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—— Abstract

In this paper we define a framework to address different kinds of problems related to type inhabit-
ation, such as type checking, the emptiness problem, generation of inhabitants and counting, in a
uniform way. Our framework uses an alternative representation for types, called the pre-grammar
of the type, on which different methods for these problems are based. Furthermore, we define a
scheme for a decision algorithm that, for particular instantiations of the parameters, can be used
to show different inhabitation related problems to be in PSPACE.
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1 Introduction

Inhabitation of simply typed A-terms and its related problems, such as type checking, the
emptiness problem, generation of inhabitants, counting algorithms, etc. have been extensively
studied throughout the years [2, 3;°5, 15, 14, 10, 12, 13, 6], using a variety of formalisms such
as context-free grammars [15], tree-based methods [4], automata theory [13], amongst others.
Despite the diversity of methods, there are common fundamental features that emerge from
the different approaches.

One of these features is the implicit relation between the structure of a type and its
normal inhabitants. The Formula-Tree Method by Broda and Damas [4] explores this relation
by looking at a tree representation of the type, identifying what are called the primitive parts,
which are then combined following a set of rules determined by the structure of the type.
In the case of the inhabitation machines defined by Schubert et al. [13], the states of the
automata used to recognize the inhabitants of a given type, as well as the transition relation
between configurations of the machines, are obtained directly from the sub-expressions of the
type. More recently, while studying the complexity of the principal inhabitation problem,
Dudenhefner and Rehof [6] use the structure of the type to define a path relation identifying
subformulas with the same atomic type. This path relation is then used in the definition
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of an algorithm that addresses principal inhabitation. Types and their structure are also
fundamental in the definition of the context-free grammars by Takahashi et al. [15].

In this paper we highlight the importance of the underlying structure of types in the
definition of methods for type inhabitation related problems. To that end, we present an
alternative unifying representation of the type’s structure, which we call the pre-grammar of
the type. From this simple, yet powerful, device we extract rewriting methods to deal with
type-checking, counting and generation of inhabitants.

Secondly, we explore the uniformity of decision algorithms defined over the years to prove
that different inhabitation related problems are in PSPACE. Complexity of inhabitation
related problems was first addressed by Statman [14] in the realm of propositional intuitionistic
logic. The decidability of the logic was proved to be PSPACE complete, and therefore also
the emptiness problem for the simply typed lambda calculus, due to the well-known Curry-
Howard correspondence [11]. A direct syntactic proof of the same result, for the simply
typed A-calculus, was later given by Urzyczyn [16]. PSPACE completeness of the infiniteness
problem was proved by Hirokawa [10], by reducing the emptiness problem to the infiniteness
problem. In [6], PSPACE completeness was proved for the problem of principal inhabitation,
by means of a non-deterministic algorithm for choosing a particular path relation for a
given type. Also in the case of inhabitation machines [13], a PSPACE completeness result is
obtained for the emptiness problem by means of a polynomial time alternating algorithm. In
fact, several of the results mentioned above rely on polynomial time alternating algorithms.
Note that the class of problems decidable in alternating polynomial time (AP) corresponds
to the class of problems decidable in polynomial space (PSPACE). Following that, we define
a scheme for a polynomial time alternating decision algorithm, which operates on the rules
of the pre-grammar of the type. By instantiating the parameters of the algorithm scheme,
we obtain different PSPACE decision algorithms for the problems of emptiness, counting and
principal inhabitation.

We will restrict our methods and definitions to terms in normal form. In fact, most of
the interesting questions related to inhabitation can be reduced to, or even just make sense
for, normal terms. For instance, an inhabited type may have only a finite number of normal
inhabitants, but has always an infinite number of (not necessarily normal) inhabitants. Also,
every inhabited type is the principal type of an infinite number of terms, while it may not be
the principal type of a term in normal form [9].

The rest of the paper is structured as follows. In the next section we introduce some
preliminary notions. In Section-3, we present the notion of pre-grammars and prove some
basic results. Using the pre-grammar representation, in Section 4, we define rewriting
methods to address type checking and the emptiness problem, and explore closure properties,
for intersection and union types. In Section 5 we define the scheme of an alternating decision
algorithm, and its instances. Finally, in Section 6, we draw some conclusions and highlight
some future work.

2 Preliminaries

In this paper we assume familiarity with the simply typed A-calculus & la Curry [8]. We
denote type variables (atoms) by a, b, ¢, ... and arbitrary types by lower-case Greek letters
a, B,7,0,7,.... The set of simple types is denoted by 7. We denote A\-terms by M, N, ...,
which are built from an infinite countable set of term variables V. Unless stated otherwise,
we identify terms modulo a-equivalence. For type assignment we consider the system TA) as
described in [8] and consider its inference rules for terms in S-normal form. Note that every
© Sandra Alves and Sabine Broda;

Bv licensed under Creative Commons License CC-BY
3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Héléne Kirchner; Article No. 5; pp. 5:2-5:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4


http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

[B-normal A-term is of the form Axz.N or Ny --- N, where N, Nq,..., Ns are in normal form
and s > 0. Different from [8] we define the depth of a A-term by depth(Ax.N) = 1+depth(N),
and depth(zNy --- Ng) = 1 + max(depth(Ny),...,depth(N;)) for s > 1, and depth(z) = 1.
With this definition the depth of a term M, such that I' = M : 7, corresponds directly to the
height of the unique TAy-deduction of this fact, as defined below. A context is a finite set T’
of declarations = : o, where z € V and ¢ € T, such that all term variables occurring in T’
are distinct from each other. The set of term variables occurring in T" is denoted by Subj(T").
The union of contexts is consistent if it does not contain different type declarations for the
same term variable.

» Definition 1. We write I' H M : 7 and say that type 7 can be assigned to term M in
context T, if this formula can be obtained by applying the rules below a finite number of
times.
IfTFN:ogand T'U{x: 01} is consistent, then '\ {z : 01} F Ax.N : 01 — 03.
ifTFN;tog, for 1 <i<s(s>0),then’FaN;-- Ng:o, Ll =T7U---UT U{z:
01 — -+ — 05 — 0} is consistent;
If ' = (), then we also write = M : 7 instead of I' = M : 7 and say that M is an inhabitant of
type 7. The set of all (normal) inhabitants of 7 is denoted by Nhabs(7).

One knows that I' = M : 7 implies that the set of term wvariables in I" coincides with the set
of free variables in M, i.e. Subj(I") = FV(M), cf. Lemma 2A10 in [8]. Furthermore, for every
derivable formula I' - M : 7 there is exactly one deduction in TAj.

» Example 2. Consider type oo = ((0 =0) = 0 — 0)— 0 — o, which will be our running
example throughout this paper. Normal inhabitants of « are, for instance, My = Azy.x(Az.y)y
and My = Az.x(Ay.y), for which one has depth(1/;) = 5 and depth(My) = 4.

» Definition 3. The polarity of occurrences.of subtypes in a type 7 is defined as follows.
T is a positive occurrence in T;
if p — o occurs positively (resp. negatively) in 7, then that occurrence of p is negative
(resp. positive) and that occurrence of o is positive (resp. negative) in 7.
Following the notation in [8]; we will on occasions write 0 when referring to a particular
occurrence of an object o. Every type 7 can be uniquely written as =7 — ... - 7, — a,
where a is a type variable and | > 0. Type variable a is called the tail of 7 and denoted by
tail(r). If I > 1, then 7q,...,7; are called the arguments of 7. An occurrence ¢ in 7 is called
a negative subpremise of T iff it is the argument of a positive occurrence of a subtype in 7.
Consider a term M and a type 7 such that F M : 7, as well as a formula I' - N : o,
appearing in the unique TAj-deduction of = M : 7. In the following, we assign to each
X € Subj(T') U{N} an occurrence st(X) of a subtype in 7. The definition of st is bottom-up,
starting with - M : 7.
For - M : 7, let st(M) = 7.
Now consider I'\ {z : 01} F Az.N : 01 — 09, because I' N : 02 and because 'U{z : 01}
is consistent. Consider st(Ax.N) =01 — o3 for '\ {z : 01} - Ax.N : 61 — 2. Then, for
'k N : oy let st(N) be the occurrence of o3 in st(Az.N). If € Subj(T"), then st(z) is
the occurrence of o1 in 03 — g9. All other variables in Subj(T") are assigned the same
occurrences as for the formula I'\ {z : o1} - Ae.N : 01 — 09.
Finally let T' - 2Ny --- N : 0, because I'; F N; : g4, for 1 < i < s (s > 0), and because
r=rnu.---rsu{z:0y =+ — os — o} is consistent. If st(z) =01 = --- > 05 — 0,
then st(XV;) is the occurrence of o; in st(x), for I'; F N; : 0; and 1 <4 < s (s > 0). The
variables in Subj(T';) are assigned the same occurrences as for I' - Ny - - - N; : 0.
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The following lemma, cf. [4], establishes the relationship between occurrences of variables
in abstraction sequences and occurrences of subterms in M, respectively with negative
subpremises and positive occurrences of subtypes in 7 and can be easily proved using the
definition of st above, as well as Definition 3. The established relationship will be explored
in the definition of pre-grammars in the next section.

» Lemma 4. Consider a term M in S-normal form and a type T such that = M : T, as well
as a formulaT'F N : o, appearing in the unique TA)-deduction of - M : 7. If x : 0, € T, then
st(z) = o, is a negative subpremise in 7. Furthermore, st(N) = g is a positive occurrence of
subtype o in T.

3 Pre-grammars

In this section we describe how to obtain for a type 7 a set of rewriting rules, which we
call the pre-grammar of 7 and denote by pre(r). We start by associating to each type 7
a set occT(7) that contains for each type occurrence ¢ a tuple (o,n,l), where n € N, and
l € {var}U{n — m|n,meN }. Distinct occurrences of subtypes are assigned distinct
tuples. This set is uniquely defined, up to isomorphism between integers used in the tuples.

» Definition 5. Given a type 7 € T let occT(7) be the smallest set satisfying the following.
For each occurrence of a type variable @ in 7 there is a tuple (a,n,var) € occT (7);
if p — o is an occurrence of a subtype of 7, and'(p,n,l,), (0, m,|,) € occT () are the
tuples corresponding to p and o in this occurrence, then (p — o, k,n — m) € occT (7);
for each n € N there is at most one tuple (o, n;l) € occT (7).
Furthermore, given a particular occurrence o of ‘a subtype of 7 we denote by n(g) the unique
integer n such that (o,n,l) € occT(7). We frequently will refer to n(c) as the identifier of o
w.r.t. occT (7). Finally, t(n) =0, lab(n) =l and N(7) = { n | (o,n,]) € occT (1) }.

In order to deal correctly with the correspondence between occurrences of subtypes and
occurrences of subterms, polarities have to be taken into account. With this purpose, and
whenever convenient, we might superscript.an integer n with '+’ if n corresponds to a positive
occurrence of a subtype, ie. an occurrence that can be the type of a subterm of an inhabitant,
and with "=’ if it corresponds to a negative subpremise, i.e. if it corresponds to an occurrence
that can be the type of a variable in an abstraction sequence. Integers that correspond to a
negative occurrence, which is no subpremise, will not be superscripted.

» Definition 6. We say that two integers n,m € N(7) are equivalent w.r.t. occT (1), and
write n =ocer m, if and only if t(n) = t(m). The binary relation T'(7) C N(7) x N(7) is defined
by (p2,p3) € T(7) iff (8,p3,p1 — p2) € occT(7), ie. B = B1 — B2, n(B1) = p1, n(B2) = p2,
and n(f) = p3. Furthermore, for (pa,p3) € T(7) let q(p2,p3) = p1.

» Lemma 7. If 7 contains s occurrences a1, ..., as, of type variables, then the graph of T(T),
whose set of nodes is N(7), consists of s unary trees with roots n(ay), ..., n(as), respectively.

» Example 8. For a = ((0 = 0) = 0 = 0) = 0 — o from Example 2 the set occT ()
contains eleven tuples (5,n,[), where 3, n and | are given below.

Bln| | g |

n n |
| 8 [ n |
o | 0 | var o 4 var
0—o0 8 4 —5
o | 1| var 0] 5 var
(0o—s0)—=0—0]| 9 |67
o | 2 | var o—o | 6 |0—>1
a 10 | 9—8
o | 3 | var o—o | T7T|2—3
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The equivalence relation =, partitions N(«) into four equivalence classes, which are {107},
{97}, {67,7,8"}, and {0~,1%,2%,3,47,5%}. The associated graph T'(«) is depicted below.

10+ 9~
91 6]
8+ 6% 7
41 of QT
5t 1+ 2t 3 4~ 0~

Now, pre(7) can be computed from occT (1) and T'(7) as follows.

» Definition 9. Given a type 7 and a set of tuples occT (), we denote by pre(7) the smallest
set of rules satisfying the following conditions.
If m*,k~,n" € N(), (8,m,k — n) € occT (1), then m := Ak.n € pre(7);
if m*,py € N(7) and (ps, ps—1),- - (P2, p1), (P1,p0) € T(7), for some s > 0, m* =ocer ps,
q(pi, pi—1) = n; for 1 <4 < s, then m :=py ny ---ngs € pre(r).

» Note 10. If 7 is inhabited, then there is exactly one rule for n(7) in pre(r). This rule is of
the form n(7) := Ak.n, for some k=, n" € N(7). Also, n(7) occurs in no other rule.

Tt is straightforward to verify the following two properties of pre(7).

» Lemma 11.

1. Consider a positive occurrence of a subformula p = o in 7 and the corresponding tuple
in (p— o,m,k —n) €occl (). Then, m := Mg € pre(7), and there is no other rule of
the form m := Xk'.n’ in pre(7).

2. Consider a negative subpremise p = oi{»—> -+ — o5 — o in 7 and let (o1,n1,l),...,
(0s,ms,1s), (o,n, 1), (p, k). be the tuples in occT(7) corresponding to oy,...,0s,0,p,
respectively. If m* & occl(1), such that m™ =g n, then m := k ny---n, € pre(r).
Furthermore, there is no other rule of the form m =k nl---n} (t > 0) in pre(7).

» Example 12. From occT(a) and T'(«) in Example 8 we obtain the following set pre(c)
containing fourteen rewriting rules.

10 = 9.8 6
8 = AJ5|96 5

A0.1|96 2 == 962[4]0
96240 1 96240

If

li
[

4 Inhabitation

4.1 Type Checking

In the following we describe a rewriting algorithm that, given a type 7 and a term M, verifies
if = M : 7, ie. checks if M € Nhabs(7). During the rewriting process we use objects with the
structure of A-terms, but such that integers can be used as placeholders for variables. We
refer to these objects as extended terms. We denote by N[k/x] the (extended) term obtained
from N by replacing all free occurrences of variable = in N by placeholder k.

» Definition 13. Given a type 7, we write (M, m) — (Ny,n1)---(Ns,ns), (s > 0), where
M, Ny,..., N, are extended terms and m,ny,...,ns € N(7), if one of the following applies.
If m := Ak.n € pre(7), then (Az.N,m) < (N[k/z],n);
if m:=kny---ns €pre(r), then (k Ny --- Ngy,m) = (Ny,n1),...,(Ns,ng).
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The definition of — extends, in the usual way, to rewriting of sequences of pairs, where
we assume that sequences of pairs are processed from left to right. Then, <—* denotes the
reflexive, transitive closure of <.

Note that, by Lemma 11, in each step of (M, n(7)) <* ¢, at most one rule of pre(r) applies
to each pair. Consequently, the type-checking algorithm is deterministic and the sequence
from (M, n(7)) to € is unique.

» Example 14. Consider « as before and M; = Azy.z(Az.y)y from Example 2. Then,

(Azy.x(Az.y)y, 10) (Ay.9(Az.9)y,8) — (9(Az.4)4,5)

(%
—  (A2.4,6),(4,2) = (4,1),(4,2) = (4,2) < €.

» Theorem 15. Nhabs(7) = { M | (M,n(7)) —* € }.

Proof. We show that for any term M, context I' = {x; : o1,...,2, : on} and type o,
if ' M : o, then (M[n(o1)/x1,- -+ ,n(on)/xs],n(0))<=* €, using M[I'] as an abbrevi-
ation for M[n(o1)/x1,-+- ,n(on)/zn]. As a consequence it follows that Nhabs(7) C { M |

(M,n(7)) —* € }. We proceed by induction on depth(M). First, consider M = x Ny --- N,
and suppose that ' 2Ny - - N : 0, because I'; F N; 1.0y, for 1 <i < s (s > 0), and because
r=ru---Ulrsu{z:0y = -+ = o5 = o} is consistent. By Lemma 4, we know that there
is a negative subpremise st(z) = oy — - — 0, — 0 inT, as well as a positive occurrence

st(xNy --- Ng) of ¢ in 7, corresponding to I' k= &Ny -+ Ny : 0. Let n and m be respectively
the identifier of the occurrence of ¢ in st(z), and of the positive occurrence st(zNjy - - - Ny) of
o in 7. Then, m™ =qcq n and it follows from Lemma 11 that m := k n(oy) - - n(os) € pre(7),
where k =n(oy — -+ = 05— 0). Thus (M[I'],m) — (N1[[],n(c1)),...,(Ns[I'],n(cs)). But
N;[T] = N;[Ty], for 1 <1 <'s. Consequently, the result follows from the induction hypothesis.
Now, consider M = Az.N and suppose that we have T'\ {z : o1} F Ae.N : 01 — 09,
because I' = Nt o9 and T U{x : o1} is consistent. It follows from Lemma 4 that
st(Az.N) = o1 — 09 is a positive occurrence of o1 — o9 in 7. We consider the corres-
ponding tuple (o1 — o2, m,k — n) € occl (1), where n(o; — 02) = m, n(o1) = k, and
n(oz) = n. By Lemma 11, there is a'tule m := Ak.n € pre(r). Furthermore, Subj(T") = FV(V)
and Subj(T"'\ {z : 01}) = FV(Az.N). Thus, we have (M[I'\ {z : o1}],m) — (N[I'],n). The
result follows from the induction hypothesis.

For the other inclusion consider a term M, such that (M, n(7)) <—* e. Let (F,p) be any
pair appearing in the corresponding rewriting sequence, where E is an extended term and
p = n(o), for some type occurrence ¢ in 7, i.e. ¢ = t(p). Naturally, we have (E,p) —* €. Let
P ={p1,...,pi} be the set of placeholders that occur in E. Furthermore, let us interpret each
of the integers in P as the name of a term variable. We will show, by induction on the length
of (E,p) —* ¢, that Tp - E : t(p), where I'p = {p1 : t(p1),...,p : t(p;)}. In particular,
it follows that = M : 7. First, consider E = Ax.E’ such that (\x.E’,p) — (E'[k/x],n)
by rule p := Mk.n € pre(r). This means that there is a positive occurrence of a subtype
t(p) = t(k) — t(n) in 7. By the induction hypothesis, we have 'y U{k : t(k)} b E'[k/z] : t(n).
Thus, T'g F Ak.E'[k/x] : t(p), but Ak.E'[k/x] =4 Az.E'. Finally, consider E =k E; --- E;,
such that (k Ey---Es,p) < (E1,n1),...,(Fs,ng) by rule p := k ny---ns € pre(r), where
s > 0. Then, t(k) = t(n1) = -+ = t(ns) — t(p) is a negative subpremise in 7. By the
induction hypothesis, we have I'g, - E; : t(n;), for 1 < ¢ < s and s > 0. Furthermore,
g =Tg U---UT'g, U{k:t(k)} is consistent by definition. Thus, I'g F E : t(p). <
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4.2 The Emptiness Problem

In this subsection we define a rewriting algorithm to decide if a given type 7 has a normal
inhabitant. Contrary to the previous one, this algorithm is non-deterministic, since more
than one rule may apply at each step. On the other hand, it provides us with a simple tool
to show that the emptiness problem for simple types is in PSPACE, and can be used for
generation as well as for counting.

» Definition 16. Given a type 7, an identifier m € N(7) and a set V' C N(7), we write
(m, V)~ (n1,V’),...,(ns, V') if one of the following applies.

If m := Ak.n € pre(7), then (m, V) ~ (n,V U {k});

ifm:=kny---ns € pre(r) and k € V, then (m,V) ~ (n1,V),..., (ns V).
The definition of ~~» extends, in the usual way, to rewriting of sequences of pairs. Then, ~~*
denotes the reflexive, transitive closure of ~-.

» Definition 17. For a particular rewriting sequence of (n(7),0) ~* €, we define a function
pair that computes for each (m, V') in that rewriting sequence a tuple (M,T") = pair(m, V).
For convenience we will use identifiers as indexes of term variables in such a way that the
type assigned to a variable with name x,,, for n € N(7), is always t(n). The function pair is
recursively defined as follows.

If (m, V) ~ (n,VU{k}) because m := Ak.n_€ pre(7), then pair(m,V) = (Axg.N,I'\ {zy :

t(k)}), where (N,T') = pair(n, V U {k});

if (m,V) ~» (n1,V),...,(ns, V) because m := k ny---ns € pre(r) and k € V, then

pair(m, V) = (zx, N1 -+ Ny, {z) «t(k)} UT1 U-- - UTy), where (V;,I[';) = pair(n;, V), for

1<i<s(s>0).
Note that function pair actually-does not depend on set V', but on the identifier m and on
the rule in pre(7), which is used in each step.of the rewriting sequence. The rule is implicitly
given by the pairs appearing on the right of ~» in Definition 16, unless it is of the form
m := k. In that case (m, V.) ~> € and there might be.more than one identifier £ € V such that
m:=k € pre(r). To guarantee that pair is well-defined, we suppose that in each rewriting
step, the corresponding rewriting rule is given, either implicitly or explicitly. The correctness
of function pair is stated in the following lemma.

» Lemma 18. If (m,V) ~* € and (M,I') = pair(m, V') for some corresponding rewriting
sequence, then T'+ M : t(m).

Proof. By structural induction on M. We first consider the case where pair(m,V) =
(Axg.N, T\ {zx : t(k)}), which follows from (m,V) ~» (n,V U {k}) ~=* € because m :=
Ak.n € pre(r) and (N,T) = pair(n,V U {k}). By the induction hypothesis, I' - N : t(n)
and by definition T' U {z, : t(k)} is always consistent. Therefore, I' = Azg. N : t(k) — t(n).
Now consider pair(m,V) = (xpNy -+ Ng,{z : t(k)} UT1 U---UT,), which follows from
(m, V) ~ (n1,V),...,(ns, V) ~* € because m := kmny---ngs € pre(r) and k € V, (N;,I;) =
pair(n;, V), for 1 < i < s (s > 0). By the induction hypothesis T'; = N; : t(n;) and by
definition {xy : t(k)} UT; U---UT; is consistent. It follows from m :=k ny ---ngs € pre(7)
that t(k) = t(n1) — -+ = t(ns) — t(m). Therefore {z) : t(k)}UT1U---UTs F 2Ny -+ Ny :
t(m). <

» Example 19. Consider « and pre(a) from Example 8. Then,
(10,0) ~  (8,{9}) ~ (5,{4,9}) ~ e. Similarly,
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(10,0)  ~ (8,{9}) ~ (6,{9}) ~ (1,{0,9}) ~ (6,{0,9}),(2,{0,9})
~ (1,{0,9}),(2,{0,9}) ~ (2,{0,9}) ~ €.

For the first two pairs in this last rewriting sequence we have respectively pair(10,0) =
(Azg.T9(Axo.T9(AT.T0)T0), 0) and pair(8,{9}) = (xge(Axg.w9(Az0.70)T0), {9 : t(9)}), where
t(9) = (0 = 0) = 0 — o. Also, b Axg.xg(Axg.29(Axo.20)x0) : t(10) and {zge : t(9)} F
x9(Axo.x9(Azg.20) o) : t(8), where t(8) = 0 — o0 and t(10) = a.

For the first rewriting sequence we have pair(10,0) = (Awgxs.z4,0), pair(8,{9}) =
(Azq.24,0), and pair(5,{4,9}) = (x4, {z4 : t(4)}), where t(4) = 0. Also, b Azgz4.24 : t(10),
F Azg.zq :t(8), and {z4 : t(4)} F 24 : £(5), with t(5) = o.

» Theorem 20. Nhabs(7) # 0 if and only if (n(7),0) ~* €.

Proof. The ’if’ part follows from Lemma 18. For the ’only if’ part, we show that for any term
M, context I and type o, if I' - M : o, then (n(c), Vp) ~* €, where Vo = {n(p) |[z:p €T }.
First, consider M = Az.N and suppose that we have '\ {z : 01} F Ax.N : 01 — 02, because
I' N :oyand I'U {z : 01} is consistent. It follows from Lemma 4 that st(Az.N) =
01 — 02 is a positive occurrence of 07 — o9 in 7. We consider the corresponding tuple
(01 = o2,m,k — n) € occl(7), where n(oqy — 02) = m, n(o1) = k, and n(o3) = n. By
Lemma 11, there is a rule m := Mk.n € pre(7). Thus, (m, Vi\(2:0,}) ~ (7, VD\{z:01} U {k}).
But, Vi\{z:0,} U {k} = Vr and (n, V1) ~* € follows from the induction hypothesis. Now,
consider M = zN;---N,; and suppose that I' - xNy---Ng : o, because I'; - N; : oy,
for 1 <i < s (s> 0), and because I' = TH U-- ULz U{z : 07 — -+ = 05 — 0}
is consistent. By Lemma 4, st(x) = 07— --- 05 = o is a negative subpremise of 7.
It follows from Lemma 11 that.m := k n(gy)«--n(os) € pre(r), where m = n(o) and
k=n(ocy =+ — 0, = o). Thus (m, Vp) ~»(n(o1), Vr),...,(n(os), Vr). By the induction
hypothesis, we have (n(o;), Vr,) ~* ¢,+for 1. < ¢ < s. Since Vp, C Vr, we conclude that
(n(o1), V1), ..., (n(os), Vo) ~>* €. <

4.3 Closure Properties

In this section we combine. the pre-grammars of two types 7, and 75 in order to obtain
pre-grammars for Nhabs(71) M'"Nhabs(72)-and for Nhabs(;) U Nhabs(7z), respectively. This
allows us to extend our methods to.a bigger range of types, such as sum types of rank 1.

» Definition 21. Given types.7; and 72, we define N(7; N 72) = N(71) X N(72). Furthermore,
let pre(r; N 72) denote the smallest set of rules satisfying the following.

If m; := Ak;n; € pre(m;) (i = 1,2), then (mq, ma) := A(k1, k2).(n1,n2) € pre(ty N 72);

if m; :=k; ni---ni € pre(r;) for i = 1,2 and s > 0, then

(my,mg) := (k1,k2) (n},n?)---(nl,n?) € pre(r; N 72).
» Example 22. For « from Example 2 and 8 = ((a = b) - a = b) = (a = b) - a — b,
pre-grammar pre(/3) consists of the following rewriting rules.

14 = \12.13 11
13 = A10.11] 12 8

A6.7]128 |10 7 := 1282|104 4 := 0]6
A0.1]128 1 = 1282|104 2 = 0]6

After removing obsolete rules we obtain the following set of rules for pre(a N 3).
(10,14) := A(9,12).(8,13) (8,13) := \(4,10).(5,11) (5,11) := (4,10)

It is easy to see that a term M passes the type checking algorithm for this grammar if and
only if M =, Azy.y, which is the only normal term that inhabits both types.
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Note that the definition above can be extended in the obvious way to a finite number of
intersections, i.e. types of the form 71 N---N7,, for n > 1, where 7q,..., 7, are simple types.
This corresponds to the set of intersection types of rank 1 [7]. We prove the correctness of
our construction for the case of one intersection.

» Theorem 23. Consider two simple types 11, T2, and a term M. Then, one has M €
Nhabs(71) N Nhabs(7z) if and only if (M, (n(71),n(72)) —* €, with pre-grammar pre(Ty N 72).

Proof. Consider two pairs (F1,m1) and (Fs,ms) such that there is some A-term @ and for
i = 1,2: there are placeholders pt, ..., pt € N(r;) and {z1,...,2,} 2 FV(Q), such that E; =
Q0; for 6; = [pi/x1, ..., pl/x,]; and E; is either of the form Az.(Q'0;) or p§ (Q16;) - - - (Qnbs).
It follows from Definition 13 that, if some rule r; € pre(r;) applies to (E;,m;) (i = 1,2), then
both pairs rewrite to a sequence of pairs of equal length, i.e. there is some s > 0 such that
(Ei,mi) = (Bf,m3)--- (EL,m.,) (i =1,2), and for each j = 1,...,s we have that (E},m})
and (E7,m7) verify the suppositions made on (Ey,m;) and (Ea,mg). Furthermore, this
guarantees that (ry,ry) € pre(7; N 72), where (rq, r2) denotes the rule in pre(m; N 72), built
from r; and ry as described in Definition 21.

If M € Nhabs(7;) N Nhabs(7z), then we have by Theorem 15 that (M, n(r;)) —* ¢, for
i = 1,2, in which pairs are assumed to be processed from left to right. The conditions
above clearly apply to (M,n(71)) and (M, n(72)), and consequently to every other couple
of pairs (E1,m1) and (F3,ms) in these rewriting sequences. One obtains a rewriting
sequence for (M, (n(m),n(m2))) —* € using Q(0;,0-2) instead of QO; (i = 1,2), where
(01,62) = [(p1,p?) /71, .., (pL,p?)/x,]. The proof in the other direction is symmetrical, using
the projections on the first or on the second coordinate in each step, in order to obtain
rewriting sequences for (M, n(71)) —=* € or for (M,n(72)) <—* €, respectively. <

In order to address sum types of rank 1 we will'now define pre-grammars for the union of two
languages. Consider rank 1 types 71 and 793 with sets N(7;) and N(72) for which, without
loss of generality, we assume we use two distinct sets of identifiers. Consequently, there is no
overlapping of the corresponding grammars.

» Definition 24. Consider rank 1 types 7, and 75.and the corresponding identifiers n(r;) €
N(7;), for i = 1,2. Let N(m U 7a) = {(n(71),n(m2))} UN(m) UN(72). Furthermore, consider
the unique rule n(7;) := Ak;.n; in pre(r;) and let pre(r;)’ = pre(r;) \ {n(r;) := Ak;.n;}, for
i =1,2. We define,

pre(t1 + 72) = {(n(71),n(12)) := Ak1.n1; (n(71), n(72)) := Aka.no} U pre(ry)’ U pre(rs)’.
Again, it is straightforward to extend this definition to finite sums of rank 1 types.

» Theorem 25. Consider two rank 1 types 11, T2, and a term M. Then, one has M €
Nhabs(71) U Nhabs(72) if and only if M —* €, with pre-grammar pre(my + 72).

Proof. Straightforward, using Note 10 and Definition 24. |

5 Proving Inhabitation Related Problems to be in PSPACE

In this section we present the scheme of an alternating decision algorithm operating on tuples
of the form (m, Vi), where {m}UV C N(7) and i € N. The algorithm takes as input a simple
type 7, a positive integer depth, a vector/register reg, a function f : N x pre(7) X reg — reg
manipulating the contents of reg depending on the values of (7,r) € N x pre(r), as well as an
accepting condition ac : reg — {T, L}. Functions f and ac are supposed to be computable
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in linear time w.r.t. the size of their input. The integer depth is the limit for recursion, such
that a loop of the algorithm aborts with failure, whenever this limit is exceeded. In each
step, during the execution of the algorithm, one rule r € pre(r) is applied to a tuple (m, Vi),
and the values in reg are updated to f(i,r, reg). Upon a terminated run, condition ac(regf)
determines on success or failure, where reg; is the configuration of reg at that point. We
represent the empty register by @. Furthermore, let fz be such that fz (4, r, reg) = reg for all
(i,r) € N x pre(7), and act such that acT(reg) = T for any configuration of reg. Depending
on the instantiation of the parameters, the algorithm can be used to show that different
inhabitation related problems, such as the emptiness problem, infiniteness, or principal
inhabitation, are in PSPACE.

» Definition 26 (PS). Consider a simple type 7, a positive integer depth, a register reg,
as well as (linear) functions f : N x pre(7) x reg — reg and ac : reg — {T, L}. Then,
PS(7, depth, reg, f, ac) operates as follows, starting with the initial tuple (m, V,i) = (n(7),0,0):
if i > depth the loop aborts with failure;
otherwise the algorithm:
non-deterministically chooses a rule in r € pre(7) such that:

(m, V) ~ (n1, V'), ..., (ns, V');

updates reg according to f(i,r, reg);
universally applies to (n1, V',i4+1),...,(ns, Vi 4 1).
A run is successful if ac(reg;) = T, where reg; is the final configuration of reg.

Note that, other than by failure; a loop finishes if the rule chosen from pre(7) is such that
s = 0. In order to show that PS is an alternating polynomial time algorithm w.r.t. the size
|| of 7, we start by defining some measures on 7.

» Definition 27. Given a‘type 7, let |7| = |7|, +|7|—, where |7, represents the number of
occurrences of type variables in 7 and |7|—, the number of occurrences of — in 7. Furthermore,
let |7|T and ||~ denote the number of positive occurrences of subformulas and the number
of negative subpremises in 7, respectively.Similarly, we use |7|;7 and |7|, respectively for
the number of positive and negative occurrences of type variables in 7.

The following lemma is a direct consequence of the definitions of occT(7), N(7), and pre(r).

» Lemma 28. One has, |7|" < |7|, |7|” < |7|> < |7], as well as [N(7)| = |7|. For the
number of rules in pre(t) we have |pre(7)| < |7|* - |7|” + |7|. Furthermore, the number of
elements of N(1) occurring in a rule of pre(t) is always < |7|* + 1.

» Example 29. For a = ((0 = 0) = 0 — 0) = 0 — 0, we have |a| = |a|, + |a| =6+ 5=
11 = N(«). Furthermore, |a|" - |a|” + || =634+ 5 =23 > 14 = |pre(a)|. Finally, the
maximum number of identifiers occurring in the rules of pre(a) is4 and 4 < 6+1 = |a|T + 1.
» Proposition 30. Consider a type 7 and constants ki, k2 € N. Suppose that depth < |7*1,
[reg| < ks - |7|, and that functions f : N x pre(r) x reg — reg and ac : reg — {T, L} are
computable in linear time w.r.t. the size of their input. Then, PS(7, depth, reg,f, ac) is an
alternating polynomial time algorithm w.r.t. |7].

Proof. The algorithm is alternating by design. Polynomial time is a consequence of the
conditions imposed on the complexity of depth, reg, f and ac. <
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In the following we establish the relationship between a successful run of algorithm PS
with reg = &, fz and acT, and the existence of a rewriting sequence for (n(7), ) ~* e. Note,
that each rewriting sequence of (n(7), ) ~»* € can be represented in the usual way by a unique
derivation tree t, whose internal nodes are labelled with pairs (m, Vi) and such that all leafs
are labelled with e. The root of t is (N(7), 0, 0), and whenever a rule r € pre() is applied to
a pair (m, V), such that (m, V) ~» (ny,V’),..., (ns, V'), then the corresponding node in t,
labelled with (m,V,4), has s children labelled with (ny,V’,i+1),...,(ns, V',;i+1) if s > 0,
and it has one child labelled with ¢ if s = 0. Conversely, we can replace each pair (m,V) in
the rewriting sequence by the label (m, V) of the corresponding node in t. Furthermore,
the height of t is height(t) = depth(M), where (M, () = pair(N(7), ?), corresponding to that
rewriting sequence of (n(7),0) ~* e.

» Example 31. The annotated version of the second rewriting sequence from Example 19 is
as follows.

(10,0,0) ~ (8,{9},1) ~ (6,{9},2) ~ (1,{0,9},3) ~ (6,{0,9},4), (2,{0,9},4)
~ (1,{0,9},5),(2,{0,9},4) ~ (2,{0,9},4) ~ e

The corresponding derivation tree has height 6. Also, depth(Azg.zg(Axg.x9(Axg.20)xo)) = 6
and pair(10,0) = (Azg.z9(Azg.z9(Ax0.70)T0), D).

» Lemma 32. Consider a type 7 and an integer d > 0. Then, PS(7,d, &, fy,acT) succeeds
if and only if there is a rewriting sequence for (n(7),0) ~* ¢, whose derivation tree t has
height < d + 1. Furthermore, height(t) = depth(M), where (M, D) = pair(n(7),0) for that
rewriting sequence of (n(7),0) ~* €.

Proof. It is easy to see that PS(7,d, @,fz;act) succeeds if and only if there is some tree
t with root (n(7),0,0) and such that for every node (m,V,i) in that tree, there is a rule
r € pre(r) such that (m,V) ~ (nysV7),...,(ns, V'), and node (m,V,4) has s children
(n1,V',i+1),...,(ns,V',i+1) if.s > 0, and one child labelled with € if s = 0. The value of
7 in a node of t labelled with (m, Vi) is < d, and all leaf nodes are labelled with €. Thus, the
height of t is at most d + 1..On the other-hand; every tree t satisfying the conditions above
corresponds to an (annotated) rewriting sequence of (n(7), ) ~~* € and vice-versa. It remains
to show that height(t) = depth(M.), where (M, () = pair(n(7), () for that rewriting sequence
of (n(7),0) ~* e. Consider a subtree t" of t, whose root is labelled with a tuple (m, V, %), and
the corresponding rewriting sequence of (m, V) ~»* e. We show by induction on the height of
this subtree that height(t') = depth(M), where (M, T') = pair(m, V). If height(t’) = 1, then
(m, V) ~ € because m := k € pre(r) and k € V. Thus, pair(m,V) = (ag, {zx : t(k)}) and
depth(zy) = 1. If (m,V,4) has s > 0 children labelled with (ny,V,i+1),...,(ns, V,i+ 1)
because m := k ny---ns € pre(r) and k € V, then (m,V) ~ (n1,V),...,(ns, V) and
pair(m,V) = (zx N1+ - Ng,{zg : t(k)} UL U---UTy), where (NV;,T;) = pair(n;, V), for
1 <4 < s. Furthermore, height(t’) equals 1 plus the maximum of the heights of the subtrees
rooted in (n1,V,i+1),..., (ns, V,i+1), while depth(zy N7 --- N;) equals 1 plus the maximum
of the depths of Ny,..., Ns. Thus, the result follows from the induction hypothesis. Finally,
suppose that (m, Vi) has one child labelled with (n, VU{k},i+1) because m := Ak.n € pre(7).
Then, height(t’) equals 1 plus the height of the subtree rooted in (n,V U{k},i+1). On
the other hand, pair(m,V) = (Azx.N,T'\ {zx : t(k)}), where (N,T") = pair(n, V U {k}). We
have depth(Az;.N) = 1 + depth(N) and consequently the result follows from the induction
hypothesis. |
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5.1 Emptiness

In the following we reprove the well-known result [14, 16], stating that the emptiness problem
for TA, is in PSPACE, by instantiation of algorithm PS. We say that a derivation tree t
corresponding to a particular rewriting sequence of (N(7),0) ~~* € has a repetition, if and
only if there is a branch in t containing two nodes with labels (m, V, i) and (m, V,4") such that
i # i'. Furthermore, we have (N(7), ) ~* € if and only if there is some rewriting sequence
for that fact, whose derivation tree t contains no repetition. By Lemma 32 it suffices to
execute algorithm PS with a value for depth that guarantees that every derivation tree with
depth > depth has a repetition. For this, we define D(7) = |7|* - |7| .

» Proposition 33. PS(7,D(7), 9, fs,acT) succeeds if and only if Nhabs(7) # 0.

Proof. The limit D(7) is chosen so that for a pair (m, V,d) with d > D(7), there is a repetition
in the corresponding derivation tree t. Since there are at most |7|* different identifiers m
and at most |7|~ different sets V', there has to be a repetition in the branch leading from the
root of t to (m,V,d). Thus, the result follows from Lemma 32. <

5.2 Counting

In [2], Ben-Yelles defined a counting algorithm that answers the question of how many
normal inhabitants a given type 7 has. The main focus, when asking this question, is usually
on determining if Nhabs(7) is empty, finite or infinite. In [10], the infiniteness of Nhabs(7)
was shown to be PSPACE complete. In the following, we show how algorithm PS can be
instantiated in order to prove this problem to be in PSPACE.

We already argued that Nhabs(7) # () if‘and only if there is some derivation tree for
(N(7),0) ~* € of height < D(7) +1 = |7|* +|7| =+ 1. In the following we establish a lower
limit d(7), such that the existence of a tree of height > d(7) guarantees that |Nhabs(7)| = co.
Consider a tree t containing a branch with two nodes n = (m,V,d) and n’ = (m, V', d’),
with d < d’. Then, V' € V'’ and one can construct a new derivation tree by replacing in t
the subtree t,s rooted in n’ by the subtree t,, rooted in n, changing every label (m”, V" )
to (m”, V" UV’ i+ (d' — d))~Repeating this process, it is possible to construct an infinite
number of derivation trees of increasing height. Thus, Nhabs(7) is infinite. On the other hand,
for d(7) = |7|*, if t has some branch of length > d(7), then this branch contains necessarily
two such nodes n and n’. Now, suppose that the height of t is < d(7) and that some branch
in t contains two nodes n andn’ as above. Then d,d’ < d(7) and 0 < (d’ — d) < d(7). Then,
it is clear that repeating the process described above, at some point, one obtains a derivation
tree of height D, with d(7) < D < D(r), as long as |7|~ > 1. We conclude that for 7, such
that ||~ > 1, we have Nhabs(7) = oo if and only if there is some derivation tree of height
D, with d(7) +1 < D < D(r) + 1.

» Lemma 34. If |7|~ <1, then Nhabs(7) # 0 iff 7 = a — a, for which |Nhabs(7)| = 1.

Proof. If |7|~ = 0, then 7 = a and Nhabs(r) = 0. For ||~ = 1, it is easy to show, by
induction on the number of implications in 7, that 7 is of the form (a; — --- — a, = b) = a,
which is inhabited exactly if n =0 and a = b. |

» Proposition 35. The counting problem for Nhabs(7) is in PSPACE.

Proof. If |7|~ <1, then |[Nhabs(7)| =1 if 7 = a — a, and [Nhabs(7)| = 0) otherwise.

If |7|~ > 1, then |[Nhabs(7)| = oo if and only if there is some derivation tree of height
D such that d(7) < D < D(7) + 1. This can be checked by instantiating algorithm PS as
follows:
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depth = D(7);

[reg| = 1 and reg[0] = 0;

f(i,r,reg) = (IF (i == d(7)) THEN reg[0] := 1);

ac(reg) = (reg[0] ==1).
If the algorithm succeeds, then |Nhabs(7)| = co. Otherwise, according to Lemma 32 we can
run PS(7,d(7) — 1,9, fz, acT) in order to check if Nhabs(7) is finite, but not empty. <

5.3 Principal Inhabitation

We now use our algorithm to address the closely related problem of principal inhabitation,
which although more complex, is still PSPACE-complete [6]. The principal inhabitation
problem is about the existence of a normal inhabitant M of 7, such that 7 is the principal
type of M. A term M is a principal inhabitant of 7, if = M : 7 and if every type o,
such that - M : ¢, is an instance of 7. Then, 7 is called the principal type of M. When
searching for principal inhabitants, it is sufficient to consider principal inhabitants in long
normal form, for which a characterisation was given in [4] in terms of proof trees, in the
context of the formula-tree method. In this section we instantiate the algorithm PS to
decide principal inhabitation, based on that characterisation. This characterisation was
used in [1] to define deterministic principal inhabitation machines for normal inhabitants
obtained from pre-grammars, following the formalism of Schubert et al. An inhabitant M
of a type is called long, if every variable occurrence, which is in function position, is given
as many arguments as allowed by its type. It is straightforward to change the definition of
pre() in order to apply exactly to the set of long normal inhabitants of 7. For this, it is
sufficient to drop in pre(7) all rules of the form m :=k ny---n, such that lab(m) # var. The
pre-grammar thereby obtained is denoted by preL(r).and verifies the following. If m* € N(7)
and lab(m) = k — n, then thereis exactly one rule for m in preL(7), which is m := Ak.n. If
m* € N(7) and lab(m) = var, then all rules-for m are of the form m : =k ny---ns (s > 0),
such that t(k) = t(n1) — -« = t(ns) — t(n), where lab(n) = var and t(m) = t(n), i.e. m
and n are different occurrences of the same type variable. For convenience we denote n by
tail(k). Note that tail(k) is the root of the (unary) tree in graph 7'(7), that contains k.

» Example 36. The pre-grammar. prel(a) for-the set of long normal inhabitants of a from
Example 2 is the following.

10 := X9.8 6 :=_ 0.1 2 = 96240
8 = M5 5 = 96240 1 := 962[4]0

The approach in [4] establishes that, initially all occurrences of type variables in 7 have
to be made different. Here, this is already achieved by the association of different identifiers
to different occurrences of subtypes. During the search of an inhabitant, the application of a
rule m :=k nq - - - ng, as described above, forces that m and n must represent the same type
variable in any type of that inhabitant®. When instantiating the algorithm, this information
will be kept in register reg and the execution will only be successful if all occurrences of
the same type variable are unified. The remaining condition in the characterisation of
principal inhabitants in [4] states that all composed negative subpremises have to be used.
This information will also be stored in reg. We denote the number of composed negative
subpremises in 7 by |7|- and define P(7) = |7|* - ||~ - |7, - |7|Z for the limit of recursion.

3 Note that, limiting the search to long inhabitants avoids dealing with the unification of composed types,
but restricts this operation to occurrences of type variables.
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For practicality, we convention that type variables and negative subpremises have identifiers
0,...,|7le =1, and |7y, ..., |7]s + |7|Z — 1, respectively?. Finally, we denote by var(7) the
number of different type variables in 7.

» Example 37. In our running example there are three negative subpremises, respectively
with identifier 9, 4 and 0. We have tail(9) = 3, tail(4) = 4 and tail(0) = 0. Only t(9) is
composed. Thus, ||, =1 and P(a) =6-3-6-1 =108, while var(a) = 1.

Now, we define a function fp that stores the information concerning unification of different type
variable occurrences and the use of composed negative subpremises in reg. For this, initially
the identifier of each variable is stored in the first |7, positions of reg, each representing
its own class, which at that point is a singleton. The number of different classes, which is
initially |7|,, is stored in the last position of reg and decreased whenever two classes are
merged. In this case, all elements (positions in reg) of these classes are represented by the
same identifier. The intermediate positions of reg are used to register the application of
composed negative subpremises.

fp(i,r, reg):
IF r == (m:=kny-- ns) THEN
n = tail(k);

MIN := min(reg[m], reg[n]);
MAX := max(reg[m], reg[n]);
IF MIN # MAX THEN

reg[|7]o + [7|c ] ;= regliTl + |TIC) = 1
FOR (j = 0 TO\|7|, — 1) DO
IF (reg[j] == MAX) THEN reg[j] := MIN;

IF (s > 0) THEN reg[k] := 1;

In order to determine success or failure-of a run, function acp checks if all ||, composed
have been used and if there are exactly as many classes of occurrences of type variables as
there are different type variables.in 7.

acp(reg):
COUNT :=0;
FOR (.7 = ‘T|v TO |T|v + |T‘c_ - 1) DO
COUNT := COUNT + reglj];
IF (COUNT # |7|.) THEN (RETURN 1)
ELSE (RETURN (reg[|T], + |7].] == var(7)));

» Proposition 38. The principal inhabitation problem for Nhabs(7) is in PSPACE.

Proof. This can be checked by instantiating algorithm PS as follows:

depth = P(7);

reg] = Irlo + 7l; + 1, reglj] = j (for 0 < j < |7, — 1),

reglj] = 0 (for |r], < j < [rlu + |7l — 1), and reg7], + [r|5] = |7lu;

f =fp and ac = acp.
Function fp registers (during the execution of PS) all necessary information for deciding
on principality in reg, which is checked by acp after completion of a run. Thus, there is

4 This convention does not hold for the composed negative subpremise with identifier 9 in our example.
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some principal inhabitant of 7 iff there is a successful run using a limit of recursion, possibly
bigger than depth = P(7). We consider such a successful run (for a principal inhabitant),
and the corresponding derivation tree t. Finally, we argue that it is possible to obtain a
new derivation tree from t, corresponding to a successful run, within the established limit
P(7). Consider any node n = (m,V,i) in t. We associate to node n the number Eg, of
equivalence classes, as well as the set C, of negative composed subpremises, that are induced
by the derivation steps in the subtree rooted in n. There is a repetition in a branch of t if it
contains two nodes n = (m, Vi) and n’ = (m, V,i’) with ¢ < ¢/, such that Fq, = Eq, and
C,, = C,. If that is the case, one can replace the subtree rooted in n by the smaller subtree
rooted in n’, obtaining a tree still corresponding to a successful run. Since 7 < ¢’ implies that
Eq, < Equ <|7|y, as well as |7| > |Cy| > |Cy|, there is a repetition in every branch of
length > P(7). Consequently, the process described above can be repeated until one obtains
a derivation tree, thus a successful run, within the limit established for depth. <

6 Conclusions

In this paper we presented a unifying framework to study type inhabitation related problems
and their complexity, using the notion of pre-grammar. From the pre-grammar of a type
we obtained different methods to address several inhabitation related problems. A scheme
for a decision algorithm was given, which we instantiated to decide emptiness, counting
and principal inhabitation. Since each instantiation produces a polynomial time alternating
algorithm, this also shows these problems to be in PSPACE. For principal inhabitants we
focused on terms in long normal form,for which we used a simplified and smaller set of
rules. In a similar way, one could define different sets of pre-grammar rules, corresponding
to particular subclasses of terms, such as termsin total discharge form, term-schemes, etc.
This is left for future work, where we also would like to further develop the study of closure
properties, in particular study an instantiation of our algorithm for union types of rank 1.
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