
The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

Counting Environments and Closures
Maciej Bendkowski1

Jagiellonian University,
Faculty of Mathematics and Computer Science,
Theoretical Computer Science Department,
ul. Prof. Łojasiewicza 6, 30–348 Kraków, Poland
maciej.bendkowski@tcs.uj.edu.pl

Pierre Lescanne
University of Lyon, École normale supérieure de Lyon,
LIP (UMR 5668 CNRS ENS Lyon UCBL),
46 allée d’Italie, 69364 Lyon, France
pierre.lescanne@ens-lyon.fr

Abstract
Environments and closures are two of the main ingredients of evaluation in lambda-calculus. A
closure is a pair consisting of a lambda-term and an environment, whereas an environment is
a list of lambda-terms assigned to free variables. In this paper we investigate some dynamic
aspects of evaluation in lambda-calculus considering the quantitative, combinatorial properties
of environments and closures. Focusing on two classes of environments and closures, namely
the so-called plain and closed ones, we consider the problem of their asymptotic counting and
effective random generation. We provide an asymptotic approximation of the number of both
plain environments and closures of size n. Using the associated generating functions, we construct
effective samplers for both classes of combinatorial structures. Finally, we discuss the related
problem of asymptotic counting and random generation of closed environments and closures.

2012 ACM Subject Classification Mathematics of computing→ Lambda calculus, Mathematics
of computing → Generating functions

Keywords and phrases lambda-calculus, combinatorics, functional programming, mathematical
analysis, complexity

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.11

1 Introduction

Though, traditionally, computational complexity is investigated in the context of Turing
machines since their initial development, evaluation complexity in various term rewriting
systems, such as λ-calculus or combinatory logic, attracts increasing attention only quite
recently. For instance, let us mention the worst-case analysis of evaluation, based on the
invariance of unitary cost models [26, 3, 1] or transformation techniques proving termination
of term rewriting systems [2].

Much like in classic computational complexity, the corresponding average-case analysis of
evaluation in term rewriting systems follows a different, more combinatorial and quantitative
approach, compared to its worst-case variant. In [10, 11] Choppy, Kaplan and Soria propose
an average-case complexity analysis of normalisation in a general class of term rewriting
systems using generating functions, in particular techniques from analytic combinatorics [19].

1 Maciej Bendkowski was partially supported within the Polish National Science Center grant
2016/21/N/ST6/01032.

© Maciej Bendkowski;
licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Hélène Kirchner; Article No. 11; pp. 11:1–11:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:maciej.bendkowski@tcs.uj.edu.pl
mailto:pierre.lescanne@ens-lyon.fr
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

11:2 Counting Environments and Closures

Following a somewhat similar path, Bendkwoski, Grygiel and Zaionc investigated later the
asymptotic properties of normal-order reduction in combinatory logic, in particular the
normalisation cost of large random combinators [7, 4]. Alas, normalisation in λ-calculus
has not yet been studied in such a combinatorial context. Nonetheless, static, quantitative
properties of λ-terms, form an active stream of recent research. Let us mention, non-
exhaustively, investigations into the asymptotic properties of large random λ-terms [15, 6] or
their effective counting and random generation ensuring a uniform distribution among terms
with equal size [8, 23, 22, 9].

In the current paper, we take a step towards the average-case analysis of reduction com-
plexity in λ-calculus. Specifically, we offer a quantitative analysis of environments and closures
— two types of structures frequently present at the core of abstract machines modelling λ-term
evaluation, such as for instance the Krivine or U- machine [13, 28]. In Section 3 we discuss
the combinatorial representation of environments and closures, in particular the associated
de Bruijn notation. In Section 4 we list the analytic combinatorics tools required for our
analysis. Next, in Section 5 and Section 6 we conduct our quantitative investigation into
so-called plain and closed environments and closures, respectively, subsequently concluding
the paper in Section 7.

2 A combinatoric approach to higher order rewriting systems

As said in the introduction, viewing the λ-calculus from the perspective of counting is new,
especially in the scientific community of structures for computation and deduction and
requires motivation to be detailed.

First, clearly a new perspective on λ-calculus enlightens the semantics and opens new
directions, especially by adding a touch of efficiency and a discussion on how the size
of structures with binders (like λ-terms) can be measured. However, despite advanced
mathematical techniques are used, the goal is more practical and connected to operational
semantics and implementation. Counting allows assigning a precise measure on how a specific
algorithm performs. In [24]2 Knuth calls analysis of Type A an analysis of a particular
algorithm and shows how important it is in computer science. He adds (p. 3): “Complexity
analysis provides an interesting way to sharpen our tools for the more routine problems we
face from day to day.”

Furthermore, a notion of probabilistic distribution as used in the average-case analysis of
algorithm, after Sedgewick and Flajolet [35], is deduced. In particular a notion of uniform
distribution is inferred in order to evaluate the average case efficiency of algorithms w.r.t.
this distribution. In this paper, the algorithms the authors have in mind are the several
reduction machines for the λ-calculus, especially the Krivine machine and the U-machine,
for which analyses of Type A and more specifically average case analyses are expected to
be built. Another application is random generation of terms and several kinds of structures
for computation and deduction as used for instance in QuickCheck [12]. A fully and
mathematically justified random generator can only be built using the kind of tools developed
in this paper.

But average case analysis based on uniform distribution is not the only one. The so-called
smoothed analysis of algorithms [36] is another family of tools which is based on measures of

2 This paper is part of the book “Selected Papers on Analysis of Algorithms” [25] dedicated to Professor
N. G. de Bruijn.

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

M. Bendkowski and P. Lescanne 11:3

size. Here the distribution is no more uniform and this method has promising applications,
hopefully in structures for computation and deduction.

3 Environments and closures

In this section we outline the de Bruijn notation and related concepts deriving from λ-calculus
variants with explicit substitutions used in the subsequent sections.

3.1 De Bruijn notation
Though the classic variable notation for λ-terms is elegant and concise, it poses considerable
implementation issues, especially in the context of substitution resolution and potential
name clashes. In order to accommodate these problems, de Bruijn proposed an alternative
name-free notation for λ-terms [16]. In this notation, each variable x is replaced by an
appropriate non-negative integer n (so-called index) intended to encode the distance between
x and its binding abstraction. Specifically, if x is bound to the (n+ 1)st abstraction on its
unique path to the term root in the associated λ-tree, then x is replaced by the index n.
In this manner, each closed λ-term in the classic variable notation is representable in the
de Bruijn notation.

I Example 1. Consider the λ-term T = (λxyzu.x(λyx.y)) (λz.(λu.u)z). Figure 1 depicts
three different representations of T as tree-like structures. The first one uses explicit variables,
the second one uses back pointers to represent the bound variables, whereas the third one
uses de Bruijn indices.

@

λx λz

λy @

λz λu z

λu u

@

x λy

λx

y

@

λ λ

λ @

λ λ

ll

λ

kk

@

66

λ

λ

jj

@

λ λ

λ @

λ λ 0

λ 0

@

3 λ

λ

1

Figure 1 Three representations of the λ-term T = (λxyzu.x(λyx.y)) (λz.(λu.u)z).

In order to represent free occurrences of variables, one uses indices of values exceeding
the number of abstractions crossed on respective paths to the term root. For instance, λx.yz
can be represented as λ12 since 1 and 2 correspond to two different variable occurrences.

Recall that in the classic variable notation a λ-term M is said to be closed if each of its
variables is bound. In the de Bruijn notation, it means that for each index occurrence n in
M one finds at least n+ 1 abstractions on the unique path from n to the term root of M . If
a λ-term is not closed, it is said to be open. If heading M with m abstractions turns it into
a closed λ-term, then M is said to be m-open. In particular, closed λ-terms are 0-open.

FSCD 2018

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

11:4 Counting Environments and Closures

I Example 2. Note that λλλλ(3(λλ1)) (λ(λ0)0) is closed. The λ-term 3(λλ1) is 4-open,
however it is not 3-open. Indeed, λλλ(3(λλ1)) is 1-open instead of being closed. Similarly,
λ(3(λλ1)) is 3-open, however it is not 2-open.

Certainly, the set Lm of m-open terms is a subset of the set of (m+ 1)-open terms. In
other words, if M is m-open, it is also (m+ 1)-open. The set of all λ-terms is called the set
of plain terms. It is the union of the sets of m-open terms and is denoted as L∞. Hence,

L0 ⊆ L1 ⊆ · · · ⊆ Lm ⊆ Lm+1 · · · ⊆
∞⋃
i=0
Li = L∞ . (1)

Let us note that de Bruijn’s name-free representation of λ-terms exhibits an important
combinatorial benefit. Specifically, each λ-term in the de Bruijn notation represents an
entire α-equivalence class of λ-terms in the classical variable notation. Indeed, two variable
occurrences bound by the same abstraction are assigned the same de Bruijn index. In
consequence, counting λ-terms in the de Bruijn notation we are, in fact, counting entire
α-equivalence classes instead of their inhabitants.

3.2 Closures and β-reduction
Recall that the main rewriting rule of λ-calculus is β-reduction, see, e.g. [14]

(β) (λM) N → M{0← N} (2)

where the operation {n←M}, i.e. substitution of λ-terms for de Bruijn indices, is defined
inductively as follows:

(M N){n← P} = M{n← P} N{n← P}
(λM){n← P} = λ(M{(n+ 1)← P})

m{n← P} =


m− 1 if m > n

τn0 (P) if m = n

m if m < n .

(3)

Th first rule distributes the substitution in an application, the second rule pushes a substitu-
tion under an abstraction and the third rule tells how a substitution acts when the term is
an index. τn0 (P) tells how to update the indices of a term which is substituted for an index.
The operation τni (M) is defined by induction on M as

τni (M N) = τni (M) τni (N)
τni (λM) = λ(τni+1(M))

τni (m) =
{
m+ n− 1 if m > i

m if m ≤ i .
(4)

A λ-term in the form of (λM) N is called a β-redex (or simply a redex). Lambda terms
not containing β-redexes as subterms, are called (β-)normal forms. The computational
process of rewriting (reducing) a λ-term to its β-normal form by successive elimination of
β-redexes is called normalisation. There exists an abundant literature on normalisation in
λ-calculus; let us mention, not exhaustively [27, 33, 29, 13, 30].

One of the central concepts present in various formalisms dealing with normalisation in
λ-calculus are environments and closures. An environment is a list of values meant to be

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

M. Bendkowski and P. Lescanne 11:5

assigned to indices 0, 1, 2, . . . ,m− 1 of an m-open λ-term. A closure, on the other hand, is
a couple consisting of a λ-term and an environment. Such couples are meant to represent
closed, not yet fully evaluated, λ-terms. For instance, the closure 〈M,�〉 consists of the
λ-term M evaluated in the context of an empty environment, denoted as �, and represents
simply M . The closure 〈1 0, 〈λ0,�〉 : 〈λλ0,�〉 : �〉 represents the λ-term (1 0) evaluated
in the context of an environment 〈λ0,�〉 : 〈λλ0,�〉 : �. Here, intuitively, the index 1 is
receiving the value λ0 whereas the index 0 is being assigned λλ0. Finally, λ0 is applied
to λλ0. And so, reducing the closure 〈1 0, 〈λ0,�〉 : 〈λλ0,�〉 : �〉 : �, for instance using a
Krivine abstract machine [13], we obtain λλ0.

Let us notice that following the outlined description of environments and closures, we can
provide a formal combinatorial specification for both using the following mutually recursive
definitions:

Clos ::= 〈Λ, Env〉
Env ::= � | Clos : Env (5)

In the above specification, Λ denotes the set of all plain λ-terms. Moreover, we introduce two
binary operators “〈_,_〉”, i.e. the coupling operator, and “:”, i.e. the cons operator, heading
its left-hand side on the right-hand list. When applied to a λ-term and an environment,
the coupling operator constructs a new closure. In other words, a closure is a couple of a
λ-term and an environment whereas an environment is a list of closures, representing a list
of assignments to free occurrences of de Bruijn indices.

Such a combinatorial specification for closures and environments plays an important
rôle as it allows us to investigate, using methods of analytic combinatorics, the quantitative
properties of both closures and environments.

4 Analytic tools

In the following section we briefly3 outline the main techniques and notions from the theory
of generating functions and singularity analysis. We refer the curious reader to [19, 37, 21]
for a thorough introduction.

Let (fn)n be a sequence of non-negative integers. Then, the generating function F (z)
associated with (fn)n is the formal power series F (z) =

∑
n≥0 fnz

n. Following standard
notational conventions, we use [zn]F (z) to denote the coefficient standing by zn in the
power series expansion of F (z). Given two sequences (an)n and (bn)n we write an ∼ bn to
denote the fact that both sequences admit the same asymptotic growth order, specifically
lim
n→∞

an
bn

= 1. Finally, we write ϕ .= c if we are interested in the numerical approximation c
of an expression ϕ.

Suppose that F (z), viewed as a function of a single complex variable z, is defined in some
region Ω of the complex plane centred at z0 ∈ Ω. Then, if F (z) admits a convergent power
series expansion in form of

F (z) =
∑
n≥0

fn(z − z0)n (6)

it is said to be analytic at point z0. Moreover, if F (z) is analytic at each point z ∈ Ω,
then F (z) is said to be analytic in the region Ω. Suppose that there exists a function G(z)

3 In such a short presentation of a non-trivial theory, many terms, like “branch”, “Newton-Puiseux series”,
“locally convergent” etc. are not defined. They are defined in the references [19, 37, 21].

FSCD 2018

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

11:6 Counting Environments and Closures

analytic in a region Ω∗ such that Ω ∩ Ω∗ 6= ∅ and both F (z) and G(z) agree on Ω ∩ Ω∗,
i.e. F |Ω∩Ω∗ = G|Ω∩Ω∗ . Then, G(z) is said to be an analytic continuation of F (z) onto Ω∗. If
F (z) defined in some region Ω \ {z0} has no analytic continuation onto Ω, then z0 is said
to be a singularity of F (z). When a formal power series F (z) =

∑
n≥0 fnz

n represents an
analytic function in some neighbourhood of the complex plane origin, it becomes possible
to link the location and type of singularities corresponding to F (z), in particular so-called
dominating singularities residing at the respective circle of convergence, with the asymptotic
growth rate of its coefficients. This process of singularity analysis developed by Flajolet and
Odlyzko [18] provides a general and systematic technique for establishing the quantitative
aspects of a broad class of combinatorial structures.

While investigating environments and closures, a particular example of algebraic combin-
atorial structures, the respective generating functions turn out to be algebraic themselves.
The following prominent tools provide the essential foundation underlying the process of
algebraic singularity analysis based on Newton-Puiseux expansions, i.e. extensions of power
series allowing fractional exponents.

I Theorem 3 (Newton, Puiseux [19, Theorem VII.7]). Let F (z) be a branch of an algebraic
equation P (z, F (z)) = 0. Then, in a circular neighbourhood of a singularity ρ slit along a ray
emanating from ρ, F (z) admits a fractional Newton-Puiseux series expansion that is locally
convergent and of the form

F (z) =
∑
k≥k0

ck(z − ρ)k/κ (7)

where k0 ∈ Z and κ ≥ 1.

Let F (z) be analytic at the origin. Note that [zn]F (z) = ρ−n[zn]F (ρz). In consequence,
following a proper rescaling we can focus on the type of singularities of F (z) on the unit
circle. The standard function scale provides then the asymptotic expansion of [zn]F (z).

I Theorem 4 (Standard function scale [19, Theorem VI.1]). Let α ∈ C \ Z≤0. Then, F (z) =
(1− z)−α admits for large n a complete asymptotic expansion in form of

[zn]F (z) = nα−1

Γ(α)

(
1 + α(α− 1)

2n + α(α− 1)(α− 2)(3α− 1)
24n2 +O

(
1
n3

))
(8)

where Γ:C \ Z≤0 → C is the Euler Gamma function defined as

Γ(z) =
∫ ∞

0
xz−1e−xdx for <(z) > 0 (9)

and by analytic continuation on all its domain.

Given an analytic generating function F (z) implicitly defined as a branch of an algebraic
function P (z, F (z)) = 0 our task of establishing the asymptotic expansion of the corresponding
sequence ([zn]F (z))n reduces therefore to locating and studying the (dominating) singularities
of F (z). For generating functions analytic at the complex plane origin, this quest simplifies
even further due to the following classic result.

I Theorem 5 (Pringsheim [19, Theorem IV.6]). If F (z) is representable at the origin by a
series expansion that has non-negative coefficients and radius of convergence R, then the
point z = R is a singularity of F (z).

We can therefore focus on the real line while searching for respective singularities. Since
√
z

cannot be unambiguously defined as an analytic function at z = 0 we primarily focus on roots
of radicand expressions in the closed-form formulae of investigated generating functions.

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

M. Bendkowski and P. Lescanne 11:7

4.1 Counting λ-terms
Let us outline the main quantitative results concerning λ-terms in the de Bruijn notation,
see [6, 22]. In this combinatorial model, indices are represented in a unary encoding using
the successor operator S and 0. In the so-called natural size notion [6], assumed throughout
the current paper, the size of λ-terms is defined recursively as follows:

|0| = 1
|S n| = |n| = |n|+1

|M N | = |M |+|N |+1
|λM | = |M |+1 .

And so, for example, |λ12|= 7. We briefly remark that different size notions in the de Bruijn
representation, alternative to the assumed natural one, are considered in the literature.
Though all share similar asymptotic properties, we choose to consider the above size notion
in order to minimise the technical overhead of the overall presentation. We refer the curious
reader to [22, 9] for a detailed analysis of various size notions in the de Bruijn representation.

Let ln denote the number of plain λ-terms of size n. Consider the generating function
L∞(z) =

∑
n≥0 lnz

n. Using symbolic methods, see [19, Part A. Symbolic Methods] we note
that L∞(z) satisfies

L∞(z) = zL∞(z) + zL∞(z)2 +D(z) where D(z) = z

1− z =
∞∑
n=0

zn+1. (10)

In words, a λ-term is either (a) an abstraction followed by another λ-term, accounting for
the first summand, (b) an application of two λ-terms, accounting for the second summand,
or finally, (c) a de Bruijn index which is, in turn, a sequence of successors applied to 0.
Solving (10) for L∞(z) we find that the generating function L∞(z), taking into account that
the coefficients ln are positive for all n, admits the following closed-form solution:

L∞(z) =
1− z −

√
(1− z)2 − 4z

1−z

2z . (11)

In such a form, L∞(z) is amenable to the standard techniques of singularity analysis. In
consequence we have the following general asymptotic approximation of ln.

I Theorem 6 (Bendkowski, Grygiel, Lescanne, Zaionc [6]). The sequence ([zn]L∞(z))n cor-
responding to plain λ-terms of size n admits the following asymptotic approximation:

[zn]L∞(z) ∼ Cρ−nL∞n
−3/2 (12)

where

ρL∞ = 1
3

 3
√

26 + 6
√

33− 4 22/3

3
√

13 + 3
√

33
− 1

 .= 0.29559 and C
.= 0.60676. (13)

In the context of evaluation, the arguably most interesting subclass of λ-terms are closed
or, more generally, m-open λ-terms. Recall that an m-open λ-term takes one of the following
forms. Either it is (a) an abstraction followed by an (m+1)-open λ-term, or (b) an application
of two m-open λ-terms, or finally, (c) one of the indices 0, 1, . . . ,m− 1. Such a specification
for m-open λ-terms yields the following functional equation defining the associated generating
function Lm(z):

Lm(z) = zLm+1(z) + zLm(z)2 + 1− zm

1− z . (14)

FSCD 2018

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

11:8 Counting Environments and Closures

Since Lm(z) depends on Lm+1(z), solving (14) for Lm(z) one finds that

Lm(z) =
1−

√
1− 4z2

(
Lm+1(z) + 1−zm

1−z

)
2z . (15)

Such a presentation of Lm(z) poses considerable difficulties as Lm(z) depends on Lm+1(z)
depending itself on Lm+2(z), etc. If developed, the formula (15) for Lm(z) consists of an
infinite number of nested radicals. In consequence, standard analytic combinatorics tools do
not provide the asymptotic expansion of [zn]Lm(z), in particular [zn]L0(z) associated with
closed λ-terms. In their recent breakthrough paper, Bodini, Gittenberger and Gołębiewski [9]
propose a clever approximation of the infinite system associated with Lm(z) and give the
following asymptotic approximation for the number of m-open λ-terms.

I Theorem 7 (Bodini, Gittenberger and Gołębiewski [9]). The sequence ([zn]Lm(z))n cor-
responding to m-open λ-terms of size n admits the following asymptotic approximation:

[zn]Lm(z) ∼ Cmρ−nL∞n
−3/2 (16)

where ρL∞ is the dominant singularity corresponding to plain λ-terms, see (13), and Cm is a
constant, depending solely on m.

Let us remark that for closed λ-terms, the constant C0 lies in between 0.07790995266 and
0.0779099823. In what follows, we use the above Theorem 7 in our investigations regarding
what we call closed closures.

5 Counting plain closures and environments

In this section we start with counting plain environments and closures, i.e. members of Env
and Clos, see (5). We consider a simple model in which the size of environments and closures
is equal to the total number of abstractions, applications and the sum of all the de Bruijn
index sizes. Formally, we set

|〈M, e〉| = |M |+ |e| |c : e| = |c|+ |e| |�| = 0 .

I Example 8. The following two tables list the first few plain environments and closures.

size environments total
0 � 1
1 〈0,�〉 : � 1

〈0,�〉 : 〈0,�〉 : �
2 〈0, 〈0,�〉 : �〉 : � 4

〈λ0,�〉 : �, 〈1,�〉 : �

size closures total
0 0
1 〈0,�〉 1

〈0, 〈0,�〉〉
2 〈λ0,�〉 〈1,�〉 3

By analogy with the notation L∞ for the set of plain λ-terms, we write E∞ and C∞ to denote
the class of plain environments and closures, respectively. Reformulating (5) we can now
give a formal specification for both E∞ and C∞ as follows:

E∞ = C∞ : E∞ | �
C∞ = 〈L∞, E∞〉 . (17)

In such a form, both classes E∞ and C∞ become amenable to the process of singularity
analysis. In consequence, we obtain the following asymptotic approximation for the number
of plain environments and closures.

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

M. Bendkowski and P. Lescanne 11:9

I Theorem 9. The numbers en and cn of plain environments and closures of size n, respect-
ively, admit the following asymptotic approximations:

en ∼ Ce · ρ−nn−3/2 and cn ∼ Cc · ρ−nn−3/2 (18)

where

Ce =

√
5
47
(
109 + 35

√
545
)

8
√
π

.= 0.699997,

Cc =

√
10(48069

√
5−10295

√
109)

65
√

109−301
√

5
√
π
(
77− 3

√
545
) .= 0.174999 (19)

and

ρ = 1
10

(
25−

√
545
)
.= 0.165476 giving ρ−n

.= 6.04315n. (20)

Proof. Consider generating functions E∞(z) and C∞(z) associated with respective counting
sequences, i.e. the sequence (en)n of plain environments of size n and (cn)n of plain closures
of size n. Based on the specification (17) for E∞ and C∞ and the assumed size notion, we
can write down the following system of functional equations satisfied by E∞(z) and C∞(z):

E∞(z) = C∞(z)E∞(z) + 1
C∞(z) = L∞(z)E∞(z). (21)

Next, we solve (21) for E∞(z) and C∞(z). Though (21) has two formal solutions, the
following one is the single one yielding analytic generating functions with non-negative
coefficients:

E∞(z) =
1−

√
1− 4L∞(z)

2L∞(z) and C∞(z) = 1
2

(
1−

√
1− 4L∞(z)

)
. (22)

Since L∞(z) > 0 for z ∈ (0, ρL∞) there are two potential sources of singularities in (22).
Specifically, the dominating singularity ρL∞ of L∞(z), see (13), or roots of the radicand
expression 1− 4L∞(z). Therefore, we have to determine whether we fall into the so-called
sub- or super-critical composition schema, see [19, Chapter VI. 9]. Solving 1− 4L∞(z) = 0
for z, we find that it admits a single solution ρ equal to

ρ = 1
10

(
25−

√
545
)
.= 0.165476 . (23)

Since ρ < ρL∞ the outer radicand carries the dominant singularity ρ of both E∞(z) and C∞(z).
We fall therefore directly into the super-critical composition schema and in consequence
know that near ρ both E∞(z) and C∞(z) admit Newton-Puiseux expansions in form of

E∞(z) = aE∞ + bE∞

√
1− z

ρ
+O

(∣∣∣∣1− z

ρ

∣∣∣∣)
and

C∞(z) = aC∞ + bC∞

√
1− z

ρ
+O

(∣∣∣∣1− z

ρ

∣∣∣∣) (24)

FSCD 2018

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

11:10 Counting Environments and Closures

with aE∞ , aC∞ > 0 and bE∞ , bC∞ < 0. At this point, we can apply the standard function
scale, see Theorem 4, to the presentation of E∞(z) and C∞(z) in (24) and conclude that

[zn]E∞(z) ∼ CE∞ρ−nn−3/2 and [zn]C∞(z) ∼ CC∞ρ−nn−3/2 (25)

where CE∞ = bE∞
Γ(− 1

2)
and CC∞ = bC∞

Γ(− 1
2)

, respectively, with Γ(− 1
2) = 2

√
π. In fact,

reformulating (22) so to fit the Newton-Puiseux expansion forms (24) we find that

aE∞ = 2, bE∞ = −1
4

√
5
47

(
109 + 35

√
545
)

(26)

and

aC∞ = 1
2 , bC∞ =

2
√

10(48069
√

5−10295
√

109)
65
√

109−301
√

5

3
√

545− 77
(27)

Numerical approximations of CE∞ = bE∞
Γ(− 1

2)
and CC∞ = bC∞

Γ(− 1
2)

yield the declared asymp-

totic behaviour of (en)n and (cn)n, see (18). J

Let us notice that as both generating functions E∞(z) and C∞(z) are algebraic, they are
also holonomic (D-finite), i.e. satisfy differential equations with polynomial (in terms of z)
coefficients. Using the powerful gfun library for Maple [34] one can automatically derive
appropriate holonomic equations for E∞(z) and C∞(z), subsequently converting them into
linear recurrences for sequences (en)n and (cn)n.

I Example 10. We restrict the presentation to the linear recurrence for the number of plain
environments, omitting for brevity the, likely verbose, respective recurrence for plain closures.
Using gfun we find that en satisfies the recurrence of Figure 2. Despite its appearance, this
recurrence is an efficient way of computing en. Indeed, holonomic specifications for C∞(z)
and E∞(z) allow computing the coefficients [zn]C∞(z) and [zn]E∞(z) using a linear number
of arithmetic operations, as opposed to a quadratic number of operations as following their
direct combinatorial specification. Let us remark that the computations involved operate on
large, having linear in n space representation, integers. For instance, e1000 has about 600
digits. In consequence, single arithmetic operations on such numbers cannot be performed in
constant time.

I Remark. The analytic approach utilising generating functions exhibits an important benefit
in the context of generating random instances of plain environments and closures. With
analytic generating functions at hand and effective means of computing both [zn]E∞(z) and
[zn]C∞(z), it is possible to design efficient samplers, constructing uniformly random (condi-
tioned on the outcome size n) structures of both combinatorial classes. For instance, using
holonomic specifications it becomes possible to construct exact-size samplers following the
so-called recursive method of Nijenhuis and Wilf, see [31, 20]. Moreover, since corresponding
generating functions are analytic, it is possible to design effective Boltzmann samplers [17],
either in their approximate-size variant constructing structures within a structure size inter-
val [(1− ε)n, (1 + ε)n] in time O(|ω|) where ω is the outcome structure, or their exact-size
variants running in time O(n2). Remarkably, both sampler frameworks admit effective tuning
procedures influencing the expected internal shape of constructed objects, e.g. frequencies of
desired sub-patterns [5]. With the growing popularity of (semi-)automated software testing

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

M. Bendkowski and P. Lescanne 11:11

(125n3 − 125n) en +
(−475n3 − 150n2 + 325n) en+1 +
(−1625n3 − 13650n2 − 29125n− 17100) en+2 +
(5925n3 + 65550n2 + 204825n+ 190800) en+3 +
(−10950n3 − 149850n2 − 609000n− 744300) en+4 +
(43599n3 + 638460n2 + 3028701n+ 4633680) en+5 +
(−97781n3 − 1680378n2 − 9481237n− 17550960) en+6 +
(122749n3 + 2388066n2 + 15211685n+ 31648968) en+7 +
(−184402n3 − 3954630n2 − 27717140n− 63149544) en+8 +
(280081n3 + 6826380n2 + 54868451n+ 145130568) en+9 +
(−205649n3 − 5654610n2 − 51851989n− 158722620) en+10 +
(37439n3 + 1339686n2 + 16635271n+ 70682784) en+11 +
(−68686n3 − 3028038n2 − 43616336n− 205972920) en+12 +
(222029n3 + 9258780n2 + 128417911n+ 592399800) en+13 +
(−241115n3 − 10519830n2 − 152823475n− 739190880) en+14 +
(134151n3 + 6201222n2 + 95476551n+ 489605640) en+15 +
(−42231n3 − 2067834n2 − 33729375n− 183277332) en+16 +
(7470n3 + 386418n2 + 6659316n+ 38233296) en+17 +
(−678n3 − 36972n2 − 671670n− 4065240) en+18 +
(24n3 + 1380n2 + 26436n+ 168720) en+19 = 0.

e0 = 1,
e1 = 1,
e2 = 4,
e3 = 17,
e4 = 77,
e5 = 364,
e6 = 1776,
e7 = 8881,
e8 = 45296,
e9 = 234806,

e10 = 1233816,
e11 = 6558106,
e12 = 35202448,
e13 = 190568779,
e14 = 1039296373,
e15 = 5704834700,
e16 = 31494550253,
e17 = 174759749005,
e18 = 974155147162.

Figure 2 Linear recurrence defining en with corresponding initial conditions.

techniques, see [12], combinatorial samplers for environments and closures exhibit potential
applications in testing normalisation frameworks and abstract machines implementations,
such as the Krivine machine. We briefly remark that randomly generated λ-terms already
proved useful in finding optimisation bugs in compilers of functional programming languages,
see [32]. Our prototype samplers for environments and closures, within above sampler
frameworks, are available at Github4.

6 Counting closed closures

In this section we address the problem of counting so-called closed closures5. A closure is
said to be closed if it consists of an m-open term associated with an environment of length
m made itself out of closed closures. Note that such closures correspond to not yet fully
evaluated m-open λ-terms. With such a description, the set Clos0 of closed closures can be
given using the following combinatorial specification:

Clos0 ::= L0×� | L1×〈Clos0〉 | L2×〈Clos0, Clos0〉 | L3×〈Clos0, Clos0, Clos0〉 | · · · (28)

4 https://github.com/PierreLescanne/CountingAndGeneratingClosuresAndEnvironments
5 We acknowledge that speaking of closed closures is a bit odd, however terms “closure” and “closed”
form a consecrated terminology that we merely associate together.

FSCD 2018

https://github.com/PierreLescanne/CountingAndGeneratingClosuresAndEnvironments

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

11:12 Counting Environments and Closures

I Example 11. The following table lists the first few closed closures.

size closures total
0, 1 0
2 〈λ0,�〉 1
3 〈λλ0,�〉 〈0, 〈λ0,�〉〉 2

〈λλλ0,�〉 〈λλ1,�〉 〈λ(00),�〉
4 〈λ0, 〈λ0,�〉〉 〈0, 〈λλ0,�〉〉 〈0, 〈0, 〈λ0,�〉〉〉 6

Establishing the asymptotic growth rate of the sequence (c0,n)n corresponding to closed
closures of size n poses a considerable challenge, much more involved than its plain counterpart.
In the following theorem we show that there exists two constants ρ, ρ < ρL∞ such that

lim
n→∞

ρ−n

c0,n
= 0 and lim

n→∞

c0,n
ρ−n

= 0. In other words, the asymptotic growth rate of (c0,n)n is

bounded by two exponential functions of n.

I Theorem 12. There exist ρ < ρ satisfying ρ < ρ < ρL∞ and functions θ(n), κ(n) satisfying
lim sup
n→∞

θ(n)1/n = lim sup
n→∞

κ(n)1/n = 1 such that for sufficiently large n we have ρ−nθ(n) <

c0,n < ρ−nκ(n).

Proof. Let us start with the generating function C0(z) associated with closed closures Clos0.
Note that from the specification (28) C0(z) is implicitly defined as

C0(z) =
∑
m≥0

Lm(z)C0(z)m. (29)

We can therefore identify a closed closure c with a tuple (t, c1, . . . , cm) where m ≥ 0, t is an
m-open λ-term and c1, . . . , cm are closed closures themselves. We proceed with defining two
auxiliary lower and upper bound classes C0(z) and C0(z) such that [zn]C0(z) ≤ [zn]C0(z) ≤
C0(z) for all n. Next, we establish their asymptotic behaviour and, in doing so, provide
exponential lower and upper bounds on the growth rate of closed closures.

We start with C0(z) =
∑
m≥0 L0(z)C0(z)m. Note that C0(z) is associated with closures

in which each term is closed, independently of the corresponding environment length. Hence,
as closed λ-terms are m-open for all m ≥ 0, we have [zn]C0(z) ≤ [zn]C0(z). Furthermore

C0(z) =
∑
m≥0

L0(z)C0(z)m = L0(z)
∑
m≥0

C0(z)m = L0(z)
1− C0(z) . (30)

Solving the above equation for C0(z) we find that C0(z) = 1
2

(
1−

√
1− 4L0(z)

)
. In such a

form, it is clear that there are two potential sources of singularities, i.e. the singularity ρL∞
of L0(z), see Theorem 7, or the roots of the radicand 1− 4L0(z). Since L0(z) is increasing
and continuous in the interval (0, ρL∞) we know that if L0(ρL∞) > 1

4 then there exists a
ρ < ρL∞ such that L0(ρ) = 1

4 . Unfortunately, we cannot simply check that L0(ρ) > 1
4 as

there exists no known method of evaluating L0(z), defined by means of an infinite system of
equations, at a given point. For that reason we propose the following approach.

Recall that a λ-termM is said to be h-shallow if all its de Bruijn index values are (strictly)
bounded by h, see [22]. Let L(h)

m (z) denote the generating function associated with m-open
h-shallow λ-terms. Note that L(h)

0 (z), i.e. the generating function corresponding to closed

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

M. Bendkowski and P. Lescanne 11:13

h-shallow λ-terms, has a finite computable representation. Indeed, we have

L
(h)
0 (z) = zL

(h)
1 (z) + zL

(h)
0 (z)L(h)

0 (z)

L
(h)
1 (z) = zL

(h)
2 (z) + zL

(h)
1 (z)L(h)

1 (z) + z

L
(h)
2 (z) = zL

(h)
3 (z) + zL

(h)
2 (z)L(h)

2 (z) + z + z2

. . .

L
(h)
h−1(z) = zL

(h)
h (z) + zL

(h)
h−1(z)L(h)

h−1(z) + z + z2 + · · ·+ zh−1

L
(h)
h (z) = zL

(h)
h (z) + zL

(h)
h (z)L(h)

h (z) + z + z2 + · · ·+ zh (31)

Consider m < h. Each m-open h-shallow λ-term is either (a) in form of λM where M is an
(m+ 1)-open h-shallow λ-term due to the head abstraction, (b) in form of MN where both
M and N are m-open h-shallow λ-terms, or (c) a de Bruijn index in the set {0, 1, . . . ,m− 1}.
When m = h, we have the same specification with the exception of the first summand zL(h)

h (z)
where, as we cannot exceed h, terms under abstractions are h-open, instead of (h+ 1)-open.

Using such a form it is possible to evaluate L(h)
0 (z) at each point z ∈ (0, ρ(h)) where

ρ(h) > ρL∞ is the dominating singularity of L(h)
0 (z) satisfying ρ(h) −−−→

h→∞
ρ, see [22]. Certainly,

each closed h-shallow λ-term is in particular a closed λ-term. In consequence, [zn]L(h)
0 (z) ≤

[zn]L0(z) for each n. Moreover, for all sufficiently large n we have [zn]L(h)
0 (z) < [zn]L0(z).

This coefficient-wise lower bound transfers onto the level of generating function values and
we obtain L(h)

0 (z) < L0(z). Following the same argument, we also have L(h)
0 (z) < L

(h+1)
0 (z)

for each h ≥ 1. We can therefore use L(h)
0 (z) to approximate L0(z) from below — the higher

h we choose, the better approximation we obtain. Using computer algebra software6 it is
possible to automatise the evaluation process of L(h)

0 (ρL∞) for increasing values of h and
find that for h = 153 we obtain

L
(153)
0 (ρL∞) .= 0.25000324068941554 . (32)

Hence indeed, the asserted existence of ρ < ρL∞ such that L0(ρ) = 1
4 follows (interestingly,

taking h = 152 does not suffice as L152
0 (ρL∞) < 1

4). We fall hence in the super-critical
composition schema7 and note that C0(z) admits a Newton-Puiseux expansion near ρ as
follows:

C0(z) = a0 − b0
√

1− z

ρ
+O

(∣∣∣∣1− z

ρ

∣∣∣∣) (33)

for some constants a0 > 0 and b0 < 0. Hence, [zn]C0(z) grows asymptotically faster than

ρ−nθ(n) where θ(n) =
b0

Γ(− 1
2)
n−3/2.

For the upper bound we consider C0(z) =
∑
m≥0 L∞(z)C0(z)m, i.e. the generating

function associated with closures in which all terms are plain (either closed or open),
independently of the constraint imposed by the corresponding environment length. Following
the same arguments as before, we note that [zn]C0(z) > [zn]C0(z). Now

C0(z) =
∑
m≥0

L∞(z)C0(z)m = L∞(z)
∑
m≥0

C0(z)m = L∞(z)
1− C0(z)

. (34)

6 https://github.com/PierreLescanne/CountingAndGeneratingClosuresAndEnvironments
7 Supercriticality ensures that meromorphic asymptotics applies and entails strong statistical regularities
(see [19] Section V.2 and Section IX.6).

FSCD 2018

https://github.com/PierreLescanne/CountingAndGeneratingClosuresAndEnvironments

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

11:14 Counting Environments and Closures

Solving the equation for C0(z) we find that C0(z) = 1
2

(
1−

√
1− 4L∞(z)

)
. Note that in

this case, we can easily handle the radicand expression 1 − 4L∞(z) and find out that, as
in the lower bound case, we are in the super-critical composition schema. Specifically, ρ =
1
10
(
25−

√
545
) .= 0.165476, cf. (20), is the dominating singularity of C0(z). In consequence,

C0(z) admits the following Newton-Puiseux expansion near ρ:

C0(z) = a0 − b0
√

1− z

ρ
+O

(∣∣∣∣1− z

ρ

∣∣∣∣) (35)

for some constants a0 > 0 and b0 < 0. In conclusion, [zn]C0(z) grows asymptotically slower

than (ρ)−nθ(n) where θ(n) = b0

Γ(− 1
2)
n−3/2, finishing the proof. J

With an implicit expression defining C0(z), see (29), efficient random generation of closed
closures poses a difficult task. Though we have no efficient Boltzmann samplers, it is possible
to follow the recursive method and an obtain exact-size samplers for a moderate range of
target sizes. We offer a prototype sampler of this kind, available at Github8.

7 Conclusions

We view our contribution as a small step towards the quantitative, average-case analysis
of evaluation complexity in λ-calculus. Using standard tools from analytic combinatorics,
we investigated some combinatorial aspects of environments and closures — fundamental
structures present in various formalisms dealing with normalisation in λ-calculus, especially
in its variants with explicit substitutions [28]. Though plain environments and closures
are relatively easy to count and generate, their closed counterparts pose a considerable
combinatorial challenge. The implicit and infinite specification of closed closures based on
closed λ-terms complicates significantly the quantitative analysis, namely estimating the
exponential factor in the asymptotic growth rate, or effectively generating random closed
closures. In particular, getting more parameters of the asymptotic growth will require more
sophisticated methods, like, for instance, the recent infinite system approximation techniques
of Bodini, Gittenberger and Gołębiewski [9].

References
1 Beniamino Accattoli and Ugo Dal Lago. (leftmost-outermost) beta reduction is invariant,

indeed. Logical Methods in Computer Science, 12(1), 2016. doi:10.2168/LMCS-12(1:
4)2016.

2 Martin Avanzini, Ugo Dal Lago, and Georg Moser. Analysing the complexity of functional
programs: higher-order meets first-order. In Kathleen Fisher and John H. Reppy, editors,
Proceedings of the 20th ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2015, Vancouver, BC, Canada, September 1-3, 2015, pages 152–164. ACM,
2015. doi:10.1145/2784731.2784753.

3 Martin Avanzini and Georg Moser. Closing the gap between runtime complexity and poly-
time computability. In Christopher Lynch, editor, Proceedings of the 21st International
Conference on Rewriting Techniques and Applications, RTA 2010, July 11-13, 2010, Edin-
burgh, Scottland, UK, volume 6 of LIPIcs, pages 33–48. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2010. doi:10.4230/LIPIcs.RTA.2010.33.

8 https://github.com/PierreLescanne/CountingAndGeneratingClosuresAndEnvironments

http://dx.doi.org/10.2168/LMCS-12(1:4)2016
http://dx.doi.org/10.2168/LMCS-12(1:4)2016
http://dx.doi.org/10.1145/2784731.2784753
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.33
https://github.com/PierreLescanne/CountingAndGeneratingClosuresAndEnvironments

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

M. Bendkowski and P. Lescanne 11:15

4 Maciej Bendkowski. Normal-order reduction grammars. J. Funct. Program., 27:e6, 2017.
doi:10.1017/S0956796816000332.

5 Maciej Bendkowski, Olivier Bodini, and Sergey Dovgal. Polynomial tuning of multi-
parametric combinatorial samplers. In Markus E. Nebel and Stephan G. Wagner, edit-
ors, Proceedings of the Fifteenth Workshop on Analytic Algorithmics and Combinatorics,
ANALCO 2018, New Orleans, LA, USA, January 8-9, 2018., pages 92–106. SIAM, 2018.
doi:10.1137/1.9781611975062.9.

6 Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, and Marek Zaionc. Combinatorics
of $$\lambda$$-terms: a natural approach. J. Log. Comput., 27(8):2611–2630, 2017. doi:
10.1093/logcom/exx018.

7 Maciej Bendkowski, Katarzyna Grygiel, and Marek Zaionc. On the likelihood of normaliza-
tion in combinatory logic. J. Log. Comput., 27(7):2251–2269, 2017. doi:10.1093/logcom/
exx005.

8 Olivier Bodini, Danièle Gardy, and Bernhard Gittenberger. Lambda-terms of bounded un-
ary height. In Philippe Flajolet and Daniel Panario, editors, Proceedings of the Eighth Work-
shop on Analytic Algorithmics and Combinatorics, ANALCO 2011, San Francisco, Califor-
nia, USA, January 22, 2011, pages 23–32. SIAM, 2011. doi:10.1137/1.9781611973013.3.

9 Olivier Bodini, Bernhard Gittenberger, and Zbigniew Gołębiewski. Enumerating lambda
terms by weighted length of their de bruijn representation. CoRR, abs/1707.02101, 2017.
URL: https://arxiv.org/abs/1707.02101.

10 Christine Choppy, Stéphane Kaplan, and Michèle Soria. Algorithmic complexity of term
rewriting systems. In Pierre Lescanne, editor, Rewriting Techniques and Applications,
2nd International Conference, RTA-87, Bordeaux, France, May 25-27, 1987, Proceed-
ings, volume 256 of Lecture Notes in Computer Science, pages 256–273. Springer, 1987.
doi:10.1007/3-540-17220-3_22.

11 Christine Choppy, Stéphane Kaplan, and Michèle Soria. Complexity analysis of
term-rewriting systems. Theor. Comput. Sci., 67(2&3):261–282, 1989. doi:10.1016/
0304-3975(89)90005-4.

12 Koen Claessen and John Hughes. Quickcheck: A lightweight tool for random testing of
haskell programs. In Proceedings of the Fifth ACM SIGPLAN International Conference on
Functional Programming, pages 268–279. ACM, 2000.

13 Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms, and Functional Pro-
gramming (2nd Ed.). Birkhauser Boston Inc., Cambridge, MA, USA, 1994.

14 Pierre-Louis Curien, Thérèse Hardin, and Jean-Jacques Lévy. Confluence properties of
weak and strong calculi of explicit substitutions. J. ACM, 43(2):362–397, 1996. doi:
10.1145/226643.226675.

15 René David, Katarzyna Grygiel, Jakub Kozik, Christophe Raffalli, Guillaume Theyssier,
and Marek Zaionc. Asymptotically almost all λ-terms are strongly normalizing. Logical
Methods in Computer Science, 9:1–30, 2013.

16 Nicolaas G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the Church-Rosser theorem. Indagationes
Mathematicae (Proceedings), 75(5):381–392, 1972.

17 Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltzmann
samplers for the random generation of combinatorial structures. Combinatorics, Probability
and Computing, 13(4-5):577–625, 2004.

18 Philippe Flajolet and Andrew M. Odlyzko. Singularity analysis of generating functions.
SIAM Journal on Discrete Mathematics, 3(2):216–240, 1990.

19 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University
Press, 1 edition, 2009.

FSCD 2018

http://dx.doi.org/10.1017/S0956796816000332
http://dx.doi.org/10.1137/1.9781611975062.9
http://dx.doi.org/10.1093/logcom/exx018
http://dx.doi.org/10.1093/logcom/exx018
http://dx.doi.org/10.1093/logcom/exx005
http://dx.doi.org/10.1093/logcom/exx005
http://dx.doi.org/10.1137/1.9781611973013.3
https://arxiv.org/abs/1707.02101
http://dx.doi.org/10.1007/3-540-17220-3_22
http://dx.doi.org/10.1016/0304-3975(89)90005-4
http://dx.doi.org/10.1016/0304-3975(89)90005-4
http://dx.doi.org/10.1145/226643.226675
http://dx.doi.org/10.1145/226643.226675

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry

an
d

Unp
ub

lis
he

d

Vers
ion

11:16 Counting Environments and Closures

20 Philippe Flajolet, Paul Zimmermann, and Bernard Van Cutsem. A calculus for the random
generation of labelled combinatorial structures. Theoretical Computer Science, 132(1):1–35,
1994.

21 Étienne Ghys. A singular mathematical promenade. Ecole Normale Supérieure, 2017. URL:
http://perso.ens-lyon.fr/ghys/promenade/.

22 Bernhard Gittenberger and Zbigniew Gołębiewski. On the number of lambda terms with
prescribed size of their de Bruijn representation. In 33rd Symposium on Theoretical Aspects
of Computer Science, STACS, pages 40:1–40:13, 2016.

23 Katarzyna Grygiel and Pierre Lescanne. Counting and generating terms in the binary
lambda calculus. J. Funct. Program., 25, 2015. doi:10.1017/S0956796815000271.

24 Donald E. Knuth. Mathematical Analysis of Algorithms, 2000. First chapter of [25].
25 Donald E. Knuth. Selected Papers on Analysis of Algorithms, volume 102 of CSLI Lecture

Notes. Stanford, California: Center for the Study of Language and Information, 2000.
26 Ugo Dal Lago and Simone Martini. On constructor rewrite systems and the lambda calculus.

Logical Methods in Computer Science, 8(3), 2012. doi:10.2168/LMCS-8(3:12)2012.
27 Peter J. Landin. The mechanical evaluation of expressions. The Computer Journal,

6(4):308–320, 1964. doi:10.1093/comjnl/6.4.308.
28 Pierre Lescanne. From λσ to λυ: A journey through calculi of explicit substitutions. In

Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 60–69. ACM, 1994.

29 Michel Mauny and Ascánder Suárez. Implementing functional languages in the categorical
abstract machine. In LISP and Functional Programming, pages 266–278, 1986.

30 John C. Mitchell. Concepts in Programming Language (1st Ed.). Cambridge University
Press, New York, NY, USA, 2002.

31 Albert Nijenhuis and Herbert S. Wilf. Combinatorial Algorithms. Academic Press, 2 edition,
1978.

32 Michał H. Pałka. Random Structured Test Data Generation for Black-Box Testing. PhD
thesis, Chalmers University of Technology, 2012.

33 Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput.
Sci., 1(2):125–159, 1975. doi:10.1016/0304-3975(75)90017-1.

34 Bruno Salvy and Paul Zimmermann. Gfun: a Maple package for the manipulation of
generating and holonomic functions in one variable. ACM Transactions on Mathematical
Software, 20(2):163–177, 1994.

35 Robert Sedgewick and Philippe Flajolet. An Introduction to the Analysis of Algorithms
(2nd Edition). Createspace Independent Pub, 2014.

36 Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. J. ACM, 51(3):385–463, 2004. doi:
10.1145/990308.990310.

37 Herbert S. Wilf. Generatingfunctionology. A. K. Peters, Ltd., 2006.

http://perso.ens-lyon.fr/ghys/promenade/
http://dx.doi.org/10.1017/S0956796815000271
http://dx.doi.org/10.2168/LMCS-8(3:12)2012
http://dx.doi.org/10.1093/comjnl/6.4.308
http://dx.doi.org/10.1016/0304-3975(75)90017-1
http://dx.doi.org/10.1145/990308.990310
http://dx.doi.org/10.1145/990308.990310

	Introduction
	A combinatoric approach to higher order rewriting systems
	Environments and closures
	De Bruijn notation
	Closures and `b-reduction

	Analytic tools
	Counting `l-terms

	Counting plain closures and environments
	Counting closed closures
	Conclusions

