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Abstract12

Significant research has been conducted in recent years to extend Inductive Logic Programming (ILP)13

methods to induce a more expressive class of logic programs such as answer set programs. The methods14

proposed perform an exhaustive search for the correct hypothesis. Thus, they are sound but not scalable15

to real-life datasets. Lack of scalability and inability to deal with noisy data in real-life datasets restricts16

their applicability. In contrast, top-down ILP algorithms such as FOIL, can easily guide the search using17

heuristics and tolerate noise. They also scale up very well, due to the greedy nature of search for best18

hypothesis. However, in some cases despite having ample positive and negative examples, heuristics19

fail to direct the search in the correct direction. In this paper, we introduce the FOLD 2.0 algorithm—20

an enhanced version of our recently developed algorithm called FOLD. Our original FOLD algorithm21

automates the inductive learning of default theories. The enhancements presented here preserve the greedy22

nature of hypothesis search during clause specialization. These enhancements also avoid being stuck in23

local optima—a major pitfall of FOIL-like algorithms. Experiments that we report in this paper, suggest24

a significant improvement in terms of accuracy and expressiveness of the class of induced hypotheses. To25

the best of our knowledge, our FOLD 2.0 algorithm is the first heuristic based, scalable, and noise-resilient26

ILP system to induce answer set programs.27
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1 Introduction33

Statistical machine learning methods produce models that are not comprehensible for humans because34

they are algebraic solutions to optimization problems such as risk minimization or data likelihood35

maximization. These methods do not produce any intuitive description of the learned model. Lack36

of intuitive descriptions makes it hard for users to understand and verify the underlying rules that37

govern the model. Also, these methods cannot produce a justification for a prediction they compute38

for a new data sample. Additionally, extending prior knowledge (background knowledge) in these39

methods, requires the entire model to be relearned by adding new features to its feature vector. A40

feature vector is essentially propositional representation of data in statistical machine learning. In41

case of missing features, statistical methods such as Expectation Maximization (EM) algorithm are42
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applied to fill the absent feature(s) with an average estimate that would maximize the likelihood43

of present features. This is fundamentally different from the human thought process that relies on44

common-sense reasoning. Humans generally do not directly perform probabilistic reasoning in the45

absence of information. Instead, most of the time human reasoning relies on learning default rules46

and exceptions.47

Default Logic [15] is a non-monotonic logic to formalize reasoning with default assumptions.48

Normal logic programs provide a simple and practical formalism for expressing default rules. A49

default rule of the form α1∧...∧αm:¬βm+1,...,¬βn
γ

can be formalized as the following normal logic program:50

γ ← α1, ...,αm,not βm+1, ...,not βn51

where γ , αs and β s are positive predicates.52

Inductive Logic Programming (ILP) [9] is a sub-field of machine learning that mines data presented53

in the form of Horn clauses to learn hypotheses also as Horn clauses. However, Horn clause ILP is54

not expressive enough to induce default theories. Therefore, in order to learn default theories, an55

algorithm should be able to efficiently deal with negation-as-failure and normal logic programs [16].56

Many researchers have tried to extend Horn ILP into richer non-monotonic logic formalisms. A57

survey of extending Horn clause based ILP to non-monotonic logics can be found in the work by58

Sakama [16]. He also proposes algorithms to learn from the answer set of a categorical normal logic59

program. He extends his algorithms in a framework called brave induction [17]. Law et. al. realized60

that this framework is not expressive enough to induce programs that solve practical problems such61

as combinatorial problems and proposed the ILASP system [4]. ASPAL [1] system is also an effort in62

this direction. Both ILASP and ASPAL encode the ILP instance as an ASP program and then they63

use an ASP solver to perform the exhaustive search of the correct hypothesis. This approach suffers64

from lack of scalability due to this exhaustive search. More discussion of advantages of our work65

presented in this paper vis a vis these earlier efforts is reported in Section 6.66

The previous ILP systems are characterized as either bottom-up or top-down depending on the67

direction they guide the search. A bottom-up ILP system, such as Progol [10], builds most-specific68

clauses from the training examples. It is best suited for incremental learning from a few examples.69

In contrast, a top-down approach, such as the well-known FOIL algorithm [13], starts with the70

most-general clauses and then specializes them. It is better suited for large-scale datasets with noise,71

since the search is guided by heuristics [23].72

In [20] we introduced an algorithm called FOLD that learns default theories in the form of stratified73

normal logic programs1. The default theories induced by FOLD, as well as the background knowledge74

used, is assumed to follow the stable model semantics [3]. FOLD extends the FOIL algorithm. FOLD75

can tolerate noise but it is not sound (i.e., there is no guarantee that the heuristic would always76

direct the search in the right direction). The information gain heuristic used in FOLD (that has77

been inherited from FOIL), has been extensively compared to other search heuristics in decision-tree78

induction [7]. There seems to be a general consensus that it is hard to improve the heuristic such that79

it would always select the correct literal to expand the current clause in specialization. The blame80

rests mainly on getting stuck in local optima, i.e, choosing a literal producing maximum information81

gain at a particular step that does not lead to a global optimum.82

Similarly, in multi-relational datasets, a common case is that of a literal that has zero information83

gain but needs to be included in the learned theory. Heuristics-based algorithms will reject such a84

literal. Quinlan in [12] introduces determinate literals and suggests to add them all at once to the85

current clause to create a potential path towards a correct hypothesis. FOIL then requires a post86

1 Note that FOLD has been recently extended by us to learn arbitrary answer set programs, i.e., non-stratified ones too
[19]; discussion of this extension is beyond the scope of this paper.



F. Shakerin and G. Gupta 2:3

pruning phase to remove the unnecessary literals. This approach cannot trivially be extended to the87

case of default theories where determinate literals may appear in composite abnormality predicates88

and FOIL’s language bias simply does not allow negated composite literals.89

In this paper we present an algorithm called FOLD 2.0 which avoids being trapped in local90

optima and adds determinate literals while inducing default theories. We make the following novel91

contributions:92

We propose a new “cumulative" scoring function which replaces the original scoring function93

(called information gain). Our experiments show a significant improvement in terms of our94

algorithm’s accuracy.95

We also extend FOLD with determinate literals. This extension enables FOLD to learn a broader96

class of hypotheses that, to the best of our knowledge, no other ILP system is able to induce.97

Finally, we apply our algorithm in variety of different domains including kinship and legal as98

well as UCI benchmark datasets to show how FOLD 2.0, significantly improves our algorithm’s99

predictive power.100

Rest of the paper is organized as follows: Section 2 presents background material. Section 3101

introduces the FOLD algorithm. Section 4 presents the “cumulative" scoring function and determinate102

literals in FOLD 2.0. Section 5 presents our experiments and results. Section 6 discusses related103

research and Section 7 presents conclusions along with future research directions.104

2 Background105

Our original learning algorithm for inducing answer set programs, called FOLD (First Order Learning106

of Default rules) [20], is itself an extension of the well known FOIL algorithm. FOIL is a top-down107

ILP algorithm which follows a sequential covering approach to induce a hypothesis. The FOIL108

algorithm is summarized in Algorithm 1. This algorithm repeatedly searches for clauses that score109

best with respect to a subset of positive and negative examples, a current hypothesis and a heuristic110

called information gain (IG). The FOIL algorithm learns a target predicate that has to be specified.111

Essentially, the target predicate appears as the head of the learned goal clause that FOIL aims to learn.112

A typical stopping criterion for the outer loop is determined as the coverage of all positive examples.113

Similarly, it can be specified as exclusion of all negative examples in the inner loop. The function114

covers(ĉ,E+,B) returns a set of examples in E+ implied by the hypothesis ĉ∪B.115

The inner loop searches for a clause with the highest information gain using a general-to-specific116

hill-climbing search. To specialize a given clause c, a refinement operator ρ under θ -subsumption117

[11] is employed. The most general clause is {p(X1, ...,Xn) :- true.}, where the predicate p/n118

is the target and each Xi is a variable. The refinement operator specializes the current clause {h :-119

b1,...,bn.}. This is realized by adding a new literal l to the clause, which yields the following: {h120

:- b1,...,bn,l}. The heuristic based search uses information gain. In FOIL, information gain for121

a given clause is calculated as follows [8]:122

IG(L,R) = t
(

log2
p1

p1 +n1
− log2

p0

p0 +n0

)
(1)123

where L is the candidate literal to add to rule R, p0 is the number of positive bindings of R, n0 is the124

number of negative bindings of R, p1 is the number of positive bindings of R+L, n1 is the number of125

negative bindings of R+L, t is the number of positive bindings of R also covered by R+L.126

FOIL handles negated literals in a naive way by adding the literal not L to the set of specialization127

candidate literals for any existing candidate L. This approach leads to learning predicates that do not128

capture the concept accurately as shown in the following example:129
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Algorithm 1 Overview of the FOIL algorithm

Input: goal,B,E+,E−

Output: Hypothesis H
1: Initialize H← /0
2: while not(stopping criterion) do
3: c← {goal :- true.}
4: while not(stopping criterion) do
5: for all c′ ∈ ρ(c) do
6: compute score(E+,E−,H ∪{c′},B)
7: end for
8: let ĉ be the c′ ∈ ρ(c) with the best score
9: c← ĉ

10: end while
11: add ĉ to H
12: E+← E+ \ covers(ĉ,E+,B)
13: end while

I Example 2.1. B,E+ are background knowledge and positive examples respectively under Closed130

World Assumption, and the target predicate is fly.131

B : bird(X) :- penguin(X). bird(tweety). bird(et).
cat(kitty). penguin(polly).

E+ : fly(tweety). fly(et).
132

The FOIL algorithm would learn the following rule:133

fly(X) :- not cat(X), not penguin(X).134

which does not yield a constructive definition. The best theory in this example is as follows:135

fly(X):- bird(X), not penguin(X).136

which FOIL fails to discover.137

3 FOLD Algorithm138

The intuition behind FOLD algorithm is to learn a concept in terms of a default and possibly multiple139

exceptions (and exceptions to exceptions, and so on). Thus, in the bird example given above, we140

would like to learn the rule that X flies if it is a bird and not a penguin, rather than that all non-cats141

and non-penguins can fly. FOLD tries first to learn the default by specializing a general rule of the142

form {goal(V1, ...,Vn) :- true.} with positive literals. As in FOIL, each specialization must rule143

out some already covered negative examples without significantly decreasing the number of positive144

examples covered. Unlike FOIL, no negative literal is used at this stage. Once the IG becomes zero,145

this process stops. At this point, if any negative example is still covered, they must be either noisy146

data or exceptions to the current hypothesis. Exceptions are separated from noise via distinguishable147

patterns in negative examples [21]. In other words, exceptions can be learned by swapping of positive148

and negative examples and calling the same algorithm recursively. This swapping of positive and149

negative examples and then recursively calling the algorithm again can continue, so that we can learn150

exceptions to exceptions, and so on. Each time a rule is discovered for exceptions, a new predicate151

ab(V1, ...,Vn) is introduced. To avoid name collisions, FOLD appends a unique number at the end of152
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the string "ab" to guarantee the uniqueness of invented predicates. It turns out that the outlier data153

samples are covered neither as default nor as exceptions. If outliers are present, FOLD identifies154

and enumerates them to make sure that the algorithm converges. This ability to separate exceptions155

from noise allows FOLD (and FOLD 2.0, introduced later) pinpoint noise more accurately. This is in156

contrast to FOIL, where exceptions and noisy data are clubbed together. Details can be found in [20].157

Algorithm 2 shows a high level implementation of the FOLD algorithm. In lines 1-8, function158

FOLD, serves like the FOIL outer loop. In line 3, FOLD starts with the most general clause (e.g.159

fly(X) :- true). In line 4, this clause is refined by calling the function SPECIALIZE. In lines160

5-6, set of positive examples and set of discovered clauses are updated to reflect the newly discovered161

clause.162

In lines 9-29, the function SPECIALIZE is shown. It serves like the FOIL inner loop. In line163

12, by calling the function ADD_BEST_LITERAL the “best” positive literal is chosen and the164

best IG as well as the corresponding clause is returned. In lines 13-24, depending on the IG value,165

either the positive literal is accepted or the EXCEPTION function is called. If, at the very first166

iteration, IG becomes zero, then a clause that just enumerates the positive examples is produced.167

A flag called f irst_iteration is used to differentiate the first iteration. In lines 26-27, the sets of168

positive and negative examples are updated to reflect the changes of the current clause. In line 19, the169

EXCEPTION function is called while swapping E+ and E−.170

In line 31, the “best” positive literal that covers more positive examples and fewer negative171

examples is selected. Again, note the current positive examples are really the negative examples and172

in the EXCEPTION function, we try to find the rule(s) governing the exception. In line 33, FOLD173

is recursively called to extract this rule(s). In line 34, a new ab predicate is introduced and at lines174

35-36 it is associated with the body of the rule(s) found by the recurring FOLD function call at line175

33. Finally, at line 38, default and exception are combined together to form a single clause.176

Now, we illustrate how FOLD discovers the above set of clauses given E+ = {tweety,et} and177

E− = {polly,kitty} and the goal fly(X). By calling FOLD, at line 2 while loop, the clause {fly(X)178

:- true.} is specialized. Inside the SPECIALIZE function, at line 12, the literal bird(X) is179

selected to add to the current clause, to get the clause ĉ = fly(X) :- bird(X), which happens180

to have the greatest IG among {bird,penguin,cat}. Then, at lines 26-27 the following updates181

are performed: E+ = {}, E− = {polly}. A negative example polly, a penguin is still covered. In182

the next iteration, SPECIALIZE fails to introduce a positive literal to rule it out since the best IG183

in this case is zero. Therefore, the EXCEPTION function is called by swapping the E+, E−. Now,184

FOLD is recursively called to learn a rule for E+ = {polly}, E− = {}. The recursive call (line 33),185

returns {fly(X) :- penguin(X)} as the exception. In line 34, a new predicate ab0 is introduced186

and at lines 35-37 the clause {ab0(X) :- penguin(X)} is created and added to the set of invented187

abnormalities, namely, AB. In line 38, the negated exception (i.e not ab0(X)) and the default rule’s188

body (i.e bird(X)) are compiled together to form the following theory:189

fly(X) :- bird(X), not ab0(X).
ab0(X) :- penguin(X).

190

More detailed examples can be found in [20].191

4 The FOLD 2.0 Algorithm192

4.1 Cumulative Scoring Function193

The kinship domain is one of the initial successful applications of the FOIL algorithm [13], where194

the algorithm learns general rules governing social interactions and relations (particularly kinship)195

from a series of examples. For example, it can learn the “Uncle" relationship, given the background196

ICLP 2018



2:6 Cumulative Scoring-based Induction of Default Theories

knowledge of “Brother", “Sister", “Father", “Mother", “Husband", “Wife" and some positive and197

negative examples of the concept. However, if the background knowledge only contains the primitive198

relationships including “Sibling", “Parent", “Married" and gender descriptors, it fails to discover the199

correct rule for “Uncle". As an experiment, we used an arbitrarily produced kinship dataset only200

containing the primitive relationships. The FOIL algorithm produced the following rules:201

Rule (1) uncle(A,B) :- male(A), parent(A,_), female(B).
Rule (2) uncle(A,_) :- male(A), parent(A,B), female(B), sibling(B,_).

202

Similarly, the FOLD algorithm found incorrect rules as follows:203

Rule (1) uncle(V1,V2) :- male(V1), parent(V2,V3).
Rule (2) uncle(V1,V2) :- male(V1), parent(V2,V3), female(V2).

204

Table 1 shows the information gain for each candidate literal while discovering Rule (1). At first205

iteration, the algorithm successfully finds the literal male(V1), because it has the maximum gain206
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Literal / Clause uncle(V1,V2) :- true uncle(V1,V2) :- male(V1)
parent(V1,V3) 1.44 1.01
parent(V2,V3) 1.06 1.16
parent(V3,V1) 1.44 1.01
sibling(V1,V3) 2.27 1.01
sibling(V3,V1) 2.27 1.01
male(V1) 3.18 -
female(V2) 0.34 0.50
married(V1,V3) 0.69 0
married(V2,V3) 0.34 0.50
married(V3,V1) 0.69 0
married(V3,V2) 0.34 0.5

Table 1 FOLD Execution to Discover Rule (1)

(IG = 3.18). At second iteration, the literal parent(V2,V3) has the highest gain (IG = 1.16) and207

hence is selected. At this point, since the rule does not cover any negative example, the algorithm208

returns. This example characterizes a case in which the highest score does not correspond to the209

correct literal. The correct literal at second iteration is sibling(V1,V3), whose information gain is210

1.01 and it is less than the maximum.211

We observed that neither increasing the number of examples nor changing the scoring function212

would solve this problem. As an experiment, we replaced the information gain with other scoring213

functions reported in the literature including Matthews Correlation Coefficient (MCC), Fβ -measure214

[23] and the FOSSIL [2] scoring measure based on statistical correlation. They all suffer from the215

same problem.216

A key observation is the following: as more literals are introduced, the number of positive and217

negative examples covered by the current clause shrinks. With fewer examples, the accuracy of218

heuristic decreases too. In Table 1, sibling(V1,V3) should have had the highest score at second219

iteration. At first iteration, sibling(V1,V3) ranks second after male(V1). A simple comparison220

between the score of sibling(V1,V3) and parent(V2,V3) shows the former provides better221

coverage (exclusion) of positive (negative) examples than the latter. But the algorithm is oblivious222

of this information at the beginning of second iteration as it goes only by magnitude of the scoring223

function for the current iteration. This score becomes less and less accurate as more literals are224

introduced and fewer examples remain to cover. If the algorithm could remember that at first iteration,225

sibling(V1,V3) was able to cover/exclude the examples much better than parent(V2,V3), it226

would prefer sibling(V1,V3) over parent(V2,V3).227

To concretize this, we propose the idea of keeping a cumulative score, i.e., to transfer a portion of228

past score (if one exists) to the value that the scoring function computes for current iteration. Our229

experiments suggest that there is not a universal optimal value that would always result in highest230

accuracy. In other words, the optimal value varies from a dataset to another. Thus, in order to231

implement the “cumulative score", we introduce a new hyperparameter2, namely, α , whose value is232

decided via cross-validation of the dataset being used. In order to compute the score of each literal233

during the search, the information gain is replaced with “cumulative gain".234

2 In Machine Learning, a hyperparameter is a parameter whose value is set before the learning process begins.

ICLP 2018
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Literal / Clause uncle(V1,V2). uncle(V1,V2):- male(V1) uncle(V1,V2):-male(V1), sibling(V1,V3)
parent(V1,V3) 1.44 1.30 0
parent(V2,V3) 1.06 1.38 0
parent(V3,V2) 0 0 2.49
parent(V3,V1) 1.44 1.30 0
parent(V2,V4) - - 0.83
sibling(V1,V3) 2.27 1.47 -
sibling(V3,V1) 2.27 1.47 1.15
male(V1) 3.18 - -
female(V2) 0.34 0.57 0
female(V3) - - 1.15
married(V1,V3) 0.69 0 0
married(V2,V3) 0.34 0.57 0
married(V3,V1) 0.69 0 0
married(V3,V2) 0.34 0.57 0
married(V2,V4) - - 1.24
married(V4,V2) - - 1.24
Table 2 FOLD 2.0 Execution with Cumulative Score

Formally, let Ri denote the induced rule up until iteration i+1 of FOLD’s inner loop execution.235

Thus, R0 is the rule {goal :- true.}. Also, let scorei(Ri−1,L) denote the score of literal L in236

clause Ri−1 at iteration i of FOLD’s inner loop execution. The “cumulative" score at iteration i+1237

for literal l is computed as follows:238

scorei+1(Ri,L) = IG(Ri,L)+α× scorei(Ri−1,L)239

If scorei(Ri−1,L) does not exist, it is considered as zero. Also, if IG(Ri,L) = 0, the “cumulative"240

score from the past is not taken into account. Initially, the cumulative score is considered zero for241

all candidate literals. Table 2 shows the FOLD 2.0 algorithm’s execution to learn “uncle" predicate242

on the same dataset. With choice of α = 0.2, the algorithm is able to discover the following rule:243

uncle(V1,V2) :- male(V1), sibling(V1,V3), parent(V3,V2). It should also be noted244

that only promising literals are shown in Table 1 and 2. Next, we discuss how our FOLD 2.0245

algorithm handles zero information-gain literals.246

4.2 Extending FOLD with Determinate Literals247

A literal in the body of a clause can serve two purposes: (i) it may contribute directly to the248

inclusion/exclusion of positive/negative examples respectively; or, (ii) it may contribute indirectly by249

introducing new variables that are used in the subsequent literals. This type of literal may or may not250

yield a positive score. Therefore, it is quite likely that our hill-climbing algorithm would miss them.251

Two main approaches have been used to take this issue into account: determinate literals [12] and252

lookahead technique [6]. The latter technique is not of interest to us because it does not preserve the253

greedy nature of search.254

Determinate literals are of the form r(X,Y), where r/2 is a new literal introduced in the hypo-255

thesis’ body and Y is a new variable. The literal r/2 is determinate if, for every value of X, there is256

at most one value for Y, when the hypothesis’ head is unified with positive examples. Determinate257

literals are not contributing directly to the learning process, but they are needed as they influence the258

literals chosen in the future. Since their inclusion in the hypothesis is computationally inexpensive,259
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the FOIL algorithm adds them to the hypothesis simultaneously. In Section 2 we showed why260

the naive handling of negation in FOIL would not work in case of non-monotonic logic programs.261

Another issue with FOIL’s handling of negated literals arises when we deal with determinate literals.262

Whenever a combination of a determinate and a gainful literal attempts to find a pattern in the negative263

examples, the FOIL algorithm fails to discover it because FOIL prohibits conjunction of negations264

in its language bias to prevent search space explosion. However, by introducing the abnormality265

predicates and recursively swapping positive and negative examples, FOLD makes inductive learning266

of such default theories possible.267

The FOLD algorithm always selects literals with positive information gain first. Next, if some268

negative examples are still covered and no gainful literal exists, it would swap the current positive269

examples with current negative examples and recursively calls itself to learn the exceptions. To270

accommodate determinate literals in FOLD 2.0, we make the following modification to FOLD. In271

the SPECIALIZE function, right before swapping the examples and making the recursive call to the272

FOLD function (see Algorithm 3), we try the current rule for a second time. By adding determinate273

literals and iterating again, we hope that a positive gainful literal will be discovered. Next, if that274

choice does not exclude the negative examples, FOLD 2.0 swaps the examples and recursively calls275

itself. A nice property of this recursive approach is that the determinate literals might be added inside276

the exception finding routine to induce a composite abnormality predicate. Neither FOIL nor FOLD277

could induce such hypotheses. The following example shows how this is handled in the FOLD 2.0278

algorithm.279

I Example 4.1. In United States immigration system, student visa holders are classified as F1(student)280

and F2(student’s spouse). F1 and F2 status remains valid until a student graduates. The spouse of281

such an individual maintains a valid status, as long as that individual is a student. Table 3 shows a282

dataset for this domain. In this dataset, it turns out that married(V 1,V 2) is a determinate literal and283

essential to the final hypothesis. If we run the FOLD 2.0 algorithm, it would produce the following284

hypothesis:285

Default rule(1): valid(V1) :- student(V1), not ab1(V1).
Default rule(2): valid(V1) :- class(V1,f2), not ab2(V1).
Exception(1) : ab1(V1) :- graduated(V1).
Exception(2) : ab2(V1) :- married(V1,V2), graduated(V2).

286

In this example default rule(1) as well as rules for its exception are discovered first. This rule287

(rule(1)) takes care of students who have not graduated yet. Then, while discovering rule(2), after288

choosing the only gainful literal, i.e., class(V1,f2), the algorithm is recursively called on the289

exception part. It turns out that there is no gainful literal that covers the now positive examples (previ-290

ously negative examples). The only determinate literal in this example is married(V1,V2), which is291

added at this point. This is followed by FOLD 2.0 finding a gainful literal, i.e., graduated(V2), and292

then returning the default rule(2). At this point, all positive examples are covered and the algorithm293

terminates. Default rule(2) takes care of the class of F2 visa holders whose spouse is a student unless294

they have graduated. The Algorithm 3 shows the changes necessary to the FOLD algorithm in order295

to handle determinate literals.296

5 Experiments and results297

In this section we present our experiments on UCI benchmark datasets [5]. Table 4 summarizes an298

accuracy-based comparison between Aleph [21], FOLD [20] and FOLD 2.0. We report a significant299

improvement just by picking up an optimal value for α via cross-validation. In these experiments we300

picked α ∈ {0,0.2,0.5,0.8,1}.301
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ILP algorithms usually achieve lower accuracy compared to state-of-the-art statistical methods302

such as SVM. But in case of “Post Operative" dataset, for instance, our FOLD 2.0 algorithm303

outperforms SVM, whose accuracy is only 67% [18]. Next, we show in detail how FOLD 2.0304

achieves higher accuracy in case of Moral Reasoner dataset. Moral Reasoner is a rule-based model305

that qualitatively simulates moral reasoning. The model was intended to simulate how an ordinary306

person, down to about age five, reasons about harm-doing. The Horn-clause theory has been provided307

along with 202 instances that were used in [22]. The top-level predicate to predict is guilty/1.308

We encourage the interested reader to refer to [5] for more details. Our goal is to learn the moral309

reasoning behavior from examples and check how close it is to the Horn-clause theory reported in310

[22].311

B E+ E−

class(p1,f2). class(p7,f1). student(p3). married(p1,p2). valid(p1). valid(p4).
class(p2,f1). class(p8,f1). student(p4). married(p5,p6). valid(p2). valid(p5).
class(p3,f1). class(p9,f2). student(p6). married(p9,p10). valid(p3). valid(p6).
class(p4,f1). class(p10,f1). student(p7). graduated(p4). valid(p7). valid(p8).
class(p5,f2). student(p8). graduated(p6). valid(p9).
class(p6,f1). student(p10). graduated(p8). valid(p10).

Table 3 Valid Student Visa Dataset
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First, we run FOLD 2.0 algorithm with α = 0. This literally turns off the “cumulative score"312

feature. The algorithm would return the following set of rules:313

Rule(1) guilty(V1) :- severity(V1,1), external_force(V1,n),314

benefit_victim(V1,0),intervening_contribution(V1,n).315

Rule(2) guilty(V1) :- severity(V1,1), external_force(V1,n),316

benefit_victim(V1,0),foresee_intervention(V1,y).317

Rule(3) guilty(V1) :- someone_else_cause_harm(V1,y),achieve_goal(V1,n),318

control_perpetrator(V1,y), foresee_intervention(V1,n).319

In the original Horn clause theory [22] there are two theories for being guilty: i) blameworthy, ii)320

vicarious_blame. The following rules for blame_worthy(X) are reproduced from [22]:321

blameworthy(X):- responsible(X), not justified(X), severity_harm(X,H),322

benefit_victim(X,L), H > L.323

responsible(X):- cause(X), not accident(X), external_force(X,n),324

not intervening_cause(X).325

intervening_cause(X) :- intervening_contribution(X,y),326

forsee_intervention(X).327

Rule(1) and Rule(2), that FOLD 2.0 learns, together build the blameworthy definition of the original328

theory. The predicates severity_harm and benefit_victim occur in Rule(1) and Rule(2). It329

should be noted that due to the nature of the provided examples, FOLD 2.0 comes up with a more330

specific version compared to the original theory reported in [22]. In addition, instead of learning the331

predicate responsible(X), our algorithm learns its body literals. The predicate cause(X) does332

not appear in the hypothesis because it is implied by all positive and negative examples, one way or333

another. The predicate not intervening_cause(X) appears in our hypothesis due to application334

of De Morgan’s law and flipping yes and no in the second arguments. The rest of the guilty cases fall335

into the category of vicarious_blame below:336

vicarious_blame(X):- vicarious(X), vicarious(X) :-337

not justified(X), someone_else_cause_harm(X,y),338

severity_harm(X,H), outrank_perpetrator(X,y),339

benefit_victim(X,L), H > L. control_perpetrator(X,y).340

There is a discrepancy in Rule(3), compared to the corresponding vicarious_blame in the original341

theory. However, by setting the cumulative score parameter α = 0.2, FOLD 2.0 would produce the342

following set of rules:343

Rule(1): Rule(2):344

guilty(V1) :- severity_harm(V1,1), guilty(V1) :-345

external_force(V1,n), severity_harm(V1,1),346

benefit_victim(V1,0), external_force(V1,n),347

intervening_contribution(V1,n). benefit_victim(V1,0),348

foresee_intervention(V1,y).349

Rule(3):350

guilty(V1) :- severity_harm(V1,1), benefit_victim(V1,0),351

someone_else_cause_harm(V1,y),outrank_perpetrator(V1,y),352

control_perpetrator(V1,y).353

Rule(1) and Rule(2) are generated in FOLD 2.0 as before. However, Rule(3) perfectly matches that354

of the original theory which our FOLD algorithm would have not been able to discover without355
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Dataset
Accuracy (%)

α
Aleph FOLD FOLD 2.0

Labor 85 94 100 0.5
Post-op 62 65 78 1
Bridges 89 90 93 1
Credit-g 70 78 84 0.5
Moral 96 96 100 0.2
Table 4 Performance Results on UCI Benchmark Datasets

“cumulative score". Note that the cumulative score heuristics is quite general and can be used to356

enhance any machine learning algorithm that relies on the concept of information gain. In particular,357

it can be used to improve the FOIL algorithm itself.358

6 Related Work359

A survey of non-monotonic ILP work can be found in [16]. Sakama also introduces an algorithm360

to induce rules from answer sets. His approach may yield premature generalizations that include361

redundant negative literals. We skip the illustrative example due to lack of space, however, the362

reader can refer to [20]. ASPAL [1] is another ILP system capable of producing non-monotonic363

logic programs. It encodes ILP problem as an ASP program. XHAIL [14] is another ILP system364

that heavily uses abductive logic programming to search for the best hypothesis. Both ASPAL and365

XHAIL systems can only learn hypotheses that have a single stable model. ILASP [4] is the successor366

of ASPAL. It can learn hypotheses that have multiple stable models by employing brave induction367

[17]. All of these systems perform an exhaustive search to find the correct hypothesis. Therefore, they368

are not scalable to real-life datasets. They also have a restricted language bias to avoid the explosion369

of search space of hypotheses. This overly restricted language bias does not allow them to learn new370

predicates, thus keeping them from inducing sophisticated default theories with nested or composite371

abnormalities that our FOLD 2.0 algorithm can induce. For instance consider the following example,372

a default theory with abnormality predicate represented as conjunction of two other predicates, namely373

s(X) and r(X).374

p(X) :- q(X), not ab(X).
ab(X) :- s(X), r(X).

375

Our algorithm has advantages over the above mentioned systems: It follows a greedy top-down376

approach and therefore it is better suited for larger datasets and noisy data. Also, it can invent new377

predicates [19], distinguish noise from exceptions, and learn nested levels of exceptions.378

7 Conclusion and Future Work379

In this paper we presented cumulative score-based heuristic to guide the search for best hypothesis380

in a top-down non-monotonic ILP setting. The main feature of this heuristic is that it avoids being381

trapped in local optima during clause specialization search. This results in significant improvement382

in the accuracy of induced hypotheses. This heuristic is quite general and can be used to enhance383

any machine learning algorithm that relies on the concept of information gain. In particular, it can be384

used to improve the FOIL algorithm itself. We used it in this paper to extend our FOLD algorithm to385

obtain the FOLD 2.0 algorithm for learning answer set programs. FOLD 2.0 performs significantly386

better than our FOLD algorithm [20], where the FOLD algorithm itself produces better results than387
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previous systems such as FOIL and ALEPH. We also showed how determinate literals can be adapted388

to identifying patterns in negative examples after the swapping of positive and negative examples in389

FOLD. Note that while determinate literals were introduced in the FOIL algorithm, their use in FOIL390

was limited to only positive literals. Generalizing the use of determinate literals in FOLD 2.0, enables391

us to induce hypotheses that no other non-monotonic ILP system is able to induce.392

There are three main avenues for future work: (i) handling large datasets using methods similar to393

QuickFoil [23]. In QuickFoil, all the operations of FOIL are performed in a database engine. Such an394

implementation, along with pruning techniques and query optimization tricks, can make the FOLD395

2.0 training phase much faster. (ii) FOLD 2.0 learns function-free answer set programs. We plan to396

investigate extending the language bias towards accommodating functions. (iii) Combining statistical397

methods such as SVM with FOLD 2.0 to increase accuracy as well as providing explanation for the398

behavior of models produced by SVM.399
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