1q “ headps1q and headpt2q “ headps2q, is
considered by the procedure of Theorem 20, but not f pt1, t2q fi f ps2,s1q This is an issue with the
definition of total strict 1-determined. We can fix this problem by performing an addition check to see
if a permutation of the terms on the left or right side results in a better alignment. We now present a
procedure for full commutativity, that is without restrictions which has a quadratic complexity (see
Theorem 18.

§ Definition 21. Let w1 “ pa1, . . . ,anq and w2 “ pb1, . . . ,bmq be sequences of symbols and k ě 1
be an integer. We define the rigidity function RC returning all alignments.

When the rigidity function RC is used all by our procedure there will be at most 4 alignments.

§ Corollary 22. A pRC,CpRC,GtCuq,GtCuq-optimal higher-order tCu-refined pattern generalization
for an AUP can be computed in quadratic time.

8 Associative-Commutative Case

In this section we consider functions f such that Axp f q “ tA,Cu. Unfortunately, when a function is
both associative and commutative, the number of possible decomposition paths is even greater than the
previously considered cases and thus we need to further restrict the term structure. To provide a better
understanding of why this is the case, consider a k-determined AUP where the multiset intersection
is of size Opkq and only contains one function symbol. This implies that there are Opk2q possible
decompositions of the terms in the first multiset intersection of the terms containing k alignments.
This is not even considering that there might be more than one function symbol in the AUP. The
problem is that the more terms with the same head symbol, the more combinations we must check.
Unlike commutativity, which considers a fixed number of terms, and associativity, which enforces an
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12:14 Higher-order Equational Anti-unification

ordering on terms, associative-commutativity allows an arbitrary number of arguments with no fixed
ordering on the terms. We can get around this problem by considering special cases of AUPs where
arguments of an associative-commutativity symbol have distinct heads.

Unfortunately, the concept of (strict) k-determined AUPs does not lead to a linear algorithm in
the case of AC-generalization. Actually, this concept is not even meaningful for such an equational
theory, since terms are not ordered in any particular way. Instead, we need to consider so called
pk, lq-distinct AUPs, which are defined as follows:

§ Definition 23. Let P ” Xp #»x q : λx1, . . . ,xl . f pt1, . . . , tnq fi λy1, . . . ,yk. f ps1, . . . ,smq, pahmp f pt1,
. . . , tnq, f ps1, . . . ,smqq “ xT,Sy, and Axp f q “ tA,Cu. We say that P is pk, lq-distinct if each h P T XS
occurs at most k times in w1 and at most k times in w2, the number of symbols in T X S ď l and
TzpTXSq ”H iff SzpTXSqH. We say P”Xp #»x q : λx1, . . . ,xw.t fi λy1, . . . ,yr.s is total pk, lq-distinct
if |t| “ |s| “ 1 or for every pair of subterms pt 1,s1q of t and s such that headpt 1q “ headps1q, the AUP
Y p #»y q : t 1 fi s1 is total pk, lq-distinct.

This concept is much simpler than k-determined in that it basically splits the arguments of the
left and right side of the given AUP into at most l sections dependent on the head symbols of the
arguments. Also, for head function symbol, there should be at most k occurrences of it and the result
of decomposition is an empty term iff the terms of the left and right side of the AUP are empty.

When an AUP is total p1, lq-distinct there is only one way to decompose the AUP, i.e. either a
given symbol shows up in both w1 and w2 once and can be aligned, or it cannot be aligned and is
generalized by a new variable. This leads to the following results:

§ Theorem 24. A higher-order tA,Cu-refined pattern generalization for a total p1, lq-distinct AUP
can be solved in linear time.

Proof. Similar to the proof of Theorem 10. đ

If we attempt to relax these constraints the time complexity of the algorithm increases substantially,
even when we consider the case of p2, lq-distinct AUPs under our restricted optimality condition.

§ Definition 25. Let w1 “ pa1, . . . ,anq and w2 “ pb1, . . . ,bmq be sequences of symbols. We define
the singleton rigidity function R

pk,lq
AC as follows

R
pk,lq
AC pw1,w2q “

"
 

al ri, js
ˇ

ˇ ai “ b j,1ď iď n1ď j ď m
(

if pw1,w2q is pk, lq-distinct
H otherwise

(3)

§ Theorem 26. A pRpk,lq
AC ,C

pR
pk,lq
AC ,GACq

,GACq-optimal higher-order tA,Cu-refined pattern generaliz-

ation for a total pk, lq-distinct AUP is computed in Opk2¨l ¨n2q time where n is the input size.

Proof. There are Opk2q ways to pair the terms with the same head and there are l blocks thus there
are Opk2¨lq computations using Gbase (complexity Opnq) to be performed on an AUP with size n. đ

Obviously, computing the full set of E-refined generalizations from the results of Theorem 26 using a
naive method would take in the order of Opk2¨l¨nq time.

9 Conclusion

The higher-order equational anti-unification algorithm presented in this paper combines higher-
order syntactic anti-unification rules with the decomposition rules for associative, commutative and
associative-commutative function symbols. This gives a modular algorithm, which can be used for
problems with different symbols from different theories without any adaptation.
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Higher order A-, C-, and AC-anti-unification problems are finitary. In practice, often it is desirable
to compute only one answer, which is the best one with respect to some predefined criterion. We
defined such an optimality criterion, which basically means that an optimal equational solution should
be at least a good as the syntactic lgg. We then identified problem forms for which optimal solutions
can be computed fast (in linear or polynomial time) by a greedy approach.
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