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The purposes of this note are the following two; we first generalize Okada-Takeuti’s well-quasi-
ordinal diagram theory by allowing any well-partial ordering for the inner node labels of the trees.
Second, we discuss possible use of such strong ordinal notation systems for the purpose of a typ-
ical traditional termination proofs method for term rewriting systems, especially for second-order
(pattern-matching-based) rewriting systems.

1 Introduction

A typical termination proof method for the traditional first-order term rewriting system is to show the
termination of a term rewrite system R by verifying that for each rule l(⃗x)→ r(⃗x) of R, f (l(⃗x)> f (r(⃗x))
holds, where f is a strictly order-preserving mapping and the ordering < is a well founded ordering
with the substitution property and the monotonicity property. Here, the substitution property and the
monotonicity property mean

(i) for any substitution (for the list of variables) σ , if α < β holds then ασ < βσ holds, and

(ii) for any context u, if α < β holds then u[α]< u[β ] holds,

respectively. The properties (i) and (ii) guarantee the termination of the whole R because any application
of (first-order) rewrite rule l(⃗x)→ r(⃗x) has a form u[lσ ]→ u[rσ ] for some context u and some substitution
σ . In theory and practice, the identity mapping for f above is known useful. In this note, we restrict our
attention to the identity f for our basic argument.

The method has been widely used for termination proofs as well as a tool for Knuth-Bendix com-
pletion. The method itself would be attractive not only for the traditional first-order rewriting but also
for higher-order or graphic-pattern-matching-based rewriting. One could expect that strong and general
ordering structures in proof theory would be useful for this termination proof method of higher-order
pattern-matching-based rewrite systems.

However, the use of strong orderings < such as Takeuti’s ordinal diagram systems, which are non-
simplification ordering, cannot satisfy the two basic properties above. Because of this difficulty, instead
of the traditional termination proof method, various different techniques have been utilized; for example,
in an early studies of higher-order rewriting Jouannaud-Okada introduced a generalized form of Tait-
Girard’s saturated sets method and reducibility candidates method ([7, 2]).

Hence at a first look, it seems very hard to adapt much stronger well-founded ordering structures to
the traditional first-order termination method. It is a natural question how we could adapt them to the
termination proof method for higher-order rewriting systems.
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In this note, we first generalize the well-quasi-ordinal diagram theory ([9, 10]) by allowing any well-
partial ordering for the inner node labels of the trees, being inspired from the Dershowitz-Tzameret
tree embedding theorem with gap-condition ([5]). After defining our quasi-ordinal diagram system in
Subsection 2.1, we give two proofs of (weakly-)well-quasi-orderedness of our generalized quasi-ordinal
systems. In Subsection 2.2, we give a short proof as a corollary of the Dershowitz-Tzameret’s version
of tree embedding theorem, which presumes existence of an uncountable set. In Subsection 2.3, we
give a more constructive proof using principles of a generalized version of transfinitely iterated inductive
definitions. In Section 3, we give some examples of restricted substitution and monotonicity properties
which are still satisfied with the ordinal diagram systems and their quasi-ordering variants introduced
in Section 2. We take some versions of Buchholz game as examples of pattern-matching-based second-
order rewrite systems and show how one could use the termination proof method, mentioned at the
beginning of this Introduction, with our strong orderings.

2 Well-quasi-ordering and weak-well-quasi-ordering proofs for general-
ized systems of quasi-ordinal diagrams

We, in Section 2.1, generalize the systems Q(I,A) of quasi-ordinal diagrams of Okada-Takeuti [9]
(Takeuti [10]) by allowing inner node labels from a given arbitrary well-partial-ordering I (instead of
a well-ordering I). These generalized systems are denoted by GQ(I,A). Next, in Section 2.2, we give
a short proof of well-quasi-orderedness of a certain restricted tree-domain, the path comparable tree-
domain of GQ(I,A) as a direct corollary of the Dershowitz-Tzameret’s version [5] of tree embedding
theorem with gap-condition. In Section 2.3, we give a proof of weakly-well-quasi-orderedness of the
full domain of GQ(I,A) by the use of iterated inductive definitions below the greatest element of I.
Note that a quasi-ordering (I,≤) is weakly well-quasi-ordered if for any infinite ≤-decreasing sequence
i0 ≥ i1 ≥ . . . from I, there are n and m such that n < m and in ≤ im holds.

The first proof shows the usefulness of the Dershowitz-Tzameret’s tree embedding theorem, while it
involves rather big set theoretical operations; for example, their proof needs the set theoretical assumption
of existence of an uncountable set. On the other hand, the second proof needs less assumption (related
only the inductive definition systems).

2.1 Generalized systems of quasi-ordinal diagrams

The definition of GQ(I,A) is as follows.

Definition 2.1. Let (I,≤I) be a well-partial-ordering and (A,≤A) be a weak-well-quasi-ordering. The
generalized system GQ(I,A) of quasi-ordinal diagrams with respect to I and A is defined as follows.

1. If a ∈ A then a is a connected gqod.

2. If i ∈ I and α is a gqod then (i,α) is a connected gqod.

3. If α1, . . . ,αn are connected gqod’s then α1# . . .#αn is an unconnected gqod.

According to the generalization of a well-ordering I to a well-partial-ordering I, we need a slight
modified form of definition of “section” as follows.

Definition 2.2. For every α,β ∈ GQ(I,A) and every i ∈ I, the relation α ⊂i β is defined as follows.

1. If β ∈ A holds then α ⊂i β never holds.
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2. If β ≡ ( j,β ′) holds then

(a) when i = j holds, α ⊂i β if and only if α = β ′ or α ⊂i β ′,
(b) when i < j holds, α ⊂i β if and only if α ⊂i β ′,
(c) when i ̸≤ j holds, α ⊂i β never holds.

3. If β ≡ β1# . . .#βm (m > 1) holds, then α ⊂i β if and only if for some βl (1 ≤ l ≤ m), α ⊂i βl .

We say α is an i-section of β when α ⊂i β holds. In addition, we say i is an index of α if there is a
gqod β such that β is an i-section of α . Set Ĩ := I ∪{∞}. For given gqod’s α0, . . . ,αn and a given i ∈ Ĩ,
we define

s(i,α0, . . . ,αn) :=

{
{ j | i < j, j is an index of α0 or . . . or αn}, if i ∈ I,
/0, if i = ∞.

We denote the cardinality of s(i,α0, . . . ,αn) by #s(i,α0, . . . ,αn) and the set of all minimal elements of
s(i,α0, . . . ,αn) by smin(i,α0, . . . ,αn). For every gqod’s α0, . . . ,αn, the total number of all occurrences of
() and # in α0, . . . ,αn is denoted by l(α0, . . . ,αn).

The i-nested definition of orderings on GQ(I,A) needs the following modification in the case where
α ≤q

i β with α,β connected and i ∈ I, while the other part is essentially the same as [9, 10].

Definition 2.3. For every i ∈ Ĩ, the relation ≤q
i on GQ(I,A) is defined by induction on ω · (l(α,β ))+

#s(i,α,β ).

1. If α,β ∈ A holds then for every i ∈ Ĩ, α ≤q
i β if and only if α ≤A β .

2. If α ∈ A and β ̸∈ A hold then for every i ∈ Ĩ, α ≤q
i β and β ̸≤q

i α hold.

3. If α ≡ α1# . . .#αn and β ≡ β1# . . .#βm (n+m > 2) hold, then for every i ∈ Ĩ, α ≤q
i β if and only

if one of the following conditions holds:

(a) there is a βl (1 ≤ l ≤ m) such that for every k (1 ≤ k ≤ n), αk ≤q
i βl and βl ̸≤q

i αk hold,
(b) there is a βl (1 ≤ l ≤ m) such that α1 ≤q

i βl , and if n ≥ 2 then

α2# . . .#αn ≤q
i β1# . . .#βl−1#βl+1# . . .#βm

holds.

4. If α ≡ ( j,α0), β ≡ ( j′,β0) and i = ∞ hold, then α ≤q
∞ β if and only if either j < j′ holds or both

j = j′ and α0 ≤q
j β0 hold.

5. If α ≡ ( j,α0), β ≡ ( j′,β0) and i ∈ I then α ≤q
i β if and only if either

(a) there is a β ′ ⊂i β such that α ≤q
i β ′, or

(b) for every α ′ ⊂i α , α ′ ≤q
i β , β ̸≤q

i α ′ and
• α ≤q

j β for any element j of smin(i,α,β ), if s(i,α,β ) ̸= /0,
• otherwise, α ≤q

∞ β .

Lemma 2.4. For every i ∈ Ĩ, (GQ(I,A),≤q
i ) is a quasi-ordering.

Proof. One can prove the lemma by using the following sublemmas:

1. For every i ∈ Ĩ, the relation ≤q
i satisfies the transitivity, that is, for every α,β ,γ ∈ GQ(I,A) and

every i ∈ Ĩ, if α ≤q
i β and β ≤q

i γ hold, then α ≤q
i γ holds.
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2. For every α ∈ GQ(I,A) and every i ∈ Ĩ,

(a) the relation ≤q
i satisfies the reflexivity, that is, α ≤q

i α holds, and
(b) if i ∈ I, then every β ∈ GQ(I,A) with α ⊂i β , α ≤q

i β and β ̸≤q
i α hold.

Remark 2.5. To verify the transitivity of the relation ≤q
∞, we need the anti-symmetricity of I in GQ(I,A).

This is why we define I of GQ(I,A) as not a well-quasi-ordering but a well-partial ordering. In addi-
tion, note that the above proof for the quasi-orderedness of GQ(I,A) neither depends on the well-quasi-
orderedness of I nor the weakly-well-quasi-orderedness of A.

2.2 Well-quasi-ordering proof for the subsystem QPC(I,A) of GQ(I,A) via Dershowitz
and Tzameret’s tree embedding theorem

In this section, we give a short proof of well-quasi-orderedness of the path comparable tree-domain
of GQ(I,A) as a direct corollary of Dershowitz-Tzameret’s tree embedding theorem. A labeled tree in
GQ(I,A) is called a path comparable tree if for any path of the tree and any two inner (non-leaf) nodes
a and b in the path, a and b are comparable in the partial ordering I (cf. [5]). Let QPC(I,A) be the set of
all forests from path comparable trees in GQ(I,A).

Note that QPC(I,A) is located between Okada-Takeuti’s quasi-ordinal diagram system Q(I,A) and
our GQ(I,A): QPC(I,A) is a generalization of Okada-Takeuti’s quasi-ordinal diagram system Q(I,A) as
I is generalized from a well-ordering to a well-partial ordering. On the other hand, our GQ(I,A) is a
generalization of QPC(I,A).

We say α ≪ β holds if for every i ∈ Ĩ, α ≤q
i β holds. It is obvious that the pair (GQ(I,A),≪)

is a quasi-ordering. Let ↪→g be Dershowitz-Tzameret’s forest-embedding with the gap-condition on
QPC(I,A), which is obtained from their tree-embedding (cf. [5]) in a natural way. We have the following
proposition.

Proposition 2.6. For every α,β ∈ QPC(I,A), if α ↪→g β holds, then α ≪ β holds.

Proof. Use the following properties of GQ(I,A): For every α,β ∈ GQ(I,A) and every i, j ∈ I with i ≤ j,

1. α <q
i ( j,α) holds.

2. If β is connected and (i,α)≪ β holds, then (i,α)≪ ( j,β ) holds.

3. If β is of the form β1# · · ·#βn (n > 1) and for some m (1 ≤ m ≤ n), (i,α) ≪ βm holds, then
(i,α)≪ ( j,β ) holds.

Then, the well-quasi-orderedness of (QPC(I,A),≪) is an immediate corollary of the tree-embedding
theorem of [5].

Corollary 2.7. The quasi-ordering (QPC(I,A),≪) is well-quasi-ordered.

Remark 2.8. The Dershowitz-Tzameret’s tree embedding theorem also shows the well-orderedness of
the lexicographic ordering (OT(I,A),<B) defined in [8], because for each OT(I,A) one can take a system
QPC(I′,A) that includes OT(I,A) as a subset and <B coincides with <q

∞ on OT(I,A). Note that the
lexicographic ordering <B on the larger domains O(I,A) or QPC(I,A) is not well-founded.
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2.3 Weak-well-quasi-ordering proof for the full system GQ(I,A)

In this section, we give a direct proof for the weakly-well-quasi-orderedness of the full systems GQ(I,A)
by using iterated inductive definitions below the greatest element of I. Okada-Takeuti gave the minimal-
bad sequence argument for the direct proof of the weakly-well-quasi-orderedness of the subsystems
Q(I,A) of GQ(I,A) (cf. [9, 10]). On the other hand, the usual well-ordering proof of ordinal diagrams
are typically proved explicitly or implicitly in a system of inductive definitions. Below we expose the
latter method by following [1].

However, we cannot use the Gentzen-style method in [1] that lifts up the well-foundedness of α to
the one of α +(i,β ), because the orderings on GQ(I,A) are not linearly ordered but quasi-ordered. To
complete our proof, another method is exploited. This is the only substantial difference from the usual
proofs.

Let I be an arbitrary well-partial-ordering with a minimal element 0 and the greatest element ξ . In
addition, let A be an arbitrary weak-well-quasi-ordering. We suppose a fixed binary relation Acc on
I ×GQ(I,A) with the following principles (CL) and (LE)

(CL) ∀i < ξ (Prog[Fani,<
q
i ,Acci]), (LE) ∀P ⊆ GQ(I,A)∀i < ξ (Prog[Fani,<

q
i ,P]→ Acci ⊆ P),

where for every i ∈ I and α,β ∈ GQ(I,A),
• Acci(α) :⇐⇒ Acc(i,α), Fani(α) :⇐⇒∀ j < i∀β ⊂ j αAcc j(β ),
• Prog[X ,R,Y ] :⇐⇒∀α(X(α)∧∀β (βRα ∧X(β )→ Y (β ))→ Y (α)).
We also assume the following principle of transfinite induction on I:

(TI) ∀P ⊆ GQ(I,A)∀i < ξ (∀ j < iP( j)→ P(i))→∀i < ξ (P(i)).

Then, we have the following proposition in a similar way to [1] with an exception mentioned above.

Proposition 2.9. For every α ∈ GQ(I,A), Acc0(α) holds.

Corollary 2.10. The quasi-ordering (GQ(I,A),≤q
0) is weakly-well-quasi-ordered.

Proof. Define
Wwqoi(α) :⇐⇒ For any function f from N to GQ(I,A),
[ f (0)≤q

i α ∧∀n(Fani( f (n))∧ f (n+1)≤q
i f (n))→∃n∃m(n < m∧ f (m)≥q

i f (n))].
Then, use Proposition 2.9 and the fact that ∀i < ξ (Acci ⊆Wwqoi).

3 Application of the weakly-well-quasi-orderedness of GQ(I,A) to the ter-
mination proof method for higher-order rewriting; Buchholz Game

In this section, we discuss the possibility of application of the weakly-well-quasi-orderedness of GQ(I,A)
to higher-order pattern-matching-based rewriting systems. We formulate the restricted versions of Sub-
stitution Property and Monotonicity Property of GQ(I,A) to give a traditional termination proof method
for such rewrite systems. As an example, Buchholz hydra game-style rewrite system is considered (cf.
[3, 6]).

First, we formulate Buchholz hydra game-style rewrite system. Let V be an infinite set of variables
x1,x2, . . .. In this subsection, we consider the system GQ(I,A) of gqod’s such that
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• A =V ∪{ρ} and for any a1,a2 ∈ A, a1 ≤A a2 holds if and only if a1 = a2 holds,

• I is a well-partial ordering with the least element ρ .
For any n ∈ N, let α · (n+1) be α# · · ·#α︸ ︷︷ ︸

n+1 times

. We denote the set of all contexts by C . For a given u[∗] ∈ C ,

we define u[α] as the gqod obtained by substituting α for ∗ in u[∗]. In addition, we inductively define Ci

as follows: ∗ ∈ Ci, and if u[∗] ∈ Ci and α,β ∈ GQ(I,A), then α#u[∗],u[∗]#α ∈ Ci. Finally, if j > i and
u[∗] ∈ Ci, then ( j,u[∗]) ∈ Ci.

The following is a generalization of Buchholz game rules that involve pattern-matching-based reduc-
tions.

Definition 3.1 (Buchholz game-style rewrite rules). Buchholz game-style rewrite rules are as follows:
Let a be an arbitrary element of A, i′ be an arbitrary successor element of i, λ be an arbitrary limit
element, u[∗] be an arbitrary element of C and ui[∗] be an arbitrary element of Ci.

(1) If n+m > 0, then
(ρ,u[(i,α1# · · ·#αn#(ρ,a)#β1# · · ·#βm)])▷ (ρ,u[(i,α1# · · ·#αn#β1# · · ·#βm#ρ ·3) · (k+1)]),
otherwise (ρ,u[(i,(ρ,a))])▷ (ρ,u[(i,a#ρ ·2) · (k+1)]).

(1)’ If n+m > 0, then
(ρ,u[α1# · · ·#αn#(ρ,a)#β1# · · ·#βm])▷ (ρ,u[α1# · · ·#αn#β1# · · ·#βm#ρ ·3]),
otherwise (ρ,u[(ρ,a)])▷ (ρ,u[a#ρ ·2]).

(2) (ρ,u[( j,ui[(i′,a)])])▷ (ρ,u[( j,ui[(i,ui[(ρ,a)])])]) with an arbitrary ui ∈ Ci and an arbitrary j ≯ i.

(3) (ρ,u[(λ ,a)])▷ (ρ,u[(i′,a#ρ)]) with an arbitrary i < λ .

Remark 3.2. To apply the restricted Monotonicity Property lemma below (Lemma 3.9), we restricted
ourselves to hydras with the root ρ in the rules above. Because of this restriction, we cannot rewrite
hydras without the label ρ . By omitting this restriction, one can rewrite hydras without ρ to numeral
trees, which are normal forms in our game. The notion of numeral trees is defined below.

In addition, the reason we attached one, two or three ρ’s to the right-hand side in some of the rules
above is that we record how many times we at most applied the rules.

In graph notation, a part of the rule schema (2) is expressed as follows.

'&%$ !"#j

'&%$ !"#i′

'&%$ !"#a

7777777777777

�������������
▷ '&%$ !"#j

��������i

/.-,()*+ρ

'&%$ !"#a

7777777777777

�������������

77
77

77
77

77
77

7 �������������

Example 3.3 (A concrete example of the rule schema (2)). Let us suggest the correspondence of the
rule schema (2) to higher-order rewriting by means of a toy example. In GQ(ω +1,V ∪{0}), the follow-
ing is an instance of the rule schema (2), where j = 2, u = ∗, i′ = 3:
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(0,(2,X(3,0)))▷ (0,(2,X(2,X(0,0)))),

where X is a higher-order variable and corresponds to the context ui ∈ Ci.

To give a traditional termination proof method for pattern-matching-based rewrite systems such as
Buchholz game, we first formulate the restricted Substitution Property of GQ(I,A). The following is a
counterexample for the full Substitution Property of GQ(I,A).

Example 3.4 (A counterexample for the full Substitution Property of GQ(I,A)). Set α :≡ x and β :≡
( j,x), and take a substitution σ assigning ( j′,γ) to x with j < j′. Then, α ≡ x ≤q

ρ ( j,x) ≡ β holds, but
ασ = ( j′,γ)≤q

ρ ( j,( j′,γ)) = βσ does not hold whenever there is an i ∈ I such that ρ < i but i and j are
incomparable.

A numeral tree is a connected gqod that consists of ρ’s only. A numeral substitution is a substitution
assigning a numeral tree to each variable. Note that a numeral tree can be seen as a generalized numeral.
For numerical substitutions, we have Substitution Property.

Lemma 3.5 (The numeral Substitution Property lemma). For any numeral substitution σ , any i ∈ I,
any α and β in GQ(I,A), if α ≤q

i β holds, then ασ ≤q
i βσ holds.

Proof. Induction on ω · l(α,β )+ #s(i,α,β ). We consider only the case where i ̸= ∞ and α,β are of
the forms ( j,α ′) and ( j′,β ′), respectively. First, Suppose that there is a γ such that γ is an i-section of
β and α ≤q

i γ holds. By IH, we have ασ ≤q
i γσ . It is obvious that γσ ⊂i βσ holds, so it follows that

ασ ≤q
i βσ holds. Next, Suppose that for any δ ⊂i α , δ <q

i β holds and that for any minimal element l
of s(i,α,β ), α ≤q

l β holds. In this case, we immediately have α ≤q
i β by IH.

One can observe the following fact, which is crucial for application of the weak-well-quasi-orderedness
of GQ(I,A) to the termination proof of Buchholz game-style rewrite system.

Fact 3.6. For any two elements l and r of GQ(I,A), if l ▷ r holds, then l >q
ρ r holds.

Proposition 3.7. For any numeral substitution σ , any i ∈ I, any l and r in GQ(I,A), if l ▷ r holds, then
lσ >q

ρ rσ holds.

Proof. By the numeral Substitution Property lemma (Lemma 3.5) and Fact 3.6.

Next, we formulate the restricted Monotonicity Property of GQ(I,A). The following is a counterex-
ample for the full Monotonicity Property of GQ(I,A).

Example 3.8 (A counterexample for the full Monotonicity Property of GQ(I,A)). Let i be an element
of i with ρ < i. A counterexample for Monotonicity Property of <ρ in GQ(I,A) is as follows. Set
u[x] :≡ (i,x). We have (i,ρ) <ρ (ρ,(i,ρ)), but u[(i,ρ)] = (i,(i,ρ)) ≮ρ (i,(ρ,(i,ρ))) = u[(ρ,(i,ρ))]
holds because we have u[(ρ,(i,ρ))]<ρ u[(i,ρ)].

For connected gqod’s with the root ρ , we have Monotonicity Property.

Lemma 3.9 (The restricted Monotonicity Property lemma). For any two elements α and β of GQ(I,A),
if (ρ,α)≤q

ρ (ρ,β ) holds, then for any context u, u[(ρ,α)]≤q
ρ u[(ρ,β )] holds.
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By the proposition below, one can prove the termination of Buchholz game-style rewrite relation →
restricted to numeral substitutions.

Proposition 3.10. For any two elements l and r of GQ(I,A), if l▷ r holds, then for any context u and any
numeral substitution σ , u[lσ ]>q

ρ u[rσ ] holds.

Proof. By Fact 3.6, the numeral Substitution Property lemma (Lemma 3.5) and the restricted Mono-
tonicity Property lemma (Lemma 3.9).
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