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Abstract. Machine learning (ML) systems typically involve complex
decision making mechanisms while lack clear and concise specifications.
Demonstrating the quality of ML systems therefore is a challenging task.
We propose an approach combining formal methods and metamorphic
testing for improving the quality of ML systems. In particular, our frame-
work enables the possibility of developing policing functions for runtime
monitoring ML systems based on metamorphic relations.
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1 Introduction

Machine learning (ML) systems typically involve complex decision making mech-
anisms and lack clear and concise specifications. ML systems build their knowl-
edge by employing complex learning algorithms, which are often unpredictable.
Specifications of these systems are often vague and ambiguous even at an intu-
itive level. As a result, demonstrating the quality of machine learning systems is
a challenging task. Even though ML systems may produce correct output for a
large set of input data, it cannot be guaranteed to work with all input data. One
solution to this problem is to monitor the outputs of ML systems at runtime to
ensure that incorrect behaviours can be detected.

In this paper, we propose an approach combining formal methods and meta-
morphic testing for improving the quality of ML systems. On the one hand,
formal methods are mathematical-based technique for ensuring system depend-
ability. In particular, formal methods allow system specifications to be captured
and reasoned about precisely. On the other hand, metamorphic testing [3] is
one possible approach to alleviate the oracle problem, i.e. testing of programs
without a test oracle, which is often the case for ML systems. Metamorphic test-
ing works by applying known transformations to inputs and checking that the
outputs are consistent with the output produced for the untransformed input.
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Our generic approach is as follows. To address the vagueness and ambiguous
of the system specifications, we propose to use Event-B [1], a formal notation,
to precisely capture system requirements and metamorphic relations. The meta-
morphic relations are then used as a basis for developing policing functions. Our
framework is generic which can be applied to different types of machine learning
systems with different metamorphic relations.

The rest of the paper is as follows. Section 2 gives some background informa-
tion about the Event-B modelling method and metamorphic testing. Section 3
presents our approach for formally developing policing functions based on meta-
morphic relations. Section 4 discusses related work and Section 5 presents our
conclusion.

2 Background

In this section, we give an overview of the Event-B modelling method (Sec-
tion 2.1) and metamorphic testing (Section 2.2).

2.1 The Event-B Modelling Method

Event-B [1] is a formal method for system development. The main features of
Event-B include the use of refinement to introduce system details gradually into
the formal model. An Event-B model contains two parts: contexts and machines.
Contexts contain carrier sets, constants, and axioms constraining the carrier
sets and constants. Machines contain variables v, invariants I(v) constraining
the variables, and events. An event comprises a guard denoting its enabled-
condition and an action describing how the variables are modified when the
event is executed. In general, an event e has the following form, where t are the
event parameters, G(t, v) is the guard of the event, and v := E(t, v) is the action
of the event.3

1 e = any t where G(t,v) then v := E(t, v) end

A machine in Event-B corresponds to a transition system where variables rep-
resent the states and events specify the transitions.

Contexts can be extended by adding new carrier sets, constants, axioms, and
theorems. Machine M can be refined by machine N (we call M the abstract
machine and N the concrete machine). The state of M and N are related by
a gluing invariant J(v, w) where v, w are variables of M and N, respectively.
Intuitively, any “behaviour” exhibited by N can be simulated by M, with respect
to the gluing invariant J(v,w). Refinement in Event-B is reasoned event-wise.
Consider an abstract event e and the corresponding concrete event f. Somewhat
simplifying, we say that e is refined by f if f’s guard is stronger than that of e
and f’s action is simulated by e’s action, taking into account the gluing invariant
J.
3 Actions in general can be non-deterministic.



Policing Functions for Machine Learning Systems 3

More information about Event-B can be found in [5]. Event-B is supported
by the Rodin platform [2], an extensible toolkit which includes facilities for
modelling, verifying the consistency of models using theorem proving and model
checking techniques, and validating models with simulation-based approaches.

2.2 Metamorphic Testing

The idea of metamorphic testing was first proposed by Chen et al [3] as one
possible way to alleviate the oracle problem, i.e. testing of a program without a
test oracle. Often the test oracle knows the expected output for a given input, i.e.,
the oracle is aware of the input/output relationship for the program. In general,
this might not be the case, e.g., for programs with complex inputs, that perform
complicated computation, or programs produced by various machine learning
techniques. For these kind of programs, predicting the correct output for a given
input and compare it with the actual output of the program is non-trivial and
error-prone [11].

Metamorphic testing based on the idea that it is easier to reason about the
expected relations between different inputs and corresponding outputs of a pro-
gram than to fully understand the input/out relationship of the program. An
example of such a program is a machine learning classifier program for traffic
sign images. It would be impossible to define an oracle that can map any traf-
fic sign image to the corresponding traffic sign. However, if we consider image
manipulation functions, such as, sharpen the image, we expect the the program
will give the same as classifying the original image. Such a relationship between
an input manipulation and the expected output relation is called a metamor-
phic relation. Metamorphic testing has been shown to find erroneous behaviours
in image classification programs. For example, in [9], the Nvidia DAVE-2 self-
driving car platofrm decides to turn left for an image, but incorrectly decides to
turn right for a slightly darker version of the same image.

Since its introduction, metamorphic testing has been used for a range of
applications [11]: embedded systems, web services and applications, computer
graphics, simulation and modelling, machine learning, bioinformatics, variabil-
ity and decision support, components, compilers, numerical programs, etc. For
example, it has been considered for machine learning classifiers by Xie et al [12].

3 A Formal Approach for Policing Functions Based on
Metamorphic Testing

The summary of our approach can be seen in Figure 1. The main idea of each
step is as follow.

1. In the first step, we specify the expected inputs and outputs precisely but
the precise relationship between inputs and outputs is specified loosely.

2. Subsequently, from the system specification, we construct the metamorphic
relations, which are “properties” of the systems.
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Fig. 1. Approach Overview

3. In the last step, the metamorphic relations are used (a) to construct the
metamorphic tests and (b) as the specification for a policing function, which
is developed formally using refinement technique.

In this paper, we focus on the development of the policing function using refine-
ment technique.

In the subsequent sections, we discuss the main ideas: formal specifications
of machine learning systems (Section 3.1), the construction of metamorphic re-
lations (Section 3.2), and an architecture for formal policing functions (Sec-
tion 3.3).

3.1 Formal Specifications of Machine Learning Systems

To address the vagueness and ambiguous of machine learning system specifi-
cation, we use formal notations to specify the expected inputs and outputs
precisely, but the precise relationship between inputs and outputs is specified
loosely. In this paper, we use Event-B, a formal modelling language for this
purpose, which support first-order logic with set theory.

At the abstract level, a deterministic program p can be seen as implementa-
tion of some function linking between the input i and output o. Note that, i and
o can be a vector of inputs and outputs, respectively. For a non-deterministic
program (e.g., a machine learning program continuously improve its algorithm
at runtime), p is a binary relation linking the input i and the possible output o,
i.e., i 7→ o∈ p. (Here we use the the notation i 7→ o to denote an ordered pair).
Without loss of generality, we assume that we consider that our programs are
non-deterministic.

Similarly, the “ideal” specification of the program of can be defined axiomati-
cally, as a binary relation s between the input i and the output o. A input/output
pair of the program is incorrect if it does not “satisfied” the specification, i.e.,
i 7→ o /∈ s. Note that the specification s can be defined constructively (e.g., finding
shortest paths in a graph) or axiomatically (traffic sign image recognition).
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3.2 Construction of Metamorphic Relations

Metamorphic relations are properties the systems, in particular, it specifies the
expected relationship between the output of the system when the input is ma-
nipulated. The metamorphic relations are properties of the systems that can be
formally and precisely specified.

In general, given a manipulation relation m on the input, we expect the
relationship n holds for the output, i.e.,

i1 7→ o1∈ s∧ i2 7→ o2 ∈ s∧m(i1, i2) ⇒ n(o1, o2)

The pairs of relationships of the form (m, n) are the metamorphic relations.
We call m the (metamorphic) input relation and n the (metamorphic) output
relation. Note that (m, n) is defined for the ideal specification s.

The main idea of metamorphic testing is captured by the following

i1 7→ o1 ∈ p∧ i2 7→ o2∈ p∧m(i1, i2) ∧¬n(o1, o2)
⇒ i1 7→ o1 /∈ s∨ i2 7→ o2 /∈ s.

The implication states that if the metamorphic input relation m holds between
two observed input/output pairs (i1, o1) and (i2, o2) of program p but the meta-
morphic output relation n does not hold for the outputs (o1, o2), then one of the
input/output pair does not satisfy the specification s.

3.3 Developing Formal Policing Functions from Metamorphic
Relations

The metamorphic relations developed in the previous steps can be used for spec-
ifying a runtime policing function. The policing function is running alongside the
ML system. The architecture of the policing function for the machine learning
systems can be seen in Figure 2. The policing function reads the input and out-

Machine Learning System

Policing function

input output

feedback

metamorph. input

metamorph. output

Fig. 2. Architecture of Policing Functions for Machine Learning Systems

put of the machine learning system, creates metamorphic input (according to the
metamorphic input relation), and asks the machine learning system to produce
the metamorphic output. The metamorphic output is then verified against the
original output with respect to the metamorphic output relation.
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The generic structure of the formal development of policing functions is as
follows. At the abstract level, we model the program with the appropriate input,
output. We first define a context c0 which declares the input, output types, i.e.,
I and O, and the type of the program p and the specification s. In the following,
we present the abstract example on the left and a concrete example (traffic sign
recognition) on the right.

1 context c0
2 sets
3 I // Input type
4 O // Output type
5 constants
6 p
7 s
8 axioms
9 @typeof p:

10 ”p∈ P(I×O)”
11 @typeof s:
12 ”s ∈ P(I×O)”
13 end
14

1 context c0 trafficsign
2 sets
3 SIGN IMAGE // Input type
4 SIGN // Output type
5 constants
6 SignRecognitionProg
7 SignRecognition
8 axioms
9 @typeof p:

10 ”SignRecognitionProg∈ P(SIGN IMAGE× SIGN)”
11 @typeof SignRecognition:
12 ”SignRecognition∈ P(SIGN IMAGE× SIGN)”
13 end
14

The behaviour of the policed system is modelled abstractly by machine m0
which contains two events, normal and error. Event normal corresponds to the
normal execution of the program and event error specifies the situation where
our policing function detects some errors. We model the input and output of the
program using parameters i and o of the events. Event error has an additional
parameter error set to denote a set of input/output pairs which are produced
by the program p (grd2), contains the original input/output pair (grd3), and
contains a input/output pair x 7→ y which does not satisfy the specification s.
Note that due to the nature of metamorphic testing, it is not possible to know
exactly which input/output pair does not satisfy the specification s. We will show
in a refinement of mo how violation of the specification is detected by failure of
metamorphic testing.
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1 machine m0
2 sees c0
3 events
4 normal
5 any i o where
6 @grd1: ”i 7→ o ∈ p”
7 end
8

9 error
10 any i o error set where
11 @grd1: ”i 7→ o ∈ p”
12 @grd2: ”error set⊆ p”
13 @grd3: ”i 7→ o ∈ error set”
14 @grd4: ”∃x, y · x 7→ y∈ error set

∧ x 7→ y /∈ s”
15 end
16 end
17

1 machine m0 trafficsign
2 sees c0 trafficsign
3 events
4 normal
5 any si s where
6 @grd1: ”si 7→ s∈ SignRecognitionProg”
7 end
8

9 error
10 any si s error set where
11 @grd1: ”si 7→ s∈ SignRecognitionProg”
12 @grd2: ”error set⊆ SignRecognitionProg”
13 @grd3: ”si 7→ s∈ error set”
14 @grd4: ”∃x, y · x 7→ y∈ error set ∧ x 7→ y /∈

SignRecognition”
15 end
16 end
17

In the next refinement, we introduce the metamorphic relations (m, n) an
extended context as follows. The example of traffic sign recognition is on the
right-hand side.

1 context c1
2 extends c0
3 constants
4 m
5 n
6 axioms
7 @typeof m: ”m∈ I↔ I”
8 @typeof n: ”n∈O↔O”
9 @metamorphic relation: ”∀i1, o1

, i2, o2 · i1 7→ o1 ∈ s ∧ i2 7→
o2∈ s∧ i1 7→ i2∈m⇒ o1
7→ o2∈ n”

10 end

1 context c1 trafficsign
2 extends c0 trafficsign
3 constants
4 Sharpen
5 // We use = for output relation.
6 axioms
7 @typeof m: ”Sharpen∈ SIGN IMAGE ↔

SIGN IMAGE”
8 @metamorphic relation: ”∀si1, s1, si2, s2 · si1

7→ s1∈ SignRecognition∧ si2 7→ s2 ∈
SignRecognition∧ si1 7→ si2∈ Sharpen⇒
o1 = o2”

9 end

We refine the event error as follows (abstract on the left-hand side, concrete
example on the right-hand side).
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1 error
2 any i o i2 o2 where
3 @grd1: ”i 7→ o ∈ p”
4 @grd2: ”i2 7→ o2∈ p”
5 @grd3: ”i 7→ i2∈m”
6 @grd4: ”o 7→ o2 /∈ n”
7 with
8 @error set: ”error set = {i 7→ o, i2 7→ o2}”
9 end

1 sharpen
2 any i o i2 o2 where
3 @grd1: ”i 7→ o ∈ SignRecognitionProg”
4 @grd2: ”i2 7→ o2∈ SignRecognitionProg”
5 @grd3: ”i 7→ i2∈ Sharpen”
6 @grd4: ”o 6= o2”
7 with
8 @error set: ”error set = {i 7→ o, i2 7→ o2}”
9 end

The witness for error set (using the with keyword) indicates that the error set
containing two input/output pairs (the original pair (i, o) and the metamorphic
input/output pair (i2, o2)), does not satisfy the metamorphic relation (m, n).
The correctness refinement proof (omitted here) relies on the definition of the
metamorphic relation (m, n).

Note that a program can have several metamorphic relations. Each meta-
morphic relation corresponds to an event refinement with similar structure as
above. We have applied the above architecture to define a policing function for
a traffic sign image recognition program, and a program finding shortest paths.
Due to the page limit, we omit the details here, the developments can be found
in http://users.ecs.soton.ac.uk/tsh2n14/developments/VaVas2018/.

4 Related Work

A survey on metamorphic testing is presented in [11]. It shows that machine
learning corresponds to 7% of the application domains. Metamorphic validation
is an extension of metamorphic testing in [8]. The proposed framework is appli-
cable to the validation of simulation models, which helps to building confidence
in the validity of complex simulation models. The authors created a system-
atic process of discovery and application of “metamorphic relations”. Here, the
metamorphic relations in metamorphic validation will often be a definition of
changing behaviour given a change in parameters or model design, instead of
a relationship between two sets of test cases. Ding et al [4] applied the idea of
metamorphic validation for deep learning frameworks and three different levels:
system level, data set level, and data item level. At the system level, a meta-
morphic relation is based on the performance (e.g., classification accuracy) of
different classifiers. For example, a deep leanring classifier is expected to have
better accuracy than a corresponding Support Vector Machine (SVM) classifier.
Metamorphic relations at the data set level include manipulation of various data
sets, i.e., training data set, validation data set or test data set. As an example,
adding 10% of new images into each category of the training (or validation or
test) data set should not effect the classification accuracy. Metamorphic rela-
tions at the data item level consider the performance of the classifiers when
some manipulations are applied to all items of the data set. For example, the

http://users.ecs.soton.ac.uk/tsh2n14/developments/VaVas2018/
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accuracy should be almost the same if the training images are cropped from the
original images using different stride distances. Overall, metamorphic validation
can be used to increase the confidence in the validity of ML systems, but its
focus is on the validaity of learning processes rather than the resulting program
itself. Manipulation of the data item level is also considered by Xie et al [12] for
machine learning classifiers.

In [10], the authors propose a framework called VeriVis for computer vision
systems. While they do not use the term metamorphic testing, their definition
of locally safe basically corresponds to an (abstract) metamorphic relation. In
particular, for computer vision system, they studied common transformations
(which we call manipulation function) which simulate a wide range of common
real-world image distortions and deformations. This includes various smoothing
techniques, erosion, dilation, etc. This will be useful for us to build policing
functions around these transformations.

5 Conclusion

At the moment, our work is carried out at the theoretical level, in particular,
focusing on how formal specification can be used to help with the design of
metamorphic relations and formal policing functions. We need to evaluate the ap-
proach on publicly available examples (benchmarks), e.g., hand-written images of
digits (MNIST), imageNet large-scale visual recognition challenge (ILSVRC) [6],
small colour image recognition (CIFAR-10) [7]. While most existing benchmarks
are for classifications, object detection [6], i.e., having additional output of iden-
tifying objects within the image, will enable more metamorphic testing relations
to be defined for the new additional output. As for any runtime verification, it
is crucial that any runtime monitoring function has acceptable real-time perfor-
mance. As a result, we need to implement and evaluate the performance of the
policing functions.

In general, machine learning programs are only a part of a larger software
system. Studying the consequences of the possible defects of the programs within
the whole system will allow us to focus our efforts in testing and verifying the
important aspect of the program. For example, recognising a green signal as a
red signal might not be harmful, but recognising a red signal as a green signal
can lead to significant safety issues for the whole system.

All data supporting this study are openly available from the University of
Southampton repository at https://doi.org/10.5258/SOTON/D0528
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