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Abstract
Bi-Intuitionistic Linear Logic (BILL) is an extension of Intuitionistic Linear Logic with a par, dual to the
tensor, and subtraction, dual to linear implication. It is the logic of categories with a monoidal closed and
a monoidal co-closed structure that are related by linear distributivity, a strength of the tensor over the par.
It conservatively extends Full Intuitionistic Linear Logic (FILL), which includes only the par.

We give proof nets for the multiplicative, unit-free fragment MBILL-. Correctness is by local rewrit-
ing in the style of Danos contractibility, which yields sequentialization into a relational sequent calculus
extending the existing one for FILL. We give a second, geometric correctness condition combining Danos-
Regnier switching and Lamarche’s Essential Net criterion, and demonstrate composition both inductively
and as a one-off global operation.
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1 Introduction

Obtaining good proof-theoretic characterizations of FILL [17], intuitionistic linear logic with a “par”
connective dual to the tensor, and BILL, which further adds “subtract” dual to linear implication, has
proved difficult. The main challenge is in combining par, whose natural home is a multi-conclusion
calculus, and linear implication, which is most naturally expressed by a single-conclusion calculus.
The dual situation holds for tensor and subtraction (below on the right), where tensor naturally prefers
multiple assumptions, but subtraction a single assumption. These are the natural sequent rules:

Γ ` ∆ C D
Γ ` ∆ C℘D

Γ A ` B
Γ ` A(B

A B Γ ` ∆

A⊗B Γ ` ∆

D ` C ∆

D−C ` ∆

A system with the above rules, however, does not satisfy cut-elimination [22, 3]: the single-conclusion
and single-assumption rules for linear implication and subtraction are too restrictive. But their multi-
conclusion and multi-assumption variants,

Γ A ` B ∆

Γ ` A(B ∆

Γ D ` C ∆

Γ D−C ` ∆

are unsound: they collapse the logic into MLL, since mapping linear implication A( B onto A⊥ ℘ B
and subtraction D−C onto D⊗C⊥ preserves provability (in both directions) [6]. Intermediate ground
between these variants is found by annotating the rules with a relation between the antecedent and
the consequent, and requiring that the discharged assumption A in a rule introducing A( B is not
related to any additional conclusions ∆ (and dually for D −C). With this side-condition, and without
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10:2 Proof nets for BILL

describing the development of the relation R into S , the rules are as below. The sequent calculus (for
FILL) with relational annotation enjoys cut-elimination [4, 11].

Γ A `R B ∆

Γ `S A(B ∆
(A�R∆)

Γ D `R C ∆

Γ D−C `S ∆
(Γ�RC)

Traditionally, the sequent calculus is a meta-calculus, describing the construction of natural
deduction proofs. For linear logic, naturally described in sequent style, the question of what underlying
proof objects were constructed led to the development of proof nets [12]. In this paper we ask the
same question for BILL: what are the underlying, canonical proof objects of BILL?

Our answer is a notion of proof nets, presented as a graph-like natural deduction calculus, that
embodies the perfect duality between tensor and par, and between implication and subtraction. It
exposes the relational annotation of the sequent calculus as recording the directed paths through
the proof net constructed by the sequent proof. We give two correctness conditions: one by local
rewriting in the style of Danos contractibility [8] and the parsing approach of Lafont, Guerrini and
Masini [18, 14]; and a global, geometric criterion that combines Danos–Regnier switching [9] and
Lamarche’s essential net condition [19]. We introduce our proof nets with an example in Section 1.2.

We have aimed for canonical proof nets: those that factor out all sequent calculus permutations.
To this end we have restricted ourselves to the fragment MBILL−, multiplicative bi-intuitionistic
linear logic without units. MBILL with units, even though it omits negation, includes unit-only MLL,
where canonical proof nets are unavailable: the proof equivalence problem, which canonical proof
nets would solve efficiently, is PSPACE-complete [15].

1.1 Background and related work

In the late 1960s Lambek initiated the study of substructural logics, which restrict contraction and
weakening, through category theory and with a particular focus on non-commutative variants [20].
The central point of FILL, the relation between par and linear implication, was investigated in the
early 1980s by Grishin [13]. The advent of linear logic in the late 1980s [12] created an interest
also in intuitionistic variants. Schellinx observed that for a multi-conclusion sequent calculus with
single-conclusion( R rule, cut-elimination fails [22, p.555].

To obtain cut-elimination, Hyland and De Paiva formalize FILL through a sequent calculus
annotated by a term calculus [17]. The terms describe natural deduction derivations whose open
assumptions, identified by free variables in the terms, give a side-condition to a multi-conclusion
( R-rule similar to that of the current relational calculus. Unfortunately, as pointed out by Bierman,
the term assignment introduces spurious dependencies that break cut-elimination. Three solutions
to this problem were proposed: a modification of the term assignment by the first author, in private
communication to Hyland and Bierman (cfr. [1]); a different term assignment using pattern matching
by Bierman, [3]; and a sequent calculus with relational annotation by Braüner and De Paiva [4]. This
is the calculus we adopt here, extended with subtraction. Eades and De Paiva [11] later revisited
the term-annotated calculus, with the first author’s correction, to prove semantic correctness. In the
late 90s the first author developed proof nets for FILL (including the MIX rule) that sequentialize
into the term-annotated sequent calculus [1]. Around the same time Cockett and Seely gave a graph-
like natural deduction calculus for FILL, and for the variant of BILL corresponding to the plain,
un-annotated multi-conclusion sequent calculus, which collapses onto MLL [6].

Recently, Clouston, Dawson, Goré and Tiu gave annotation-free alternatives to sequent calculi, in
the form of deep-inference and display calculi for BILL that enjoy cut-elimination [5].
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G. Bellin & W. B. Heijltjes 10:3

1.2 Proof nets for MBILL- via contractibility

We will introduce our proof nets through an example. It is shown below, in two modes of repres-
entation. On the left, it is viewed as a dag-like natural deduction proof. It is built from links, the
equivalent of a natural deduction inference, shown as solid or dashed horizontal lines connecting
premises above to conclusions below. The bottom link in the example, labelled x, introduces a linear
implication, and as in natural deduction, closes the corresponding assumption by a matching link also
labelled x. The (green) links from negative to positive atomic formulas, a− to a+, are axiom links.

In a multiplicative linear logic such as MBILL−, each connective in the conclusion of a sequent
proof is introduced once, by exactly one proof rule; that is, connectives in the conclusion are 1–1
related to inferences in the sequent proof. Proof nets are similar: connectives in open assumptions
and conclusions correspond 1–1 to (non-axiom) links. Via this correspondence, proof nets can be
represented by only the sequent of open assumptions and conclusions, plus the axiom links, connected
to the atomic subformulas in the sequent. This gives the second representation below.

(a ℘ d)−

a− d−

(a( b)− a+ d+

b− c− (d − c)+

b+ c+

(b ℘ c)+

((a ( b)( b ℘ c)+

x

x

(a−℘ d−)−

((a+( b−)−( b+℘ c+)+ (d+− c−)+

We stress that these are two different representations of one and the same graphical object, and thus
the same proof net. Because the former is more explicit on logical inference, we choose it as our main
representation, and as the basis of our definitions (we could have chosen either). We make axiom
links explicit to emphasize the connection with the second presentation.

We may explicitly annotate formulae with their polarity, in the standard notion that reverses on
the left of an implication. In BILL, it also reverses on the right of a subtraction. In a proof net,
polarity is positive for conclusions and negative for assumptions, and indicates whether a formula is
being introduced (+) or eliminated (−). An axiom link indicates a change from an elimination phase
(above) to an introduction phase (below). In a sequent calculus, the negative formulae would be those
in the antecedent Γ of a sequent Γ ` ∆, and the positive those in the consequent ∆.

Figure 1 sequentializes the above example by contraction. It is initiated by giving an axiom for
each axiom link (matched by colouring). Contraction is driven by the coloured links; in the second
row, the links on a and b have contracted the(-elimination link between them, and the links on c and
d have contracted the −-introduction link. The corresponding sequent rules are added on the right.

The next step contracts both active links with the ℘-elimination link, and introduces an explicit
relation R between the premises and the conclusions of the resulting link. Its purpose is to maintain
the connectedness by directed (top-down) paths through the proof net. In this case, there was no
directed path from a( b to c or to d − c, and to reflect this in the link created by the contraction, the
relation R connects a( b only to b. In the third step, the ℘-introduction link is contracted. It uses a
dashed line because it is switched, and may only contract if both premises connect to the same link.

Preserving top-down connectedness is the key to showing the correctness of(-introduction links,
in the last step, which must (at least) fulfil the standard intuitionistic condition: all directed paths from
the discharged assumption to an (open) conclusion must pass through the discharging(-introduction
link (see [19]). The contraction step comes with the following side-condition, analogous to that of the
sequent rule: the assumption a( b may only be related by S to the premise of the(-introduction
link, b ℘ c, and not to other conclusions, here d − c. For simplicity we omit the annotation for the
final link again, as it is the full relation between premises and conclusions.

This concludes the example: the net contracts to a single link, and is thus correct.

FSCD 2018
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10:4 Proof nets for BILL

a ℘ d
a d

a( b a d
b c d − c
b c

b ℘ c
(a ( b)( b ℘ c

x

x

a ` a b ` b
a( b , a ` b

d ` d c ` c
d ` c , d − c

a( b , a ℘ d `R b , c , d − c
a( b , a ℘ d `S b ℘ c , d − c

a ℘ d ` (a( b)( b ℘ c , d − c

a ℘ d
a( b a d

b c d − c
b ℘ c

(a ( b)( b ℘ c

x

x

a ` a b ` b
a( b , a ` b

d ` d c ` c
d ` c , d − c

a( b , a ℘ d `R b , c , d − c
a( b , a ℘ d `S b ℘ c , d − c

a ℘ d ` (a( b)( b ℘ c , d − c

a( b a ℘ d
b c d − c

b ℘ c
(a ( b)( b ℘ c

x

x

R

a ` a b ` b
a( b , a ` b

d ` d c ` c
d ` c , d − c

a( b , a ℘ d `R b , c , d − c
a( b , a ℘ d `S b ℘ c , d − c

a ℘ d ` (a( b)( b ℘ c , d − c

a( b a ℘ d
b ℘ c d − c

(a( b)( b ℘ c

x

x

S

a ` a b ` b
a( b , a ` b

d ` d c ` c
d ` c , d − c

a( b , a ℘ d `R b , c , d − c
a( b , a ℘ d `S b ℘ c , d − c

a ℘ d ` (a( b)( b ℘ c , d − c

a ℘ d
(a( b)( b ℘ c d − c

a ` a b ` b
a( b , a ` b

d ` d c ` c
d ` c , d − c

a( b , a ℘ d `R b , c , d − c
a( b , a ℘ d `S b ℘ c , d − c

a ℘ d ` (a( b)( b ℘ c , d − c

R = { (a( b , b) , (a ℘ d , b) , (a ℘ d , c) , (a ℘ d , d − c) }
S = { (a( b , b ℘ c) , (a ℘ d , b ℘ c) , (a ℘ d , d − c) }

Figure 1 An example contraction and sequentialization sequence
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G. Bellin & W. B. Heijltjes 10:5

A `T A T =
A
A

Γ `R ∆ A A Γ′ `S ∆′

Γ Γ′ `T ∆ ∆′
T = R? A

A
? S

A B Γ `R ∆

A⊗B Γ `T ∆
T =

A⊗B
A B

?R
Γ `R ∆ A Γ′ `S ∆′ B

Γ Γ′ `T ∆ ∆′ A⊗B
T = (R∪S )? A B

A⊗B

C Γ `R ∆ D Γ′ `S ∆′

C℘D Γ Γ′ `T ∆ ∆′
T =

C℘D
C D

? (R∪S )
Γ `R ∆ C D
Γ `T ∆ C℘D

T = R?
C D
C℘D

Γ `R ∆ A B Γ′ `S ∆′

Γ A(B Γ′ `T ∆ ∆′
T = R? A(B A

B
? S

Γ A `R B ∆

Γ `T A(B ∆
A�R∆ T =

A
?R? B

A(B

Γ D `R C ∆

Γ D−C `T ∆
Γ�RC T =

D−C
D

?R?C Γ `R ∆ D C Γ′ `S ∆′

Γ Γ′ `T ∆ D−C ∆′
T = R? D

C D−C
? S

Figure 2 Relational sequent calculus for MBILL−

2 MBILL−

The language of MBILL− is given by the following grammar.

A, B,C F a | A ⊗ B | A( B | A ℘ B | A − B

We use a, b, c, . . . to range over propositional atoms. The connectives are tensor, (linear) implication,
par, and subtraction. The subformula occurrences of a formula have an implicit polarity + or −,
inherited from the parent formula but reversing to the left of an implication and to the right of a
subtraction: (A( B)+ induces A− and (A − B)+ induces B−, and similarly with + and − reversed.

Figure 2 gives the relational sequent calculus of Braüner and De Paiva [4], adapted for MBILL−
by introducing rules for subtraction, dual to implication. A sequent is of the form Γ `R ∆, where Γ

and ∆ are multisets of formulae and R ⊆ Γ × ∆ is a relation from Γ to ∆. (We assume that occurrences
of the same formula can be distinguished, for instance by naming them.)

The relational annotation maintains a notion of logical dependence between the formulas of a
sequent. Intuitively, it traces the subformula relation through a proof, and in addition connects across
axioms. An introduction rule for a linear implication A( B then requires that no formula other than
B depends on the assumption A. This is closely related to the correctness condition of Lamarche’s
essential nets [19] for intuitionistic linear logic: all paths from A must converge on A ( B. The
subtraction rule has a corresponding side-condition.

We use the following standard notation: relational composition R; S of R ⊆ Γ×∆ with S ⊆ ∆×Λ,
the identity relation IDΓ on a sequent Γ, and ARB for (A, B) ∈ R. We extend the latter by writing ΓR∆

if ARB for some A in Γ and B in ∆, and Γ�R∆ for the negation of this proposition. We further adopt a
useful notion of relational composition of Braüner and De Paiva [4]. The star-composition R ? S of
two relations R ⊆ Γ × (∆ ∪ ∆′) and S ⊆ (∆′ ∪ ∆′′) × Λ, where ∆, ∆′, and ∆′′ are pairwise disjoint, is

R ? S = (R ∪ ID∆′′ ) ; (ID∆ ∪ S ) ⊆ (Γ ∪ ∆′′) × (∆ ∪ Λ)

The above composition consists of three parts: R restricted to Γ × ∆, S restricted to ∆′′ × Λ, and R; S
restricted to Γ ×Λ. It is a relational equivalent of linear distributivity [7], and a generalization of both
union (if ∆′ is empty) and composition (if ∆ and ∆′′ are empty). For ease of presentation, we write Γ

∆

for the full relation Γ × ∆. Note that A stands for the empty relation from the empty sequent to A; it is
used, with (?)-composition, to restrict the domain of a relation by removing A.

FSCD 2018
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10:6 Proof nets for BILL

A+ B+

(A ⊗ B)+
⊗I

A−
x

...

B+

(A( B)+
(I,x

A+ B+

(A ℘ B)+
℘I B+

A− (B − A)+
−I

A−

A+
ax

(A ⊗ B)−

A− B−
⊗E

(A( B)− A+

B−
(E

(A ℘ B)−

A− B−
℘E

(B − A)−

B−
−E,x

...

A+
x

A+

A−
cut

Figure 3 Links for the construction of MBILL− proof nets.

3 Proof nets

We shall define our proof nets for MBILL− as a graph-like natural deduction calculus. We make
axioms and cuts explicit, as inference rules that only change the polarity of a formula. This gives a
closer connection with sequent calculus and traditional proof nets, and simplifies the definition of
contractibility. First we define the underlying graphs, or pre-nets; then we will introduce contractibility
as a correctness condition, and define our proof nets as the pre-nets satisfying contractibility.

I Definition 1 (Pre-nets). MBILL− pre-nets are built from the following notions.
Link: a node with n ≥ 0 premise ports and m ≥ 0 conclusion ports labelled with formulas
A1 . . . An and B1 . . . Bm and a possibly empty label `. A relational link is labelled with a relation
R ⊆ {A1, . . . , An} × {B1 . . . Bm}. A link is drawn as follows.

A1 . . . An

B1 . . . Bm
`

Edge: a connection from a premise port to a conclusion port labelled with the same formula, of
the same polarity.
Pre-net: an acyclic directed graph N = (V, E) with V a set of links as in Figure 3, and E a set of
edges such that no two edges connect to the same port, satisfying the following conditions. A
premise / conclusion port with no attached edge is an open assumption / conclusion. The(I /−E
links are in bijection with the closed assumption / conclusion links, defined by the variable labels
x in Figure 3. A relational pre-net may contain also relational links.

In Figure 3, note that the illustrations for(I and −E links each show two links: the(I link itself,
plus a closed assumption link; and the −E link plus a closed conclusion link.

Γ

∆
R

We abbreviate a pre-net with open assumptions Γ and open conclusions ∆ by a double-lined
link, as on the left. We may annotate it with a relation R that relates A in Γ to B in ∆ if (and
only if) there is a directed downward path from A to B.

3.1 Contractibility

Our correctness condition is in the style of Danos contractibility [8].1 Contractibility for MLL proof
nets is, in essence, top-down sequentialization [18, 14], starting from the axioms rather than the

1 The second author has also used the term coalescence for the generalization of contractibility that includes the
additives—but as these are not currently present, we feel it is more appropriate to use the terminology that was
established earlier.
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G. Bellin & W. B. Heijltjes 10:7

A
A

ax
ax
 A

A
A× A

R
Γ

∆ A Γ′
S

∆′

?
 

∆∩Γ′=∅

Γ Γ′
R?S

∆ ∆′
A
A

cut
cut
 A

A
A× A

A⊗ B
A B Γ

R
∆

⊗E
 

A⊗ B Γ
(A⊗B × A B)?R

∆

A B
A⊗ B

⊗I
 

A B
A B × A⊗B

A⊗ B

A( B A
B

(E
 

A( B A
A(B A × B

B

A
x

Γ
R

B
x

∆

A( B

(I
 
A�R∆

Γ
IDΓ ; R?(B × A(B)

A( B ∆

D℘C
D C

℘E
 

D℘C
D℘C × D C

D C

Γ
R

D C ∆

D℘C

℘I
 

Γ
R?(D C × D℘C)

D℘C ∆

D − C
x

D Γ
R

C
x

∆

−E
 
Γ�RC

D− C Γ
(D−C × D)?R ; ID∆

∆

D
C D−C

−I
 

D
D × C D−C

C D−C

Figure 4 Contraction rules

conclusion of a proof net. In our current natural deduction style, contraction is inside-out, from
axioms to assumptions and conclusions. Contracting a proof net corresponds to the construction of a
sequent proof or other inductive proof object. This can be made explicit by carrying the constructed
object as a label on the contracting links, which we will do in Section 4.

The links of a proof net being contracted correspond to sequents of the proof being constructed. As
such, we will be contracting relational links (see Definition 1), corresponding to relational sequents.

I Definition 2 (Contractibility). Contraction is the rewrite relation on relational pre-nets given by
the rewrite rules in Figure 4. Contraction is successful if it terminates with a single link. A pre-net
contracts, or is contractible, if it has a successful contraction path. It strongly contracts if every
contraction path is eventually successful.

I Definition 3 (Proof nets). A MBILL− proof net is a contractible MBILL− pre-net whose open
assumptions and conclusions have negative respective positive polarity.

An example contraction sequence was given in Figure 1 in the introduction. An example of how
contraction excludes incorrect nets is the following.

I Example 4. Below left is an incorrect pre-net. After several ax, ℘E, ⊗I and ? steps, we obtain the
pre-net below right, where R = { (a ℘ b , a) , (a ℘ b , b ⊗ c) , (c , b ⊗ c) }. Because of the relation
(a℘ b , b⊗ c) this prevents further contraction: there are two potential steps, a(I-step and a −E-step,
and for both the side-condition is not met.

a ℘ b c − (b ⊗ c)
a b c
a b c

(a ℘ b)( a b ⊗ c

x

y

x

y

c − (b ⊗ c)
a ℘ b c
a b ⊗ c

(a ℘ b)( a

x y

x y

R

FSCD 2018
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10:8 Proof nets for BILL

A `T A �⇒
A−

A+

Γ `R ∆ A A Γ′ `S ∆′

Γ Γ′ `T ∆ ∆′
�⇒

R
Γ

∆ A+

A− Γ′
S

∆′

A B Γ `R ∆

A⊗B Γ `T ∆
�⇒

A⊗ B
A B Γ

R
∆

Γ `R ∆ A Γ′ `S ∆′ B
Γ Γ′ `T ∆ ∆′ A⊗B

�⇒
R

Γ Γ′
S

∆ A B ∆′

A⊗ B

Γ `R ∆ C D
Γ `T ∆ C℘D

�⇒

Γ
R

D C ∆

D℘C

C Γ `R ∆ D Γ′ `S ∆′

C℘D Γ Γ′ `T ∆ ∆′
�⇒

C ℘D

R
Γ C C Γ′

S
∆ ∆′

Γ A `R B ∆

Γ `T A(B ∆
A�R∆ �⇒

A
x

Γ
R

B
x
∆

A( B

Γ `R ∆ A B Γ′ `S ∆′

Γ A(B Γ′ `T ∆ ∆′
�⇒

R
Γ

∆ A A( B
B Γ′

S
∆′

Γ D `R C ∆

Γ D−C `T ∆
Γ�RC �⇒

D − C
x

D Γ
R

C
x

∆

Γ `R ∆ D C Γ′ `S ∆′

Γ Γ′ `T ∆ D−C ∆′
�⇒

R
Γ

∆ D
D−C C Γ′

S
∆′

Figure 5 De-sequentialization

4 Sequentialization and de-sequentialization

To de-sequentialize a sequent proof to a proof net, intuitively, is to take each sequent rule, and separate
the logical inference (e.g. from A( B and A to B) from the context (Γ and ∆). We visualize this in
Figure 5, where the premises of each rule de-sequentialize to the given (double-lined) pre-nets.

I Definition 5. A sequent proof de-sequentializes (�⇒) to a proof net as illustrated in Figure 5.

I Proposition 6. The de-sequentialization of a sequent proof contracts.

Proof. By induction on the sequent proof. Following Figure 5, a de-sequentialization Γ

∆
R contracts

to the relational link Γ
∆

R. J

Sequentialization is by contraction. First, we introduce a notion of open proof, a sequent proof
from (open) premise sequents ` A and B`. We abbreviate an open proof by a double line, as below
left. The given open proof will result from contracting a pre-net with negative assumptions Γ− and
positive conclusions ∆+, plus positive assumptions A+

1 . . . A
+
n and negative conclusions B−1 . . . B

−
m,

below right. The domain and range of the annotating relation of a sequent are extended to include the
open permises: R ⊆ (Γ A1 . . . An) × (∆ B1 . . . Bm). The relation is otherwise constructed as before.

` A1 . . . ` An B1 ` . . . Bm `

Γ `R ∆

Γ− A+
1 . . . A

+
n

∆+ B−1 . . . B
−
m

R
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For sequentialization, we define a mapping from the contracting links of a proof net to sequent proofs.
For a star-composition,

R
Γ− A+

1 . . . A
+
n

∆+ B−1 . . . B
−
m C+ Γ′− A+

n+1 . . . A
+
p S

∆′+ B−m+1 . . . B
−
q

?
 

Γ− Γ′− A+
1 . . . A

+
p R?S

∆+ ∆′+ B−1 . . . B
−
q

if the links in the redex map onto the open proofs

Π =
` A1 . . . ` An B1 ` . . . Bm `

Γ `R ∆ C
Φ =
`C ` An+1 . . . ` Ap Bm+1 ` . . . Bq `

Γ′ `S ∆′

then the contractum is mapped onto the open proof

` A1 . . . ` Ap B1 ` . . . Bq `

Γ Γ′ `R?S ∆ ∆′

obtained by replacing the open premise `C of Φ with the open proof Π, and adding the conclusions Γ

and ∆ to each inference from `C down to the conclusion of Φ.
To the contractum of the steps ax, cut, ⊗I,(E, ℘E, −I we assign the respective proofs:

A ` A
` C C `

`

` A ` B
` A ⊗ B

` A B `
A( B `

C ` D `
C ℘ D `

` C D `
` C − D

To the remaining steps we assign proofs as follows, where Γ = Γ− A+
1 . . . A

+
n and ∆ = ∆′ B−1 . . . B

−
m.

A⊗ B
A B Γ

R
∆

⊗E
 

A⊗ B Γ
(A⊗B × A B)?R

∆

` A1 . . . ` An B1 ` . . . Bm `

A B Γ′ `R ∆′

A ⊗ B Γ′ `T ∆′

A
x

Γ
R

B
x

∆

A( B

(I
 
A�R∆

Γ
IDΓ ; R?(B × A(B)

A( B ∆

` A1 . . . ` An B1 ` . . . Bm `

Γ′ A `R B ∆′

Γ′ `T A(B ∆′
A�R∆′

Γ
R

D C ∆

D℘C

℘I
 

Γ
R?(D C × D℘C)

D℘C ∆

` A1 . . . ` An B1 ` . . . Bm `

Γ′ `R C D ∆′

Γ′ `T C ℘ D ∆′

D − C
x

D Γ
R

C
x

∆

−E
 
Γ�RC

D− C Γ
(D−C × D)?R ; ID∆

∆

` A1 . . . ` An B1 ` . . . Bm `

Γ′ D `R C ∆′

Γ′ D−C `T ∆′
Γ′�RC

Finally, recall that a proof net has only negative assumptions and positive conclusions. If it contracts
to a single link, this link maps to a regular (relational) sequent proof, without open premises.

I Definition 7 (Sequentialization). A proof net sequentializes to a proof Π if it contracts to a single
link that maps onto Π.

I Proposition 8. The de-sequentialization of a sequent proof Π sequentializes to Π.

Proof. By induction on the sequent proof. Following Figure 5, a de-sequentialization Γ

∆
R of Π

contracts to the relational link Γ
∆

R mapping to Π. J
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10:10 Proof nets for BILL

5 A geometric characterization

In this section we give a geometric correctness condition for MBILL− proof nets, and demonstrate
that a pre-net contracts if and only if it is correct. The condition has two components: a switching
condition in the style of Danos and Regnier [9] that integrates the condition on Lamarche’s essential
nets [19], and a bi-functionality condition that further refines the essential net condition. We begin
by giving the necessary definitions.

I Definition 9 (Switching). In a pre-net N:
Switched / solid the switched links are ℘I, ⊗E,(I, and −E; other links are solid. A switched edge

is one connecting to an auxiliary port of a switched link or to a closed assumption or conclusion
link; other edges are solid.

Targets The targets of a switched link are as follows:
the targets of a ℘I or ⊗E link are the two links connected by a switched edge;
the targets of a(I link A( B are the link connected to the auxiliary port B plus all links on a
directed downward path starting from the associated closed assumption link A, but not passing
through A( B;
the targets of a −E link D −C are the link connected to the auxiliary port D plus all links on
a directed downward path ending at the associated closed conclusion link C, but not passing
through D −C.

Switching graph A switching graph G for N is an undirected graph (V, E) whose vertices V are
the links of N, and whose edges E connect:

any two links connected by a solid edge in N;
any switched link to exactly one of its targets.

Switching condition a pre-net satisfies the switching condition if every switching graph is acyclic
and connected.

I Definition 10 (Bi-functionality). A pre-net satisfies the bi-functionality condition if
a directed path from a closed assumption x to an open conclusion passes through(I, x;
a directed path from an open assumption to a closed conclusion y passes through −E, y;
a directed path from a closed assumption x to a closed conclusion y passes through(I, x or −E, y.

I Remark. Closer observation will reveal that the first two components of the bi-functionality
condition are equivalent to assuming an implicit ℘I-link connecting all open conclusions, and a
⊗E-link connecting open assumptions. The third component is equivalent to considering a closed
assumption x and its implication introduction link(I, x to be one and the same link for the purpose
of the switching graph (though not for downward reachability).

I Definition 11 (Geometric correctness). A pre-net N is geometrically correct if it satisfies both
the switching condition and the bi-functionality condition.

A switching path is an undirected path in a switching graph G, which we will indicate by ( G ).
A single, switched edge will be written ( G ), and we may omit the superscript if G is understood. For
simplicity, we will refer to a link by its principal formula when indicating switching paths. For a link
A and switched link B in a switching graph G, write A �G B if A is on a switching path between two
targets B1 and B2 of B, i.e. if there is a switching path B1

G A G B2.

I Definition 12. A link A is in scope of a switched link B, written A � B, if A �G B for some G.
The scope of a link B is the set {A | A � B}.

We take the scope relation (�) as ranging over all links, though note that for a solid link B there
is never any A � B.
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I Lemma 13. In a pre-net satisfying the switching condition, (�) is a strict partial order.

Proof. Irreflexivity: A��� A. Immediate, since a switching path A1 A A2 (with A switched
to A2) creates a cycle A1 A A1 by switching A to A1.

Transitivity: if A � B� C then A � C. Let B be a switched link with jump targets B1, B2, and
B3, and C a switched link with targets C1 and C2. Let A � B� C be witnessed by switching graphs
G and H, so that A �G B�H C, via the following paths.

B2
G A G B3 C1

H B1
H B H C2

We allow the possiblity that B1 is the same as either of B2 and B3, as is necessarily the case for a
binary switched link. First, we create a switching K which agrees with H everywhere except the links
on the below path, where it agrees with those links.

B B2
G A G B3

Crucially, no other path in G from B may connect to the above path, and so any path in K not ending
with a switched edge of B must agree with H. In particular this includes the path B C2. Moreover,
in H no path from the principal port of B reaches C1, since there is already a path C1 B1 B.
Then also in K no path from the principal port of B, which must all agree with H, can reach C1.
Instead, C1 and B must then be connected as follows.

C1
K B2

K B

Let X be the link where this path first intersects the path B2
G A G B3, where K agrees with G;

without loss of generality, assume thats X comes before A. This gives the following.

C1
K X K B2 B2

K X K A K B3

Switching B to B3 we have the following path.

C1
K X K A K B3 B K C2

Then A � C, as required. J

Our notion of scope is related to the first author’s notion of loop for MLL nets with Mix [1]. It is
further closely related to the De Naurois–Mogbil correctness condition [10]. This uses the relation
(�G), over a fixed switching graph G. Unlike (�) the relation (�G) is not necessarily transitive. We
write (�∗G) for the transitive closure and (�n

G) for the n-fold relational composition,

A0 �
n
G An = A0 �G A1 �G · · · �G An .

I Proposition 14. In a pre-net satisfying the switching condition, A �∗G B if and only if A � B.

Proof. From left to right, A �G B implies A � B, and (�) is transitive. From right to left, we
proceed by induction on the distance between A and B in (�). First consider the case where A and
B are immediate neighbours (distance 1), i.e. there is no C such that A � C � B. Then there is a
path between the premises of B that does not contain any switched links. Whichever way G switches
on B, we have A �G B. In the case where there is a C such that A � C � B, by induction we have
A �∗G C and C �∗G B, and hence A �∗G B. J

The scope of a link A includes exactly those links that must be contracted before A can be
contracted itself. (We will use this to prove that a correct pre-net contracts, by demonstrating that any
link that is minimal in (�) may be contracted, as part of the proof of Theorem 16 below.) The scope

FSCD 2018
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10:12 Proof nets for BILL

of A then corresponds to the smallest open subproof of A in any sequentialization. In this way, the
notion of scope is also closely related to the standard notion of kingdom [2]: the kingdom kA of a
subformula A corresponds to the smallest subproof of A in any sequentialization.

For an MLL proof net, the kingdom kA is the smallest subgraph such that A ∈ kA and:
1. if B ∈ kA and B is in an axiom link with B⊥, then B⊥ ∈ kA;
2. if B ⊗C ∈ kA then B ∈ kA and C ∈ kA;
3. If B ℘C ∈ kA then kA includes the scope of B ℘C: if D � B ℘C then D ∈ kA.
Observe that (2) corresponds to the fact that a subproof containing B⊗C must contain also subproofs
for B and for C; however, an open subproof need not. Because scope is transitive, and because it does
not need to be closed under (2) like kingdoms, we may avoid an inductive definition. Interestingly,
this implies that (smallest) open subproofs are a geometric concept, not an inductive one.

We will now show that contractibility and geometric correctness are equivalent conditions. First,
we establish that if N contracts to M, then if either of N and M is geometrically correct, both are.
This is a straightforward induction on the contraction sequence.

(a)
R

Γ

∆ A Γ′
S

∆′

?
 

Γ Γ′
R?S

∆ ∆′
(b)

A
x

Γ
R

B
x

∆

A( B

(I
 
A�R∆

Γ
IDΓ ; R?(B × A(B)

A( B ∆

I Lemma 15. Contraction preserves and reflects geometric correctness.

Proof. We will treat the star-contraction rule (a) and the contraction rule for linear implication (b);
the other rules are similar, or trivial.

Let N  M by a ?-step. The composition R ? S ensures that directed paths are maintained
through the contraction step. It follows that the targets of any(I or −E link are the same in both N
and M, save that if one of both contracted links in N is a target then the resulting link in M is a target,
and vice versa. This leaves the geometry of the switching graphs in N and M unchanged.

Next, let N  M by a (I-step. Because of the side-condition A�R∆, the only target of the
link A( B is the contraction link R. It follows that there is a one-to-one correspondence between
switching graphs in N and in M, preserving their geometry. J

I Theorem 16. A pre-net N contracts if and only if it is geometrically correct.

Proof. From left to right, assume that N contracts. The end result, a single contracted link, is
geometrically correct. Since contraction reflects geometric correctness, by Lemma 15, by induction
on the contraction sequence N is geometrically correct.

From right to left, it must be shown that if N is geometrically correct, a contraction step applies.
As contraction preserves geometric correctness (Lemma 15), it then follows that N contracts, by
induction on its size.

Contraction steps on solid links have no side conditions, and the star-contraction rule (a) applies
to any adjacent relational links. Applying these steps first, we may assume that N consists solely of
relational links separated by switched links. Consider a switched link that is minimal in (�). We will
treat the case of a(I link A(B and show that a(I-step (b) applies; the other three cases are similar.

Let X be the link connected to the port A of the closed assumption of A(B, and Y the link
connected to the auxiliary port B of the link A(B. In any switching graph G the links X and Y must
be connected, and since both are targets of A(B, they cannot be connected through its principal port,
as this would violate irreflexivity of (�). Because A(B is minimal in (�) there can be no switched
link on the switching path X Y , and since relational links are not adjacent (they would have been
contracted), there can be only one. Then X = Y is the unique relational link to which both ports A
and B connect, as required by the(I contraction step (b).
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A B
A ⊗ B
A ⊗ B
A B

[⊗]
 

A B
A B

A
...
B

A( B
A( B A

B

x

x
[(]
 

A
A
...
B
B

A
A
A

ax

cut

[R]
 A

C D
C ℘ D
C ℘ D
C D

[℘]
 

C D
C D

D
C D − C

D − C
D
...
C

x

x

[−]
 

D
D
...
C
C

C
C
C

cut

ax

[L]
 C

Figure 6 Proof net normalization rules

Finally, we show that the side condition A�R∆ is satisfied. Suppose there is a port D in ∆ such that
ARD. By the bi-functionality condition D cannot be an open conclusion, and cannot connect to a
closed one. The link L connected at D must then be a switched link (since adjacent relational links
were assumed to have been contracted). Note that L is a target of A(B. If L is a ⊗E,(I, or ℘I link,
also at least one link connected at an auxiliary port of L (possibly X) is a target of A(B. This would
mean L � (A(B), contradicting the assumption that A(B was minimal. It follows that A�R∆, and a
(I-contraction step applies to A(B. J

To be effective, it is crucial to have strong contractibility, where any contraction path (eventually)
terminates with a single link. If only some paths would eventually be successful, an algorithm for
correctness would need to backtrack (or have a guaranteed strategy). Instead, we should be able to use
any contraction sequence, without the chance of failure. This is established by the following theorem.

I Theorem 17 (Strong contractibility). MBILL− proof nets are strongly contractible.

Proof. Since proof nets are correct (Theorem 16), and contraction preserves correctness (Lemma 15),
any contraction step yields a correct proof net, which must then contract (Theorem 16). J

6 Normalization

We give proof reduction as a graph-rewrite relation on pre-nets. There are six reduction steps, one
for each connective and two for axioms, given in Figure 6. Since proof nets strictly reduce in size,
termination is immediate. So is confluence: the only redexes that may overlap are [L] and [R], but
this critical pair converges trivially. A pre-net is in normal form if it has no cuts, and in expanded
normal form if in addition the formulas of axiom links are atomic. The unique expanded normal
form of a net N is denoted N↓. The example in the introduction is in expanded normal form.

I Theorem 18 (Normalization preserves correctness). A proof net reduces to a proof net.

Proof. By inspection of the normalization steps, geometric correctness is preserved. J

6.1 One-step composition

Proof nets in expanded normal form have a compact alternative representation. In a purely multiplic-
ative logic such as MBILL−, a proof (or proof net) has exactly one rule (or link) for every connective

FSCD 2018
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10:14 Proof nets for BILL

in the conclusion sequent. Identifying links with connectives, we can display a proof net by drawing
its open assumptions (above) and conclusions (below), and connecting these with the axiom links.
An example was given in the introduction; here is another.

a
a ( b a

b
b

(a( b)( b ℘ c a ( b
b ℘ c

b c
d b − d c
d

z

z

(a( b)( b ℘ c a( b

d b − d c

We will formalize such proof nets as the compact form of a net in expanded normal form. As in
classical and intuitionistic MLL [16], composition of compact forms in MBILL− is particularly nice:
it is path-composition along the axiom links of both nets, as connected through the formula along
which they are composed. This is demonstrated below. On the left are the net from the introduction,
in blue, and that from above in red (with the assumption a( b re-positioned on the left), with their
common open conclusion and assumption superimposed. Composing these nets along that common
formula gives the net below right.

a ℘ d

a( b (a( b)( b ℘ c d − c

d b − d c

a( b a ℘ d

d b − d c d − c

We will formalize this concisely, as follows.

I Definition 19. The compact form bNc = Λ : Γ ` ∆ of a pre-net N in expanded normal form
consists of the open assumptions Γ, the open conclusions ∆, and the axiom links Λ of N.

Given two compact forms bMc = ΛM : ΓM ` ∆M A+ and bKc = ΛK : A− ΓK ` ∆K , define their
composition along A as Λ : ΓM ΓK ` ∆M ∆K where Λ consists of all maximal paths in the undirected
graph formed by ΛM , ΛK , and connecting corresponding atoms in A+ and A−. Correspondingly for
(non-compact) pre-nets, the cut-composition along A of pre-nets M with open conclusion A+ and K
with open assumption A−, is the (disjoint) union of both graphs together with a cut-link with premise
A+ and conclusion A−.

I Theorem 20. If N is the cut-composition along A of proof nets M and K in expanded normal form,
then bN↓c is the composition along A of bMc and bKc.

Proof. By induction on the cut-formula. J
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10:16 Proof nets for BILL

A Relations with existing syntax.

Lamarche [19] (see also Murawski and Ong [21]) developed a system of essential nets for ILL where
nets are polarized, edges are directed and the polarization of links reflects the structure of ILL sequent
calculus inferences. Notice that a ℘− link is not switched and ℘+ links have a canonical right switch.
The links of polarized classical MLL− formuas correspond to the intuitionistic ILL− inferences in
red.

+ + −
��

−
��

− + + −
��

+
((

ax − − 66cut +

⊗+

]] AA

℘−

��
℘+

>>

⊗−

__

��
+

OO

− +

OO

−

⊗R ⊗L ( R ( L ax cut

I Definition 21. An essential net E is a structure satisfying the following conditions:
1. (acyclicity) there is no cycle of directed edges in E;
2. (functionality of implications) for every ℘+ link with premises A− and B+, every directed path

from (the only positive) conclusion of E to A− passes through B+.
Lamarche proves that every correct proof net can be sequentialized into an ILL sequent derivation.

IExample 22. Essential net for q ⊗ (q( r) ` (r ( p)( p, where X = q ⊗ (q( r) and Y = (r ( p)( p.

R

ax ax ax

q−
��

q+

oo

bb r−
��

}}
r+

oo

p−
��

p+

oo

==

⊗− ⊗−

aa
||

℘−
��

!! L1 ||
℘+

L2

OO

X Y

In order to extend the above representation to FILL− and BILL− we may add links for intuitionistic
par and subtraction, below left. However, in this extension it is no longer possible to verify the
acyclicity condition on directed paths. There is no directed cycle in the pre-net below right:

+ + −
��

−
��

+ −
~~

−
!!

+

℘+ +

`` >>

⊗− −

��
⊗+ −

``

℘− +

��
+

OO

− +

OO

−

℘R ℘L −R −L

ax

ax

B−
##

��
A−

{{

��
A+

oo

B+

oo

⊗− −

��
⊗+

aa ==

OO

A solution is first test the MLL− acyclicity and connectedness condition of undirected DR-graphs
with switchings on par-like links, namely, links representing MBILL− ⊗L, ℘R (for( R and −L the
switching is canonical), and then test a specific correctness condition, the bifunctionality condition on
( R and −L.

The first author [1] sequentializes proof nets for FILL into Hyland and De Paiva’s labelled sequent
calculus.

I Definition 23. A proof net R for FILL- is a polarized MLL- structure satisfying the following
conditions:
1. (DR condition) for every switching s, sR is acyclic and connected;
2. (functionality of implications) for every ℘+ link with premises A− and B+, and conclusion (A℘B)+

every directed path from any positive conclusion X+ of R to A− passes through (A℘B)+.
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To prove sequentialization the following lemma is needed:

Lemma. LetD be a labelled sequent calculus derivation of S and letD− be the polarized proof net
resulting from de-sequentializingD−. Then x : A occurs in t : B in some sequent ofD iff there is a
directed path from (B′)+ to (A′)− in D−, where (B′)+ and (A′)− are the translations of B and A in
polarized MLL.

I Example 24.

R

ax ax ax
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oo
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//
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oo

==

⊗+ ⊗−−
## zz
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℘+
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OO

X Y

Here X = q( (q ⊗ r), Y = (r℘p)( p and there is a directed path from X to the premise r℘p of Y against the
functionality of implication. In the following sequent derivation

y : q ` y : q z : r ` z : r
y : q, z : r ` y ⊗ z : q ⊗ r x : p ` x : p

v : r℘p, y : q ` let v be zr − in y ⊗ z : q ⊗ r, let v be − x in x : p
( Rv : r℘p ` λy.let v be zr − in y ⊗ z : q( q ⊗ r, let v be − xp in x : p
( R

` λy.let v be zr − in y ⊗ z : q( q ⊗ r, λv.let v be − xp in x : (r℘p)( p

the last inference( R is incorrect because v still occurs free in the succedent.

FSCD 2018
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