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Abstract
Prefix-constrained rewriting is a strict extension of context-sensitive rewriting. We study the
confluence of prefix-constrained rewrite systems, which are composed of rules of the form L : l→ r

where L is a regular string language that defines the allowed rewritable positions. The usual
notion of Knuth-Bendix’s critical pair needs to be extended using regular string languages, and
the convergence of all critical pairs is not enough to ensure local confluence. Thanks to an
additional restriction we get local confluence, and then confluence for terminating systems, which
makes the word problem decidable. Moreover we present an extended Knuth-Bendix completion
procedure, to transform a non-confluent prefix-constrained rewrite system into a confluent one.
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1 Introduction
Term rewriting is a rule-based formalism that can be used to study properties of functional
programs, security protocols, musical rhythmics,... More generally, it provides a finite
abstraction of a system whose configurations are represented by ranked terms. In this
framework, and also to ensure the termination of rewrite computations, it is often necessary
to restrict the possible rewrite positions, using strategies, or by allowing only some redex
positions. In context-sensitive rewriting [10], some arguments of a function symbol may be
defined as being non-rewritable. Prefix-constrained rewriting [8] is an extension of context-
sensitive rewriting, where rewritable positions are defined by a regular string language that
indicates the allowed prefixes.

Given a term t, a normal form of t is an irreducible term (denoted t↓) obtained by
rewriting t. Termination of a rewrite relation →R ensures the existence of normal forms,
whereas confluence ensures their uniqueness. Together, termination and confluence ensure
that the word problem is decidable, because t =R t′ is equivalent to t↓= t′ ↓. On the
other hand, from a functional programming point of view, termination ensures that any
program run will terminate, and confluence ensures that all functions are deterministic, i.e.
each function call yields at most one result. These properties have also been addressed for
context-sensitive rewriting ([5] for termination and [11] for confluence). On the other hand,
the termination of prefix-constrained rewriting has been addressed in [1]. Both [5] and [1]
consist in transforming the context-sensitive or prefix-constrained rewrite system into an
ordinary one by a termination-preserving transformation, and studying the termination of
the ordinary rewrite system.

In this paper, we study the confluence of prefix-constrained rewrite systems. In contrast
to ordinary rewriting, prefix-constrained rewriting (and context-sensitive rewriting) is not
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6:2 Confluence of Prefix-Constrained Rewrite Systems

closed under context application, which is a major difference. This is why the usual notion
of Knuth-Bendix’s critical pair needs to be extended (using regular string languages), and
the convergence of all critical pairs is not enough to ensure local confluence. Thanks to an
additional restriction we get local confluence, and then confluence for terminating systems,
which makes the word problem decidable. Moreover we present an extended Knuth-Bendix
completion procedure, to transform a non-confluent prefix-constrained rewrite system into a
confluent one.

The paper is organized as follows. The preliminaries are introduced in Section 2. Local-
confluence is studied in Section 3, and a comparison with [11] is given at the end of the
section. The operational point of view to handle string languages is given in Section 4. An
extended Knuth-Bendix completion procedure is presented in Section 5. Further work is
outlined in Section 6.

2 Preliminaries

Term and Substitution. Consider a finite ranked alphabet Σ and a set of variables X.
Each symbol f ∈ Σ has a unique arity, denoted by ar(f). The notions of first-order term,
position and substitution are defined as usual. T (Σ, X) denotes the set of terms over Σ ∪X,
and T (Σ) denotes the set of ground terms (without variables) over Σ. For a term t, Var(t) is
the set of variables of t, Pos(t) is the set of positions of t, PosVar(t) is the set of variable
positions of t, PosNonVar(t) = Pos(t)\PosVar(t), and ε is the root position. For p ∈ Pos(t),
t(p) is the symbol of Σ∪X occurring at position p in t, and t|p is the subterm of t at position
p. For p, p′ ∈ Pos(t), p < p′ means that p occurs in t strictly above p′, whereas p ‖ p′ means
that p 6= p′ and p ≮ p′ and p′ ≮ p. The term t is linear if each variable of t occurs only once
in t. The term t[t′]p is obtained from t by replacing the subterm at position p by t′.

Given σ and σ′ two substitutions, σ ◦σ′ denotes the substitution such that for all variable
x, σ ◦ σ′(x) = σ(σ′(x)). The substitution σ is a unifier of the terms t and t′ if σ(t) = σ(t′).
If in addition, for all unifier θ of t and t′, there exists a substitution γ such that θ = γ ◦ σ,
then σ is called the most general unifier of t and t′ (denoted mgu(t, t′)). If it exists, the most
general unifier is unique up to a variable renaming.

Term Rewrite System (TRS). A rewrite rule is an oriented pair of terms, written
l→ r. We always assume that l is not a variable, and Var(r) ⊆ Var(l). A rewrite system R is
a finite set of rewrite rules. lhs stands for left-hand-side, rhs for right-hand-side. The rewrite
relation →R is defined as follows: t→R t

′ if there exist a non-variable position p ∈ Pos(t), a
rule l→ r ∈ R, and a substitution θ s.t. t|p = θ(l) and t′ = t[θ(r)]p (also denoted t→p

R t
′).

→+
R denotes the transitive closure of →R, and →∗R denotes the reflexive-transitive closure of
→R. t′ is a descendant of t if t→∗R t′. If I is a set of ground terms, R∗(I) denotes the set of
descendants of elements of I. The rewrite rule l→ r is left (resp. right) linear if l (resp. r) is
linear. R is left (resp. right) linear if all its rewrite rules are left (resp. right) linear. R is
linear if R is both left and right linear. l→ r is said collapsing if r is a variable.

Let l1 → r1 and l2 → r2 be rewrite rules such that l1|p and l2 are unifiable for some
p ∈ PosNonVar(l1). Let σ = mgu(l1|p, l2). Then the pair of terms (σ(r1), σ(l1)[σ(r2)]p) is
called critical pair1.

Context-Sensitive Term Rewrite System (CS-TRS) [4, 10]. A context-sensitive
rewrite relation is a sub-relation of the ordinary rewrite relation in which rewritable positions

1 As usual, we do not consider trivial critical pairs (σ(r1), σ(r1)) coming from the case where l1 = l2 and
r1 = r2 and p = ε.
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Nirina Andrianarivelo and Pierre Réty 6:3

are indicated by specifying arguments of function symbols. A mapping µ : Σ → P (IN)
is said to be a replacement map (or Σ-map) if µ(f) ⊆ {1, . . . , ar(f)} for all f ∈ Σ. A
context-sensitive term rewriting system (CS-TRS) is a pair R = (R,µ) composed of a TRS
and a replacement map. The set of µ-replacing positions2 Posµ(t) (⊆ Pos(t)) is recursively
defined: Posµ(t) = {ε} if t is a constant or a variable, otherwise Posµ(f(t1, . . . , tn)) =
{ε} ∪ {i.p | i ∈ µ(f), p ∈ Posµ(ti)}. The rewrite relation induced by a CS-TRS R is defined:
t ↪→R t′ if t→p

R t
′ for some p ∈ Posµ(t).

I Example 1. Let Σ = {f\2, g\2, a\0, b\0} and R = {a→ b} with µ(f) = {1} and µ(g) = {2}.
The positions allowed by µ in the term f(a, a) are written in bold. Then the only derivation
issued from this term is f(a, a) ↪→R f(b, a). On the other hand, consider t = f(g(a,a), a).
Then the only derivation issued from this term is f(g(a, a), a) ↪→R f(g(a, b), a).

String Language. Given an alphabet Σ, the set of all strings over Σ is denoted by Σ∗,
and ε denotes the empty string. Symbol ’.’ denotes the concatenation.

String Automaton. A finite string automaton is a 5-tuple A = (Σ, Q,QI , Qf ,∆) where
Q is a set of states, QI ⊆ Q is the set of initial states, Qf ⊆ Q is the set of final states, and
∆ ⊆ Q× Σ×Q is the set of transitions. The transition relation 7→∆ between elements of
Q×Σ∗ is defined as follows: for q, q′ ∈ Q, a ∈ Σ, w ∈ Σ∗, (q, a.w) 7→∆ (q′, w) iff (q, a, q′) ∈ ∆.
The reflexive-transitive closure of 7→∆ is written 7→∗∆. The language recognized by A is
LA = {w ∈ Σ∗ | ∃qI ∈ QI , ∃qf ∈ Qf , (qI , w) 7→∗∆ (qf , ε)}. A regular string language is a
set of strings recognized be some finite string automaton. It is well known that regular
languages are closed under union, intersection, complement, and membership and emptiness
are decidable.
A is said deterministic (resp. complete) if QI contains at most (resp. at least) one state,

and for each q ∈ Q and a ∈ Σ, there exists at most (resp. at least) one q′ ∈ Q such that
(q, a, q′) ∈ ∆. It is well known that every automaton can be determinized and completed
into an automaton that recognizes the same language. However the determinization step
is exponential in the number of states. Let us write Ā = (Σ, Q,QI , Q\Qf ,∆). If A is
deterministic and complete, it is well known that Ā is deterministic and complete, and
LĀ = Σ∗\LA, i.e. Ā recognizes the complement of the language of A.

Consider the automata A1 = (Σ, Q1, Q1
I , Q

1
f ,∆1) and A2 = (Σ, Q2, Q2

I , Q
2
f ,∆2).

Let us define the automaton A1 ∩ A2 = (Σ, Q1×Q2, Q1
I ×Q2

I , Q
1
f ×Q2

f , ∆1⊗∆2) with
∆1⊗∆2 = {((q1, q2), a, (q′1, q′2)) | (q1, a, q

′
1) ∈ ∆1 ∧ (q2, a, q

′
2) ∈ ∆2}. It is well known that

LA1∩A2 = LA1 ∩ LA2 , i.e. the automaton A1 ∩ A2 recognizes the language intersection.
Moreover if A1 and A2 are deterministic and complete, so is A1 ∩ A2.

Prefix Constrained Term Rewrite System (pCTRS) [8]. Prefix constrained re-
writing allows rewrite steps only at the positions p of t s.t. the path from the root of t and
p belongs to a given regular string language. More precisely, consider the set of directions
Dir(Σ) = {〈g, i〉 | g ∈ Σ, 1 ≤ i ≤ ar(g)}. For a variable x ∈ X, let path(x, ε) = ε and for
a term t = g(t1, . . . , t(ar(g))) ∈ T (Σ, X) and a position p, path(t, p) ∈ Dir(Σ)∗ is defined
recursively by:

path(g(t1, . . . , t(ar(g))), ε) = ε

path(g(t1, . . . , t(ar(g))), i.p) = 〈g, i〉.path(ti, p) with 1 ≤ i ≤ ar(g) and i.p ∈ Pos(t)

2 Also called positions allowed by µ.

FSCD 2018
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6:4 Confluence of Prefix-Constrained Rewrite Systems

A prefix constrained rewrite system is a finite set R of prefix constrained rewrite rules of
the form L : l→ r s.t. L ⊆ Dir(Σ)∗ is a regular string language over Dir(Σ), l ∈ T (Σ,X )\X ,
and r ∈ T (Σ, var(l)). A term t is rewritten to t′ in one step by a pCTRS R, denoted by
t ↪→R t

′, if there exist a prefix-constrained rewrite rule L : l→ r in R, a position p ∈ Pos(t)
s.t. path(t, p) ∈ L, and a substitution σ s.t. t|p = σ(l) and t′ = t[σ(r)]p. The reflexive-
transitive closure of ↪→R is denoted by ↪→∗R. The equality =R is the reflexive, symmetric
and transitive closure of the pCTRS rewriting ↪→R. A rewrite step t ↪→R t

′ at position p of t
by rewrite rule L : l→ r through substitution σ is noted t ↪→[p,L:l→r,σ] t

′. Let us note that
prefix-constrained rewriting is stable under instantiation.

I Example 2. Let Σ = {f\2, g\2, a\0, b\0} and R = {(〈f, 1〉.〈g, 2〉)∗ : a → b}. Let
t = f(g(a,a), a). Note that t(1.2) = a (in bold in t) and path(t, 1.2) = 〈f, 1〉.〈g, 2〉 ∈
(〈f, 1〉.〈g, 2〉)∗. Then this position can be reduced by prefix constrained rewriting, i.e.
t = f(g(a,a), a) ↪→R f(g(a, b), a), whereas the other occurrences of a are not reducible.
Note that the term f(a, a) is not reducible by the pCTRS R, whereas it is reducible by the
CS-TRS of Example 1. However the pCTRS R1 = {(〈f, 1〉|〈g, 2〉)∗ : a→ b} is equivalent to
the CS-TRS of Example 1.

I Remark. Context-sensitive rewriting is a particular case of prefix-constrained rewriting [8].

Confluence and Church-Rosser Property. For any binary relation S over the set
of terms, let S∗ be the reflexive-transitive closure of S, and =S be the reflexive-symmetric-
transitive closure of S.
We say that the pair of terms (t1, t2) converges for S (denoted t1 ↓S t2) if there exists a term
t′ such that t1 S∗ t′ and t2 S∗ t′.
S is said locally confluent if t S t1 and t S t2 implies t1 ↓S t2, for all terms t, t1, t2.
S is said confluent if t S∗ t1 and t S∗ t2 implies t1 ↓S t2, for all terms t, t1, t2.
S has the Church-Rosser property if t1 =S t2 implies t1 ↓S t2, for all terms t, t1, t2.

I Theorem 3. [3] Church-Rosser property and confluence are equivalent.

S is said terminating (or well-founded) if there is no infinite sequence of terms t1 S t2 S t3 S . . ..

I Theorem 4. (Newman’s lemma) [6] If S is locally confluent and terminating, then S is
confluent.

Now, let us consider a TRS R and the associated binary relation →R.

I Theorem 5. (Knuth-Bendix’s theorem) [9] R is locally confluent3 if and only if all critical
pairs of R are convergent.

3 Local Confluence of pCTRSs

When positions p1 and p2 are parallel, rewriting at p1 does not change the prefix of p2, and
conversely. Therefore such a peak converges as for ordinary TRSs.

I Lemma 6. Let R = {L1 : l1 → r1, L2 : l2 → r2} ∪R′ be a pCTRS.
If t ↪→[p1,L1:l1→r1,σ1] t1 and t ↪→[p2,L2:l2→r2,σ2] t2 and p1 ‖ p2,
then t1 ↪→[p2,L2:l2→r2,σ2] t3 and t2 ↪→[p1,L1:l1→r1,σ1] t3.

3 I.e. →R is locally confluent.
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Proof. Since p1||p2, we have t1|p2 = t|p2 and path(t1, p2) = path(t, p2) ∈ L2. Then t1 ↪→ t3.
Since p1||p2, we have t2|p1 = t|p1 and path(t1, p1) = path(t, p1) ∈ L1. Then t2 ↪→ t3.

J

With an ordinary TRS, a peak coming from an overlap in a variable position converges. It
may be wrong when considering a pCTRS. Consequently, a pCTRS without critical pairs
may not be locally confluent.

I Example 7. Consider the pCTRS R = {{ε} : f(x) → g(x), {〈f, 1〉} : a → b}. So
f(a) ↪→R g(a) and f(a) ↪→R f(b) ↪→R g(b). Note that g(a) is irreducible by R because the
second rewrite rule needs a prefix with symbol f to be applied. Then this peak starting
from f(a) does not converge, therefore R is not locally confluent. Moreover R does not have
critical pairs.

In the previous example, the non-convergent peak comes from the fact that along the step
f(a) ↪→R g(a), the occurrence of a in f(a) is allowed to be reduced by the second rule,
whereas it is forbidden in g(a). In other words, the prefix 〈f, 1〉 of a in f(a) belongs to the
language of the second rule, whereas the prefix 〈g, 1〉 of a in g(a) does not. We introduce the
notion of prefix-preserving to avoid this situation, which is based on the same idea as in the
context-sensitive case (Definition 4.4 of [11]).
Notations : for a variable x and a term t, let Pos(t, x) = {p ∈ Pos(t) | t(p) = x}. On the
other hand, we use the character ’.’ to denote the string concatenation.

I Definition 8. The pCTRS R is prefix-preserving if for all rewrite rules L1 : l1 → r1 and
L2 : l2 → r2 of R, for all x ∈ V ar(l1), for all p, p′ ∈ Pos(l1, x), for all p′′ ∈ Pos(r1, x), for all
u,w ∈ Dir(Σ)∗:

u ∈ L1 ∧ u.path(l1, p).w ∈ L2 =⇒ u.path(l1, p′).w ∈ L2 ∧ u.path(r1, p
′′).w ∈ L2

In the previous definition, p′ is for considering the case where l1 is not linear. The pCTRS of
Example 7 is not prefix-preserving (with u = w = ε).

I Example 9. Consider the pCTRS R = {L : if(true, x, y) → x, L : if(false, x, y) → y},
where L is the set of all words of Dir(Σ)∗ except the words that contain at least one
occurrence of 〈if, 2〉 or 〈if, 3〉. Thus, the first argument (the condition) of if should be
evaluated before the second or the third argument. R is prefix-preserving because the
position of x (resp. y) in the left-hand-side of the first (resp. second) rule is forbidden
with respect to L, i.e. the pre-condition of the implication of Definition 8, that means more
precisely, ∀u ∈ Dir(Σ)∗,∀w ∈ Dir(Σ)∗ u.path(l, pos(l, x)).w ∈ L, is always wrong.

I Lemma 10. Let R = {L1 : l1 → r1, L2 : l2 → r2} ∪R′ be a prefix-preserving pCTRS.
If t ↪→[p1,L1:l1→r1,σ1] t1 and t ↪→[p2,L2:l2→r2,σ2] t2 and p2 = p1.v.w with v ∈ Pos(l1, x) for
some variable x,
then there exist t3 and t4 such that t1 ↪→∗[p1.v′1.w,...,p1.v′m.w,L2:l2→r2,σ2] t4
and t2 ↪→∗[p1.v1.w,...,p1.vn.w,L2:l2→r2,σ2] t3 ↪→[p1,L1:l1→r1,σ′1] t4,
with Pos(r1, x) = {v′1, . . . , v′m} and Pos(l1, x) = {v, v1, . . . , vn}.

Proof. Let us write u = path(t, p1). Then we have u ∈ L1 and path(t, p1.v.w) ∈ L2. But
path(t, p2) = path(t1, p1.v.w) = u.path(l1, v).path(σ1(x), w) ∈ L2.
Since R is prefix-preserving, we have ∀i, u.path(l1, vi).path(σ1(x), w) ∈ L2, then t2 →∗ t3
and u.path(r1, v

′
i).path(σ1(x), w) ∈ L2, then t1 →∗ t4.

Furthermore, path(t3, p1) = path(t, p1) ∈ L1 then t3 ↪→[p1,L1:l1→r1,σ′1] t4 with σ′1(x) =
σ1(x)[σ2(r2)]w and ∀y, s.t. y 6= x, σ′1(y) = σ1(y).

J

FSCD 2018
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6:6 Confluence of Prefix-Constrained Rewrite Systems

Prefix-preserving is helpful to get local confluence, but it is not always necessary. The
following pCTRS is locally confluent, whereas it is not prefix-preserving.

I Example 11.

R = {{ε} : f(x) 1→ g(x), {〈f, 1〉.〈h, 1〉} : a 2→ b, {〈g, 1〉} : h(a) 3→ h(b)}

The only peak is f(h(a)) ↪→ g(h(a)) by rule 1, and f(h(a)) ↪→ f(h(b)) by rule 2. This peak
is convergent since g(h(a)) ↪→ g(h(b)) by rule 3 and f(h(b)) ↪→ g(h(b)) by rule 1. Therefore
R is locally confluent, and consequently confluent since R is terminating. Note the use of
rule number 3 to get confluence.
Let L1 and L2 be the prefix-languages of rules 1 and 2 respectively. R is not prefix-preserving
because using the notations of Definition 8, let u = ε ∈ L1 and w = 〈h, 1〉, and we have
u.path(f(x), 1).w = 〈f, 1〉.〈h, 1〉 ∈ L2 whereas u.path(g(x), 1).w = 〈g, 1〉.〈h, 1〉 6∈ L2.
If we replace rule 3 by {〈g, 1〉} : h(x) 3′→ h(b), the pCTRS is not terminating anymore, but it
is still locally confluent and not prefix-preserving.

As seen above, the prefix-constraints of a pCTRS could be annoying to get local confluence.
However, they could also be favorable.

I Example 12. The TRS R = {f(a)→ c, a→ b} is not locally confluent because f(a)→R c,
f(a)→R f(b), and c and f(b) are irreducible. Actually there is a critical pair (c, f(b)), which
is not convergent.

Now, Consider the pCTRS R′ = {{ε} : f(a) → c, {ε} : a → b}. Now there is only one
derivation issued from f(a), i.e. f(a) ↪→R′ c, because the occurrence of a in f(a) is forbidden
for the second rule. Actually, the pCTRS R′ is locally confluent, and the previous critical
pair (c, f(b)) is not relevant for R′.

The definition of critical pairs should be modified to fit pCTRSs.

I Definition 13. (critical pair for a pCTRS) Let L1 : l1 → r1 and L2 : l2 → r2 be
prefix-constrained rewrite rules such that l1|p and l2 are unifiable for ∀p ∈ PosNonVar(l1).
Let σ = mgu(l1|p, l2) and L = {u ∈ L1 | u.path(l1, p) ∈ L2}. If L 6= ∅, the triple
(σ(r1), σ(l1)[σ(r2)]p, L) is called a critical pair.

Let us notice that L is necessarily regular.
When considering the rules of the pCTRS R′ of Example 12, we get p = 1 and L = ∅.

Therefore the critical pair (c, f(b)) of the TRS R does not produce a critical pair for the
pCTRS R′.

If there is a peak coming from an overlap at a non-variable position, then there is a
critical pair.

I Lemma 14. (extended critical pair lemma)
Let R = {L1 : l1 → r1, L2 : l2 → r2} ∪R′ be a pCTRS.
If t ↪→[p1,L1:l1→r1,σ1] t1 and t ↪→[p2,L2:l2→r2,σ2] t2 and p2 = p1.v with v ∈ PosNonVar(l1),
then there exists a critical pair (s1, s2, L) and a substitution γ such that path(t, p1) ∈ L and
t1 = t[γ(s1)]p1 and t2 = t[γ(s2)]p1 .

Proof. Let us assume V ar(l1) ∩ V ar(l2) = ∅. Since t ↪→ t1, we have path(t, p1) ∈ L1
and t|p1 = σ1(l1). Since t ↪→ t2, we have path(t, p2) ∈ L2 and t|p2 = σ2(l2). Then
σ2(l2) = t|p2 = (t|p1)|v = (σ1(l1))|v = (σ1(l1|v)) because v ∈ PosNonV ar(l1). Let us
write θ = σ1 ∪ σ2. Then l1|v and l2 are unifiable by θ and there exists a substitution γ s.t



The official version will be available from July 9, 2018 at: 
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

Prel
im

ina
ry 

an
d 

Unp
ub

lis
he

d 

Vers
ion

Nirina Andrianarivelo and Pierre Réty 6:7

θ = γ ◦mgu(l|v, l2). Let us write L = {u ∈ L1 | u.path(l1, v) ∈ L2} and α = mgu(l1|v, l2).
Then path(t, p1) ∈ L because path(t, p1) ∈ L1 and path(t, p2) = path(t, p1).path(l1, v) ∈ L2.
Then L 6= ∅, consequently (α(r1), (α(l1)[α(r2)]v, L) is a critical pair. Let us write s1 = α(r1)
and s2 = α(l1)[α(r2)]v. Then t[γ(s1)]p1 = t[γ(α(r1))]p1 = t[θ(r1)]v = t[σ1(r1)]v = t1.
Moreover t[γ(s2)]p1 = t[γ(α(l1))[γ(α(r2))]v]p1 = t[θ(l1)[θ(r2)]v]p1 = t[σ1(l1)[σ2(r2)]v]p1 =
t[σ2(r2)]p1.v = t[σ2(r2)]p2 = t2

J

Conversely, if there is a critical pair, then there is a peak.

I Lemma 15. Let L1 : l1 → r1 and L2 : l2 → r2 be prefix-constrained rewrite rules. If
(σ(r1), σ(l1)[σ(r2)]v, L) is a critical pair, then for each term t and p1 ∈ Pos(t):

t|p1 = σ(l1)∧path(t, p1) ∈ L =⇒ t ↪→[p1,L1:l1→r1] t[σ(r1)]p1∧t ↪→[p1.v,L2:l2→r2] t[σ(r2)]p1.v

Note that at least one pair (t, p1) exists since L 6= ∅.

Proof. Since L ⊆ L1 then path(t, p1) ∈ L1 therefore t ↪→[p1,L1:l1→r1] t[σ(r1)]p1 . On the
other hand, path(t, p1.v) = path(t, p1).path(t|p1 , v) = path(v, p1).path(l1, v). Moreover,
path(t, p1) ∈ L, consequently path(t, p1.v) ∈ L2. t|p1.v = (t|p1)|v = (σ(l1))|v = σ(l1|v) =
σ(l2). Therefore t ↪→[p1.v,L2:l2→r2] t[σ(r2)]p1.v

J

I Definition 16. The critical pair (s1, s2, L) is said convergent if

∀t ∈ T (Σ, X), ∀p ∈ Pos(t), (path(t, p) ∈ L =⇒ t[s1]p ↓R t[s2]p)

I Theorem 17. (extended Knuth-Bendix’s theorem) Let R be a prefix-preserving pCTRS. R
is locally confluent if and only if all critical pairs of R are convergent.

Proof.
1. "=⇒ "

Let us write s1 = σ(r1) and s2 = σ(l1[σ(r2)]v and t′ = t[σ(l1)]p. Through Lemma 15
applied on t′ and p, we get t′ ↪→ t′[s1]p = t[s1]p and t′ ↪→ t′[σ(r2)]p.v = t[σ(l1)[σ(r2)]v]p =
t[s2]p. Through the local confluence property, t[s1]p ↓R t[s2]p.

2. " ⇐="
Assume t ↪→[p1,L1:l1→r1,σ1] t1 and t ↪→[p2,L2:l2→r2,σ2] t2

if p1||p2, through Lemma 6, t1 ↪→ t3 ←↩ t2
without loss of generality, assume p1 < p2

if p2.p1 6∈ PosNonV ar(l1), through Lemma 10, we have t1 ↪→∗ t4 ←↩∗ t2.
otherwise through lemma 14, there exist a substitution γ, and a critical pair
(s1, s2, L), s.t. path(t, p1) ∈ L and t1 = t[γ(s1)]p1 and t2 = [γ(s2)]p1 . This critical
pair is convergent and since path(t, p1) ∈ L, we have t[s1]p1 ↪→∗ ←↩∗ t[s2]p1 . Since,
pCTRS rewriting is stable through instantiation, t1 ↪→∗ ←↩∗ t2

J

In general, to check the convergence of a critical pair according to Definition 16, infinitely
many contexts t should be tried, which is impossible. Therefore we need to define a stronger
sufficient condition. Let us first introduce the notion of rewriting under a prefix language.
As usual, for a string w and a string language L, we define L.w by L.w = {v.w | v ∈ L}.
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6:8 Confluence of Prefix-Constrained Rewrite Systems

I Definition 18. Let R = {L : l→ r} ∪R′ be a pCTRS, and L′ ⊆ Dir(Σ)∗.
t
L′

↪→[p,L:l→r,σ] t
′ if L′.path(t, p) ⊆ L and σ is a substitution s.t. t|p = σ(l) and t′ = t[σ(r)]p.

We also write t L
′

↪→R t
′, and L′

↪→R
∗ will denote the reflexive-transitive closure of L

′

↪→R.

I Remark. t ↪→[p,L:l→r] t
′ ⇐⇒ t

{ε}
↪→[p,L:l→r] t

′.

I Lemma 19. If t L
′

↪→[p,L:l→r] t
′ then

∀t0 ∈ T (Σ, X), ∀p′ ∈ Pos(t0), (path(t0, p′) ∈ L′ =⇒ t0[t]p′ ↪→[p′.p,L:l→r] t0[t′]p′)

Proof. Through the hypothesis t L
′

↪→[p,L:l→r] t
′, we have t→[p,l→r] t

′ and L′.path(t, p) ⊆ L.
Assume path(t0, p′) ∈ L′. Then path(t0[t]p′ , p′.p) = path(t0, p′).path(t, p) ∈ L. Then

t0[t]p′ ↪→[p′.p,L:l→r] t0[t′]p′ .
J

I Corollary 20. If L′ 6= ∅ and t1
L′

↪→R t2
L′

↪→R · · ·
L′

↪→R tn,
then there exists t0 ∈ T (Σ, X) and p′ ∈ Pos(t0) s.t. t0[t1]p′ ↪→R t0[t2]p′ ↪→R · · · ↪→R t0[tn]p′ .

I Corollary 21. If L′ 6= ∅ and L′

↪→R is not terminating, then ↪→R is not terminating.
Consequently, if ↪→R is terminating, then L′

↪→R is terminating.

I Definition 22. The critical pair (s1, s2, L) is said strongly convergent if there exits a term
t such that s1

L
↪→R
∗ t and s2

L
↪→R
∗ t.

Therefore, if the pCTRS R is terminating, the strong convergence of a critical pair (s1, s2, L)
can be checked by computing all descendants of s1 and of s2 under prefix-language L, which
are finitely many, and looking for common elements.

I Lemma 23. Strong convergence implies convergence.

Proof. We have s1
L
↪→∗s3 and s2

L
↪→∗s3. Let t0 ∈ T (Σ), p ∈ Pos(t0) s.t path(t0, p) ∈ L.

Through corollary 20
t0[s1]p ↪→∗ t0[s3]p and t0[s2]p ↪→∗ t0[s3]p then the critical pair is convergent.

J

I Theorem 24. Let R be a prefix-preserving pCTRS.
If all critical pairs of R are strongly convergent, then R is locally confluent.

Proof. It is naturally deduced from Lemma 23 and Theorem 17. J

Let us note that the converse is wrong as illustrated by the following Example .

I Example 25. Consider the pCTRS

R = {{〈h, 1〉} : f(a)→ c, {〈h, 1〉.〈f, 1〉} : a→ b, {ε} : h(f(b))→ h(c)}

R is prefix-preserving since the rewrite rules do not contain variables.
There is only one critical pair (c, f(b), {〈h, 1〉}), which is convergent because h(f(b)) ↪→R h(c).
From Theorem 17, R is locally confluent. However, the critical pair is not strongly convergent
since according to Definition 18, c and f(b) are irreducible by

{〈h,1〉}
↪→ R .
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The context-sensitive case
In this section we compare the previous results with those of [11]. A CS-TRS (R0, µ) may
be viewed as a particular pCTRS R = {Lk : lk → rk | (lk → rk) ∈ R0}, where all languages
Lk are the same (say L), and L is composed of all strings (including the empty string) over
the alphabet {〈f, i〉 | f ∈ Σ, i ∈ µ(f)}.

I Example 26. R0 = {f(h(x, y), y)→ g(x, y), h(a, b)→ i(a), a→ b} s.t.
µ(f) = µ(h) = 1,

then we can view this CS-TRS as the following pCTRS

R = {L : f(h(x, y), y)→ g(x, y), L : h(a, a)→ i(a), L : a→ b} s.t.
L = (〈f, 1〉 | 〈h, 1〉)∗.

In this framework, note that u, v, w ∈ L ⇐⇒ u.v.w ∈ L, and path(t, p) ∈ L ⇐⇒ p ∈
Posµ(t). Consequently, the pCTRS R is prefix-preserving if and only if the CS-TRS (R0, µ)
is with left homogeneous replacing variables (Definition 4.4 of [11]).

According to Definition 13, a critical pair between L : l1 → r1 and L : l2 → r2 is of the
form (σ(r1), σ(l1)[σ(r2)]p, L′) where L′ = {u ∈ L | u.path(l1, p) ∈ L} 6= ∅. Since L′ 6= ∅,
there exists at least one string u ∈ L s.t. u.path(l1, p) ∈ L. Therefore path(l1, p) ∈ L,
then p ∈ Posµ(l1). On the other hand, for all u ∈ L, we have u.path(l1, p) ∈ L (because
path(l1, p) ∈ L). Consequently L′ = L.

For instance, for the example 26 we have two critical pairs

(f(i(a), a)), g(a, a), L)
(h(b, a), i(a), L).

Since all critical pairs have the same language, we can omit it, and we get the same
notion (called µ-critical pair) as in Definition 4.7 of [11].

Therefore, Theorem 17 gives the same result as Theorem 4.9 of [11]. However, as
mentioned previously, with a pCTRS infinitely many contexts should be tried to check the
convergence of a critical pair. Fortunately ε ∈ L, and when using Definition 16 we can
consider p as the root position, i.e. the critical pair should also converge without context.
Conversely, if the critical pair converges without context, it also converges with any context t
assuming p ∈ Posµ(t), which holds because path(t, p) ∈ L is assumed. Thus, the convergence
of a critical pair can be checked without using a context, i.e. as in [11].

As a conclusion, if the pCTRS is context-sensitive, thanks to Theorem 17 we get the
same result as [11]. If the pCTRS is not context-sensitive, we can ensure local-confluence
using Theorem 24.

4 Working with String Automata

From an operational point of view, Section 3 does not say anything for handling prefix
languages, for checking whether a pCTRS is prefix-preserving, for computing the language of
a critical pair, and for computing L

↪→R steps. This is why we consider in this section that for
a pCTRS R = {Lk : lk → rk | 1 ≤ k ≤ n}, each language Lk ⊆ Dir(Σ)∗ is defined by a finite
string automaton Ak = (Dir(Σ), Qk, QkI , Qkf ,∆k).

For efficiency of further computations, we assume that each each Ak is deterministic and
complete. In other words, we consider that the automata are determinized and completed at
the beginning, and the new automata generated by the computations will be still deterministic
and complete.
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6:10 Confluence of Prefix-Constrained Rewrite Systems

For any automaton A = (Σ, Q,QI , Qf ,∆) and q ∈ Q, let us define LA(q) = {w ∈ Σ∗ |
∃qf ∈ Qf , (q, w) 7→∗∆ (qf , ε)}. Note that LA = ∪qI∈QI

LA(qI), and LA(q) is recognized by
the automaton (Σ, Q, {q}, Qf ,∆).

Let w be a string and L ⊆ Σ∗ be a string language. Let us define Lw− = {u ∈ Σ∗ | w.u ∈
L} and L−w = {u ∈ Σ∗ | u.w ∈ L}.

For a string w, let Qw−I = {q ∈ Q | ∃qI ∈ QI , (qI , w) 7→∗∆ (q, ε)}, and let Q−wf =
{q ∈ Q | ∃qf ∈ Qf , (q, w) 7→∗∆ (qf , ε)}. Let Aw− = (Σ, Q,Qw−I , Qf ,∆) and A−w =
(Σ, Q,QI , Q−wf ,∆).

I Lemma 27. LAw− = (LA)w− and LA−w = (LA)−w. Moreover, if A is deterministic and
complete, so are Aw− and A−w.

Proof.

1. Let us prove that LAw− ⊆ (LA)w−
Let u ∈ LAw− . There exists q ∈ Qw−I and qf ∈ Qf such that (q, u) 7→∗∆ (qf , ε). Then there
exists qI ∈ QI such that (qI , w) 7→∗∆ (q, ε). Consequently, (qI , w.u) 7→∗∆ (q, u) 7→∗∆ (qf , ε).
Then w.u ∈ LA, then u ∈ (LA)w−.

2. Let us prove (LA)w− ⊆ LAw−

Let u ∈ (LA)w−. Then w.u ∈ LA. Consequently, there exists qI ∈ QI , qf ∈ Qf and
q ∈ Q such that (qI , w.u) 7→∗∆ (q, u) 7→∗∆ (qf , ε). Then (qI , w) 7→∗∆ (q, ε), that is q ∈ Qw−I .
Consequently, u ∈ (LA)w−.

3. If A is deterministic and complete, then |Qw−I | = |{q ∈ Q | ∃qI ∈ QI , (qI , w) 7→∗∆ (q, ε)}|,
where |A| denotes the number of elements of the set A, as usual. But |QI | = 1 and ∆ is
the set of the transitions in A. Then |Qw−I | = 1. On the other part, the transitions in
Aw− and A are the same.

4. Let us prove LA−w ⊆ (LA)−w
Let u ∈ LA−w . There exists qI ∈ QI , q ∈ Q−wf such that (qI , u) 7→∗∆ (q, ε). Then there
exists qf ∈ Qf , (q, w) 7→∗∆ (qf , ε). Consequently, (qI , u.w) 7→∗∆ (q, w) 7→∗∆ (qf , ε). Then
u.w ∈ LA, the u ∈ (LA)−w.

5. (LA)−w ⊆ LA−w

Let u ∈ (LA)−w. Then u.w ∈ LA. Consequently, there exists qI ∈ QI , qf ∈ Qf and
q ∈ Q such that (qI , u.w) 7→∗∆ (q, w) 7→∗∆ (qf , ε). Then q ∈ Q−wf and (qI , u) 7→∗∆ (q, ε).
Consequently, u ∈ LA−w .

6. The initial states and the transitions of A−w and A are the same.
J

Prefix preserving. To check whether a pCTRS is prefix-preserving (Definition 8), we
use the following result.

I Theorem 28. For the prefix-constrained rewrite rules L1 : l1 → r1 and L2 : l2 → r2,
let A1 = (Σ, Q1, Q1

I , Q
1
f ,∆1) and A2 = (Σ, Q2, Q2

I , Q
2
f ,∆2) be deterministic and complete

automata that recognize L1 and L2 respectively. Let S1,2 =
{q ∈ Q2 | ∃(q1

I , q
2
I ) ∈ Q1

I × Q2
I ,∃u ∈ Dir(Σ)∗,∃q1

f ∈ Q1
f , ((q1

I , q
2
I ), u) 7→∗∆1⊗∆2 ((q1

f , q), ε)},
which can be computed by saturating {(q1

I , q
2
I )} with the transitions of ∆1 ⊗∆2.

The pCTRS R is prefix-preserving if and only if for all rewrite rules L1 : l1 → r1 and
L2 : l2 → r2 of R, ∀x ∈ V ar(l1), ∀p, p′ ∈ Pos(l1, x), ∀p′′ ∈ Pos(r1, x), ∀q ∈ S1,2:

LA2(q)path(l1,p)− = LA2(q)path(l1,p′)− ⊆ LA2(q)path(r1,p
′′)−
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Proof.
Let us begin by proving the implication "=⇒".
Let us assume u ∈ L1 and u.path(l1, p).w ∈ L2. Then there exists q1

I ∈ Q1
I , q

2
I ∈ Q2

I , q
1
f ∈

Q1
f , q ∈ Q2 such that (q1

I , u)→∗∆1 (q1
f , ε) and (q2

I , u)→∗∆2(q, ε). Then q ∈ S1,2. Moreover,
path(l1, p).w ∈ LA2(q), then w ∈ LA2(q)path(l1,p)−. Through the hypothesis, we have
w ∈ LA2(q)path(l1,p′)− and w ∈ LA2(q)path(l1,p′′)−. Then path(l1, p′).w ∈ LA2(q) and
path(r1, p

′′).w ∈ LA2(q). As (q2
I , u)→∗∆2(q, ε), we get u.path(l1, p′).w ∈ LA2 = L2 and

u.path(r1, p
′′).w ∈ LA2 = L2. Consequently, R is prefix-preserving.

Let us continue by proving the implication "⇐=".
Let q ∈ S1,2 and w ∈ LA2(q)path(l1,p)−. There exists u ∈ Dir(Σ)∗, q1

I ∈ Q1
I , q

2
I ∈

Q2
I , q

1
f ∈ Q1

f such that (q1
I , u)→∗∆1(q1

f , ε) and (q2
I , u)→∗∆2(q, ε). Then u ∈ L1. Moreover

path(l1, p).w ∈ LA2(q), then there exists q2
f ∈ Q2

f such that (q, path(l1, p).w)→∗∆2(q2
f , ε).

Consequently, u.path(l1, p).w ∈ L2. As R is prefix-preserving, we have u.path(l1, p′).w ∈
L2 = LA2 and u.path(r1, p

′′).w ∈ L2 = LA2 . Then path(l1, p′).w ∈ LA2(q) and
path(r1, p

′′).w ∈ LA2(q), then w ∈ LA2(q)path(l1,p′)− and w ∈ LA2(q)path(r1,p
′′)−. There-

fore, LA2(q)path(l1,p)− ⊆ LA2(q)path(l1,p′)− and LA2(q)path(l1,p)− ⊆ LA2(q)path(r1,p
′′)−.

On the other hand, we prove that LA2(q)path(l1,p′)− ⊆ LA2(q)path(l1,p)− by exchanging p
and p′.

J

Critical pair. Let A1 and A2 be two deterministic and complete automata that recognize
the languages L1 and L2 of the two rules in the critical pair Definition 13. Then the language L
of the critical pair is recognized by the automaton A1∩A−path(l1,p)

2 , which is still deterministic
and complete.

Rewriting under context. Let A′ and A be deterministic and complete automata
that recognizes the languages L′ and L of Definition 18. To check whether L′.path(t, p) ⊆ L,
we use the following result:

I Lemma 29. L′.path(t, p) ⊆ L ⇐⇒ L(A′∩(Ā)−path(t,p)) = ∅.

Proof.
1. "⇐="

By contradiction. Let us assume there exists u ∈ L′ such that u.path(t, p) 6∈ L. Then
u.path(t, p) ∈ L̄ = LĀ. Then u ∈ (LĀ)−path(t,p) = L(Ā)−path(t,p) . Since u ∈ L′, we have
u ∈ LA′ , then u ∈ LA′∩(Ā)−path(t,p) = ∅ according to the hypothesis. Contradiction.

2. "=⇒"
By contradiction. Let assume there exists u ∈ LA′∩(Ā)−path(t,p) . Then u ∈ L′ and
u.path(t, p) ∈ L̄, that is u.path(t, p) 6∈ L and u.path(t, p) ∈ L′.path(t, p). Consequently,
L′.path(t, p) 6⊆ L. Contradiction.

J

Note that checking equalities or inclusions of languages as in Theorem 28, or computing the
complement as in Lemma 29, is polynomial since automata are deterministic and complete.

5 Extended Knuth-Bendix Completion

The goal of extended completion is to transform an arbitrary initial pCTRS R (or a set
of equalities) into a confluent and terminating pCTRS R′ without changing the equality
modulo the pCTRS, i.e. such that =R and =R′ are identical. To do it, we use the result of
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6:12 Confluence of Prefix-Constrained Rewrite Systems

Theorem 24, therefore the pCTRS needs to be prefix-preserving. However, with the notations
of Definition 8, whenever u ∈ L1 ∧ u.path(l1, p).w ∈ L2 whereas u.path(r1, p

′′).w 6∈ L2, i.e.
the pCTRS is not prefix-preserving, we could make it prefix-preserving by extending L2 into
L′2 so that u.path(r1, p

′′).w ∈ L′2. Unfortunately, this may change the equality modulo the
pCTRS.

I Example 30. Let Σ = {f, g, a, b, c, d} and

R = {{ε} : f(x) 1→ g(x, c), {〈f, 1〉} : a 2→ b}

Let L1 and L2 be the prefix-languages of rules 1 and 2 respectively. R is not prefix-preserving
because, let u = ε ∈ L1 and w = ε, and we have u.path(f(x), 1).w = 〈f, 1〉 ∈ L2 whereas
u.path(g(x, c), 1).w = 〈g, 1〉 6∈ L2. Note that R is not confluent since there is the peak
f(a) ↪→ g(a, c) by rule 1, and f(a) ↪→ f(b) ↪→ g(b, c) by rules 1 and 2, which is not convergent
since g(a, c) and g(b, c) are irreducible.
Now let us extend L2 by considering the pCTRS:

R′ = {{ε} : f(x) 1→ g(x, c), {〈f, 1〉} ∪ {〈g, 1〉} : a 2′→ b}

R′ is prefix-preserving. However g(a, d) ↪→R′ g(b, d) whereas g(a, d) 6=R g(b, d). In other
words, =R and =R′ are not identical.

This difficulty may depend on the orientation of rewrite rules. The pCTRS R of Example 30
is terminating, however let us reverse the first rule of R, i.e. let

R′′ = {{ε} : g(x, c) 1′′→ f(x), {〈f, 1〉} : a 2→ b}

R′′ is prefix-preserving and is also terminating. Moreover =R and =R′′ are identical. Un-
fortunately, changing the orientation does not always make the pCTRS prefix-preserving,
and may not preserve termination. In other words, extended completion will fail when one
cannot get a prefix-preserving pCTRS.

The usual Knuth-Bendix completion generates an inter-reduced TRS R, which means
(roughly) that the left-hand-side and the right-hand-side of each rule of R are not reducible
by the other rules of R. This notion cannot be extended to pCTRSs in an easy way.

I Example 31. Consider the TRS R = {f(x) 1→ g(x), g(x) 2→ h(x)}. Then R is not
inter-reduced since the right-hand-side of rule 1 is reducible by rule 2. Now let

R′ = {{〈i, 1〉} ∪ {〈j, 1〉} : f(x) 1′→ g(x), {〈i, 1〉} : g(x) 2′→ h(x)}

So, the right-hand-side of rule 1 is reducible by rule 2 under context i, but not under context
j. An inter-reduced pCTRS R′′ such that =R′ and =R′′ are identical, could be

R′′ = {{〈i, 1〉} : f(x) 1′′→ h(x), {〈j, 1〉} : f(x) 1′′′→ g(x), {〈i, 1〉} : g(x) 2′′→ h(x)}

In this paper, we present a basic extended Knuth-Bendix completion, which does not
attempt to produce an inter-reduced pCTRS. It is described by inference rules, as in [2], and
computes (Pi+1, Ri+1) from (Pi, Ri) using a derivation relation denoted `, where Pi, Pi+1
are sets of prefix-constrained equalities of the form L : p = q4 and Ri, Ri+1 are sets of
prefix-constrained rewrite rules of the form L : l→ r.

4 We assume that = is commutative, i.e. L : p = q is the same equality as L : q = p.
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1. Orient

P ∪ {L : p = q}, R
P, R ∪ {L : p→ q}

if R ∪ {L : p→ q} is prefix-preserving and terminating

2. Deduce

P, R

P ∪ {L : p = q}, R
if (p, q, L) is a critical pair between rules of R

3. Simplify

P ∪ {L : p = q}, R
P ∪ {L : p′ = q}, R

if p L
↪→R p′

4. Delete

P ∪ {L : p = p}, R
P, R

Orient needs to check that R ∪ {L : p → q} is terminating. This can be done by
transforming the pCTRS into an ordinary TRS [1], which preserves termination, and checking
the termination of the ordinary TRS using the usual techniques and tools. This transformation
can even be done incrementally: each time Orient is run, new rewrite rules are added into
the ordinary TRS.

With our basic completion above, inference rules Simplify and Delete are only applied
on (non-oriented) equations of P . During the completion procedure, oriented rules of R are
neither simplified nor deleted.

I Lemma 32. (Soundness) If (P,R) ` (P ′, R′), then =P∪R and =P ′∪R′ are identical.

Proof.
1. Orient :

t =L:p=q t
′ ⇐⇒ t =L:p→q t

′ because =L:p=q is a symmetric relation.
2. Deduce :

Let us consider the critical pair (p, q, L) obtained from the rewriting rules L1 : l1 → r1 ∈ R
and L2 : l2 → r2 ∈ R. Then (p, q, L) = (σ(r1), σ(l1)[σ(r2)]v, L). If t′ =[p′,L:p=q,θ] t

′′, then
t′ = t0[θ(p)]p′ , t′′ = t0[θq]p′ and path(t0, p′) ∈ L. Let us write t = t0[σ(l1)]p′ . Through
Lemma 15, we have t ↪→[p′,L1:l1→r1 t[σ(r1)]p′ = t0[p]p′ and t ↪→[p′.v,L2:l2→r2] t[σ(r2)]p′.v =
t0[σ(l1[σ(r2)]v]p′) = t0[q]p′ . Since t′ =[p′,L:p=q,θ] t

′′, let us assume V ar(p) ∩ V ar(t′) = ∅
and V ar(q) ∩ V ar(t′′) = ∅. Then V ar(p) ∩ V ar(t0) = ∅ and V ar(q) ∩ V ar(t0) = ∅.
Consequently, θ(t) ↪→[p′,L1:l1→r1] t0[θ(p)]p′ = t′ and θ(t) ↪→[p′.v,L2:l2→r2] t0[θ(q)]p′ = t′′.
Then t′ =R t

′′.
3. Simplify

a. "=⇒ "
If t =[u,L:p=q,σ] t

′, then we have t|u = σ(p)] and t′ = t[σ(q)] and path(t, u) ∈ L. But
p

L
↪→[v,L′:l′→r′,θ] p

′, then p|v = θ(l′) and p′ = p[θ(r′)]v and L.path(p, v) ⊆ L′. Con-
sequently, t ↪→[u.v,L′:l′→r′,σθ] t[σ(θ(p′)]u.v = t[t|u[σ(θ(r′)]v]u = t[(σ(p)[σ(θ(r′))]v]u =
t[σ(p([θ(r′))]v]u = t[σ(p′)]u since path(t, u.v) = path(t, u).path(p, v) ∈ L′ (note that
path(t, u) ∈ L). Furthermore, t[σ(p′)]u =[L,p′=q] t[σ(q)]u = t′ since path(t, u) ∈ L.
Consequently t =R∪{L:p′=q} t

′.
b. "⇐= "

The converse is similar since the direction of the rewrite step p ↪→ p′ does not matter.

FSCD 2018
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4. Delete
If t =L:p=p t

′, then t = t′. Thus t =P∪R t
′.

J
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Consider a derivation (P0, R0) ` · · · ` (Pn, Rn). Note that R0 ⊆ R1 ⊆ · · · ⊆ Rn.

I Lemma 33. (Completeness) Let (p, q, L) be a critical pair between some rules of Rn. If
p

L
↪→Rn
∗ p′ and q L

↪→Rn
∗ q′, then (p, q, L) is strongly convergent in Rn ∪ {L : p′ → q′}.

Proof. p′ L↪→[ε,p′→q′] q
′ since L.path(p′, ε) = L ⊆ L. Consequently, p L

↪→Rn
∗ p′

L
↪→[ε,L:p′→q′] q

′

and q L
↪→Rn
∗ q′. Then the critical pair is strongly convergent in Rn ∪ {L : p′ → q′}.

J

Fairness hypothesis. (P0, R0) ` · · · ` (Pn, Rn) is fair if for all critical pair (p, q, L) between
rules of Rn, there is some i ∈ {0, . . . , n} such that (L : p = q) ∈ Pi. In other words, all
critical pairs have been computed thanks to Deduce. From Lemmas 32, 33 and Theorems 24,
4 we get:

I Corollary 34. If (P0, R0) ` · · · ` (Pn, Rn) is fair and R0 = Pn = ∅, then Rn is confluent
and terminating. Moreover the relations =P0 and =Rn are identical.

However, like the usual Knuth-Bendix completion, the extended Knuth-Bendix completion
fails if we cannot obtain Pn = ∅ for some n. In particular, it arises if Orient cannot orient a
persistent critical pair because the resulting pCTRS would not be prefix-preserving or would
not be terminating.

The above basic completion could be improved by including more inference rules like
Simplifiying and Deleting oriented rules of R. However, the proof of correctness and com-
pleteness of such completion procedure would be more complicated and could be done, for
instance, by extending the proof transformation method of [2].

6 Conclusion and Further Work

In this paper, we present a sufficient condition that ensures the local confluence of prefix-
constrained rewrite systems, and consequently the confluence of terminating ones. This
result subsumes that of [11] about local-confluence of context-sensitive rewrite systems.
Prefix-preserving and critical-pair strong convergence assumptions are sufficient, but are not
necessary. Finding weaker assumptions is an interesting challenge.

The second contribution of this paper is an extended Knuth-Bendix completion procedure
for prefix-constrained rewrite systems. This procedure could be improved to get inter-reduced
systems, by adding some inference rules, which could also improve the efficiency.

Controlled rewriting [7] is an extension of prefix-constrained rewriting, where rewritable
positions are defined by a regular tree language that considers the entire term (i.e. not only
prefixes). It could be interesting to study local-confluence, and define a completion procedure
for controlled rewrite systems.
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