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Overview. In this demo, we will illustrate our work on the use of formal verification
techniques, in particular probabilistic model checking, to enable long term deployments
of mobile service robots in everyday environments. Our framework generates policies
to meet specifications given in the co-safe fragment of linear temporal logic (LTL)
over Markov decision process (MDP) models of mobile robot behaviour. For a given
specification over these models, our framework produces a policy that maximises the
probability of the robot satisfying the specification, whilst minimising the expected time
to do so. The policy obtained for this objective can be seen as a robot plan with attached
probabilistic performance guarantees.

Environmental Modelling. Our models for planning and execution of mobile robot
tasks are based on a discretisation of the environment based on a topological map (see
Fig 1). As it navigates, the robot gathers data on the failure or success of navigation
through an edge, and the time taken to do so. We use this data to build probabilistic
edge models, for example using the technique presented in [1]. This, along with the
specification of other actions that can be active in different locations, allows us to build
MDP models of robot navigation and action execution where the probabilistic outcomes
are learnt from experience.

Partial Satisfaction of Co-Safe LTL Specifications. In order to generate policies for
these models, we use our work [2] on cost-optimal policy generation for co-safe LTL
specifications that are not satisfiable with probability one. The overall objective of the
work is to generate policies that maximise the probability of success and minimise the
undiscounted expected cumulative cost to achieve the co-safe LTL task. Furthermore, we
tackle the question of what to do when the task becomes unsatisfiable during execution.
In many cases, even if the probability of satisfying the overall task is zero, it is still
possible to fulfil part of it. An illustrative example is a robot that needs to navigate to
every office in a building to perform security checks. During execution some doors might
be closed, making offices inaccessible. This will make the overall task unsatisfiable, yet
we still want the robot to check as many offices as it can. We formalise this notion as a
progression reward defined over the automaton for the LTL specification.

Given an MDP and a co-safe LTL specification, we show that the problems of (i)
maximising the probability of satisfying a co-safe LTL formula; (ii) maximising the
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Figure 1: The mobile service robot we aim to use for the demo, deployed in an office
scenario (left) and a topological map (right). Edges in blue represent the default laser
based navigation, the edge in green represents a specialised ramp traversal behaviour,
and the edge in red represents a specialised door crossing behaviour.

progression reward (i.e., fulfilling as much of the specification as possible); and (iii)
minimising a cost function while performing (i) and (ii) can be solved independently
by standard techniques in a pruned product MDP. Furthermore, in [3], we introduced a
nested version of value iteration that allow us to implement prioritisation of the three
objectives above in an efficient manner.

Implementation. Our policy generation approach is implemented within the PRISM
probabilistic model checker1 and is fully integrated within the Robot Operating System
(ROS) middleware2, and has been used extensively for deployments of mobile service
robots for long periods of time [4]. Fig. 1 depicts our robot in one such deployment.

Demo Proposal. Our proposal is to showcase this framework live during the workshop,
deploying our robot in the workshop venue and having it perform tasks throughout the
day (the robot is based in the Oxford Robotics Institute, hence it can be easily moved
to the workshop venue). In conjunction with showing the live robot behaviour, we
will, among other things, provide visualisation of the generated policies on a map of
the environment; showcase how the robot keeps track of the performance guarantees
calculated during policy generation while it is executing; and show how these guarantees
can be used for execution monitoring3.
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