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Term rewriting systems have a simple syntax and semantics and allow for straightforward proofs of
correctness. However, they lack the efficiency of imperative programming languages. We define a
term rewriting programming style that is designed to be translatable into efficient imperative lan-
guages, to obtain proofs of correctness together with efficient execution. This language is designed
to facilitate translations into correct programs in imperative languages with assignment statements,
iteration, recursion, arrays, pointers, and side effects. Versions of the language with and without de-
structive operations such as array assignment are developed, and the relationships between them are
sketched. General properties of a translation that suffice to prove correctness of translated programs
from correctness of rewrite programs are presented.

1 Introduction

The development of large-scale software systems often includes finding and resolving possibly a large
number of bugs. While software testing can sometimes detect the presence of bugs, in general it cannot
be used to prove that software is entirely correct with respect to its intended purpose. In systems, or
components of systems, where such correctness is critical, such as in systems controlling transportation
infrastructure or medical devices, it is crucial that the underlying algorithms are formally verified; proven
to meet their specifications. A number of methods for formally verifying software, and creating formally
verified programs, have been developed [3]. While the use of formal verification is on the rise, many
software projects are still designed and deployed without undergoing verification. One possible reason
is that many verification tools may need extensive specialized knowledge to use, be incompatible with
some software packages, require that a specific programming language be used, or in some way add a
large amount of time to the software development process.

Term rewriting systems [1] provide a formalism for expressing computational rules with a simple
syntax and semantics, allowing for properties of these rules to be investigated in a natural way. This
paper presents an abstract programming system, based on term rewriting, which is designed to facilitate
both proofs of correctness and translation of programs into mainstream imperative programming lan-
guages. The system allows programs to be specified in a way which is close to logical notation, making
possible straightforward techniques for proving correctness with respect to specifications, but is simi-
lar to an imperative language in style, so that programs can be translated more directly into imperative
programming languages. The system is untyped, and designed to be simple and have few features, in
order to be both easier for the typical programmer to understand and use, and more easily translatable
into other languages. Complex operations such as AC-unification and higher-order unification are not
included for this reason.

The purpose of such a system is to reduce the cost of formal verification by focusing on the correct-
ness of algorithms which may exist as components of many different software systems, implemented in
many different languages. Instead of having to prove the correctness of such an algorithm in each system,
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each of which may require a different verification tool, an abstract program expressing the algorithm can
be proved correct once, and then translated into each different language for use in each software system.
To this end, abstract programs which have been proved correct could be included in a publicly-available
library of abstract programs, each of which can be translated into correct programs in different languages.

This paper focuses on the syntax for expressing programs in this formalism, and general properties
of the programs and their translations that suffice to prove correctness of translated programs from the
correctness of rewrite programs. At this point, only programs expressing pure algorithms are considered,
and a detailed consideration of the translation mechanism is not presented.

2 Syntax

Standard terminology for term rewriting systems is assumed. The symbols f ,g,h are used to represent
function symbols from a signature Σ. Symbols a,b,c are used for constants, while x,y,z are reserved for
variables from a countably infinite collection V of variables. We use Ter(Σ,V ) to refer to the set of terms
over Σ and V ; the symbols r,s, t,u,v,w are used to denote terms. The ground terms over Σ are elements
of Ter(Σ, /0).

2.1 Constructor Term Rewriting Systems

The signature Σ is assumed to be partitioned into a set C of constructor symbols or constructors, and a
set D of defined functions or non-constructors. The constructor terms are the elements of Ter(C,V ). A
constructor term rewriting system (or CTRS) R over Σ is defined as a set of rewrite rules r→ s, such that
all variables occurring in s also occur in r, and the left-hand side r of each rule has the form f (t1, . . . , tn),
for f ∈ D and t1, . . . , tn ∈ Ter(C,V ).

If R is a CTRS, then R can be viewed as expressing a functional program, with elements of C cor-
responding to program data, and elements of D to functions. In particular, a procedure for f ∈ D is a
subset of rules of R for which f occurs in the left-hand side of each rule. If a procedure consists of all
such rules in R, then it is called the R-procedure for f . The program described by R then is given as a
collection of procedures, as is typical in the declarative programming paradigm.

2.2 COC Systems

The abstract programming system described in this paper specifies a program as a collection of CTRS
procedures, but is designed for such a program to be translated into imperative programming languages.
As such, additional properties are required of a CTRS used for this purpose in order to facilitate the
translation. Corresponding to the lack of repeated formal parameters in imperative languages, each rule
r→ s in R is required to be left-linear, meaning that no variable occurs in r more than once. So that
each term can be rewritten in at most one way, any pair of rules r1→ s1 and r2→ s2 in R are required to
be disjoint, meaning that r1 and r2 are not unifiable. A CTRS which satisfies these properties is called
orthogonal.

A system R is complete if, for all f ∈ D which occur in rules of R, and all t1, . . . , tn ∈ Ter(C, /0), the
term f (t1, . . . , tn) is reducible by the R-procedure for f . In a complete CTRS, all non-constructor ground
terms are reducible, and as a consequence, all normal forms of ground terms are constructor terms.
This corresponds to the fact that all inputs can be processed by programs written in a typical imperative
language.
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If R is a CTRS specifying a program to be translated into an imperative language, then R should
satisfy these properties; this way, the program given by R is structurally closer to an imperative program.
These requirements are summed up by the following definition.

Definition 2.1 A COC system is a CTRS that is complete and orthogonal.

All COC systems are confluent, as a consequence of orthogonality. The following proposition results
from these properties.

Proposition 2.2 If R is a COC system and R is terminating, then each ground term s has a unique normal
form t ∈ Ter(C, /0).

2.3 Programs

We can now define a program in this formalism.

Definition 2.3 A program is a COC system which consists of a finite collection of procedures.

In other words, a COC system P is a program if P can be partitioned into finitely many procedures for
f ∈ D. The letters P,Q,R will denote programs.

The semantics of such a program can be succinctly described. Let R= denote the set of equations
r = s for all rules r → s in any collection of rewrite rules R. If P is a program then the declarative
semantics D(P) of P is P=. It is easily seen that if s ∗=⇒R t then D(P) |= (s = t).

As a result of the properties of COC systems given above, and the fact that constructor terms are
irreducible, we have the following result.

Theorem 1 For a program P, there are no two distinct s, t ∈ Ter(C, /0) such that D(P) |= (s = t).

Proof. This follows from the confluence of P, and from the fact that all constructor terms are irreducible.

3 Examples

In this section, examples are given to show how programs can be specified in this formalism. We assume
rewrite rules for the binary Boolean operators ∧, ∨, and ¬ are given, which will be used in infix notation.
The set C of constructors is assumed to include constants true and f alse, as well as tupling operators 〈 〉.

3.1 Procedures

The following procedures are given to be included in programs where they are convenient. In the follow-
ing, i, m, and n are positive integers, f ,g ∈C are constructors, c,d ∈C are distinct constructor constants,
and for each f ∈C there is a unique constant c f ∈C.

If-then-else (in infix notation): Top:
(if true then x else y)→ x top(c)→ c
(if f alse then x else y)→ y top( f (x1, . . . ,xn))→ c f

Eq:
eq(c,c)→ true
eq(c,d)→ f alse
eq( f (x1, . . . ,xm),g(y1, . . . ,yn)) → m = n ∧ eq(top( f (x1, . . . ,xm)),top(g(y1, . . . ,yn)))

∧ eq(x1,y1)∧·· ·∧eq(xm,ym)
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Arg: Replace:
arg(i, f (x1, . . . ,xi, . . . ,xn))→ xi replace( f (x1, . . . ,xi, . . . ,xn), i,y)→ f (x1, . . . ,y, . . . ,xn)

Other rules are included as well; for these, if the input is not of the expected term, then the result will
be a constructor constant error indicating that an error has occurred. Also, multiple instances of some
of the above rules are necessary. In particular, one instance of the third rule for eq above is included for
each pair of constructors f and g, where at least one of f and g is not a constant. One instance of the rule
for arg above is given for each possible i, and one instance of the rule for replace above is given for each
pair of non-constant f ∈C and i.

3.2 Programs

In the following programs, if the input is not of the expected term, then the result will be a constructor
constant error, indicating that an error has occurred.

List Append. The append function on lists can be written as follows, where cons(x,y) is the list y
with x added to the front, and NIL is the empty list:

append(cons(u,v),w)→ cons(u,append(v,w))
append(NIL,w)→ w

For this program, the only constructors needed are cons and NIL. If there are other constructors, then
append would also have to be given a definition on them, to achieve completeness. If sorted term
rewriting were used, then it would be sufficient to specify that the arguments of append must be of the
appropriate sort.

List Length. Following is a program that computes the length of a list:

length(cons(u,v))→ 1+ length(v)
length(NIL)→ 0

Binary Search. Here is the essential part of a binary search program, omitting arithmetic functions.
Here i and j give the lower and upper bounds of the search, x is the array being searched, and y is the
element being looked for. The program returns a pair 〈b,k〉 where b is true if the element is found, f alse
otherwise, and k gives the location of the element if it is found:

bsearch(i, j,x,y)→
if i > j then 〈false, 〉 else

if eq(i, j) then (if eq(arg(i,x),y) then 〈true, i〉
else 〈 f alse, 〉) else

if y < arg(b(i+ j)/2c,x)
then bsearch(i,b(i+ j)/2c,x,y)
else bsearch(b(i+ j)/2c, j,x,y)

4 Computation

A program in a typical imperative language will specify explicitly the order in which steps are executed,
but programs expressed in the formalism presented here are essentially declarative. To make translation
of such programs into an imperative language more direct, the order in which rules of a program should
be applied can be specified, so that execution of the translated program can mirror the chosen order.
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4.1 Evaluation Strategies

A computation sequence or execution sequence through P is a sequence t1, t2, t3 . . . of terms such that the
starting term t1 is ground, and ti⇒P ti+1 for all i. Each term ti is called a snapshot of the sequence. Since
the starting term is required to be ground, all snapshots in a sequence are ground. The set of computation
sequences through P is written CP. If P is terminating, then all computation sequences through P are
finite, and the final term tn in each sequence is irreducible.

Definition 4.1 An evaluation strategy for a program P is a function σ : Ter(Σ, /0)→ CP such that the
starting term of σ(s) is s.

The input to a program P is given as a ground term s. If P is terminating, then the output of P on input
s with evaluation strategy σ is the final term of σ(s). Notice that all irreducible terms in a COC system
are constructor terms, so any output will always be a ground constructor term.

Define Pσ (s, t) for a program P to mean that if s is the input to P with evaluation strategy σ , then
t is the output. As a consequence of the confluence of any program P in this formalism, we have the
following:

Proposition 4.2 For any evaluation strategies σ ,σ ′ for a program P, for any input s it holds that Pσ (s, t)
if and only if Pσ ′(s, t).

4.2 I/O Assertions

Partial correctness of a program P with a specified evaluation strategy σ can be defined relative to an
input predicate I and an output predicate O.

Definition 4.3 A program P with evaluation strategy σ is partially correct with respect to I and O if for
all inputs s≡ f (t1, . . . , tn), where f ∈ D and t1, . . . , tn ∈ Ter(C, /0), it holds that

I(t1, . . . , tn)∧Pσ ( f (t1, . . . , tn),u)→ O(t1, . . . , tn,u).

As a result of the previous proposition, if P is partially correct with a particular evaluation strategy σ ,
then P is partially correct: partially correct with any evaluation strategy. Thus one way to prove to the
partial correctness of a program P is by means of its denotational semantics D(P).

Theorem 2 If it holds that I(t1, . . . , tn)∧(D(P) |=( f (t1, . . . , tn)= u))∧(u is irreducible)→O(t1, . . . , tn,u),
then P is partially correct with respect to I and O.

Proof. Suppose Pσ ( f (t1, . . . , tn),u); then D(P) |= f (t1, . . . , tn) = u. Also, u must be irreducible. Thus
I(t1, . . . , tn) together with this implies O(t1, . . . , tn,u), so Pσ is partially correct with respect to I and O.

Total correctness is partial correctness together with termination. Many techniques for proving ter-
mination are known in the rewriting community.

To verify the binary search program, because it is terminating, one can do induction on the length
of a computation sequence. All recursive calls will have shorter computation sequences. Therefore,
assuming that the recursive calls are correct, one shows that the binary search program is correct.

In general, for any terminating recursive collection of procedures, one can specify separate input and
output predicates for each procedure, and use a similar inductive approach to show that each procedure
is correct assuming that all the recursive calls in it are correct.
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5 Equivalence Relation on Terms

In an implementation of rewriting, it is convenient to store all occurrences of the same subterm only once
and have pointers to this subterm. This idea also impacts translations of the programs into imperative
languages. This identification of repeated subterms can be formalized by an equivalence relation on
subterm occurrences in a program snapshot. The intention is that equivalent subterm occurrences would
all be stored in the same location. Another way of achieving this is by representing terms as graphs, as in
graph rewriting, but this is not considered here. The treatment of repeated subterms will also influence
destructive operations, which are necessary for efficient implementations.

Equivalence classes are named using identifiers. A decorated function symbol is a pair id : f where
f is an ordinary plain function symbol and id is the name of an equivalence class. A decorated term
is a term in which all the function symbols are decorated function symbols. If id : f (t1, . . . , tn) is a
decorated term, then it is in the id equivalence class. Decorated terms must only identify subterms that
are syntactically equivalent, so that if id : f (s1, . . . ,sm) and id : g(t1, . . . , tn) are two decorated subterms
in a program snapshot, then f = g, m = n, and si ≡ ti for all i. If s is a decorated term then sB t indicates
that the plain term t is s with all the equivalence class identifiers removed.

5.1 Decorated Rewriting

The rewrite relation can be extended to a decorated rewrite relation⇒d on decorated terms. For this, a
decorated substitution is of the form {t1/x1, . . . , tn/xn} where the ti are decorated terms. Suppose t[u] is
a decorated ground term with u as a subterm. Suppose uBu′ and u′ unifies with the left hand side r of a
rule r→ s in R. Thus there is a substitution θ such that u′ ≡ rθ . Let rd and θ d be a decorated term and
a decorated substitution such that u≡ rdθ d . Let sd be a decorated s where the identifiers of s′θ d (for s′ a
non-variable subterm of sd) are chosen so that only syntactically identical subterms of t[sdθ d ] are in the
same equivalence class. Then t[u]⇒d

R t[sdθ d ]. This implies that if the right-hand side of a rewrite rule
has repeated variable occurrences, then all occurrences of a term replacing a given repeated variable will
be equivalent.

The above description applies if there is only one term in the equivalence class of u. If there is more
than one such term, then they all have to be rewritten together. Indicating all the occurrences of u in t by
t[u,u, . . . ,u], t[u,u, . . . ,u]⇒d

R t[sdθ d ,sdθ d , . . . ,sdθ d ]. This kind of rewriting, when all identical redexes
are rewritten at the same time, is called parallel rewriting.

Equivalence class names also have to be assigned to subterms of the input term. That is, the input
term has to be decorated. This can be done arbitrarily subject to the rule that only syntactically identical
subterms can be in the same equivalence class. It may be convenient in some cases to have a copy
operation such that copy(s) produces a new copy of s with all subterms in new equivalence classes.

6 Assignment Statements

In a program expressed in this formalism, it is convenient to allow a single assignment style of program-
ming on the right-hand sides of rewrite rules, similar to the imperative style of programming.

Definition 6.1 An assignment is an expression of the form x← t, for a variable x and term t.

Assignments are used to define aterms inductively using the following syntax:
〈 aterm 〉 := 〈 term 〉
〈 aterm 〉 := 〈 assignment 〉 ; 〈 aterm 〉
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〈 aterm 〉 := 〈 function symbol 〉(〈 aterm 〉, . . . ,〈 aterm 〉)
An aterm x← t; E[x] is considered as a representation for the term E[t] with the understanding that all
occurrences of x are replaced by t.

The formalism is extended to allow a program to have rewrite rules whose right-hand sides are
aterms. This is similar to the let construct found in some programming languages. The assignments do
not influence the rewriting relation, but if the variable on the left-hand side of an assignment statement
occurs more than once in the remainder of the program, then all these occurrences will be replaced by
equivalent terms. An example of this is the aterm x← g(c); f (x,x), representing f (g(c),g(c)) with the
two occurrences of g(c) equivalent. So assignment statements can influence the equivalence relation and
thus the decorated rewriting relation. Other than this, the program with assignment statements can be
considered as equivalent to the version without them.

6.1 Variable bindings

There are restrictions on where variables may appear in terms having assignment statements. These
restrictions are defined in terms of binding or scoping of variables.

In an expression of the form x← t; E[x], all occurrences of x in E are bound by the assignment
statement x← t. However, occurrences of x in t are not bound by this assignment statement. A variable
occurrence that is bound by some assignment statement is said to be bound. A variable that is not bound
is free.

The binding rule for variable occurrences is this: In a rewrite rule r→ s, if any variable x appears
in s but not in r then all its occurrences in this rewrite rule must be bound, except that any occurrences
of a variable x on the left hand side of an assignment statement x← t must be free. Also, if a variable
appears in r in a rewrite rule r← s then all its occurrences in s must be free. These restrictions imply
that in a sequence x1 ← t1; . . . ; xn ← tn; E, xi cannot appear in x j ← t j for j < i. All the possibilities
for xi being bound or free in x j← t j end up violating some restriction on binding. These restrictions also
imply that in an assignment statement x← t, x cannot appear in t. This prohibits assignment statements
such as i← i+1.

6.2 Order of eliminating assignment statements

Because an aterm x← t; E[x] is considered a representation for E[t], assignments can be eliminated by
replacing x← t; E[x] by E[t]. If there is more than one assignment statement, then the question arises
whether the final result depends on the order in which the assignment statements are eliminated. It turns
out that the result of eliminating assignment statements in a rewrite rule does not depend on the order
in which they are eliminated, and even the equivalence class names are not affected. Thus a rewrite
rule containing assignment statements unambiguously represents one without them, so that there is a
unique assignment-free form of a program. For this, the terms can be considered as decorated terms to
make it clear that the final result, including the names of the equivalence classes, does not depend on the
order of elimination. Also, the process of elimination must terminate because the number of assignment
statements in E[t] is one less than the number in x← t; E[x] because t does not contain any assignment
statements.
Theorem 3 The result of eliminating assignment statements from a rewrite rule does not depend on the
order in which the statements are eliminated.
Proof. Consider two assignment statements in an expression of the following form:

E[x1← t1;E1[x2← t2;E2]]
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Here x1 cannot appear in t1 but it can appear in E1, t2, and E2, while x2 cannot appear in t1 or t2 or E1
outside of E2, though it can appear in E2, by the scoping rules. Doing the assignment x1← t1 first yields
the expression E[E1[x2 ← t2;E2](t1/x1)]. For simplicity of notation let E ′1 be E1(t1/x1), t ′2 be t2(t1/x1)
and E ′2 be E2(t1/x1). Then the result of eliminating the first assignment statement can be written as

E[E ′1[x2← t ′2;E ′2]]

Eliminating the second assignment statement then yields E[E ′1[E
′
2(t
′
2/x2)]]. Eliminating the inner as-

signment statement x2← t2 first yields E[x1← t1;E1[E2(t2/x2)]]. Then eliminating the outer statement
x1 ← t1 yields E[E1[E2(t2/x2)](t1/x1)] This is the same as E[E ′1[E

′
2(t
′
2/x2)]], so the result is the same

regardless of the order of elimination of these two statements. One obtains a similar result more easily if
the assignment statements are in disjoint subterms as in E[x1← t1,x2← t2].

Thus assignment statements can be eliminated in either order, so this extends to any set of assignment
statements and the result is unique independent of the order of elimination.

7 Destructive Operations

Destructive operations are needed for efficiency in imperative programs, but do not conform to pure
term rewriting semantics. An alternate destructive semantics, which uses decorated rewriting so that all
equivalent subterms are rewritten at once, can be used in order to support such operations in this system.
It is important to have a way to relate the two semantics.

We illustrate the problem with a modification to an element of an array. Suppose that A(s1, . . . ,sn)
represents a one-dimensional array with n elements. Then replace(t, i,A(s1, . . . ,sn)) replaces the i-th
argument of A with a term t; the result is A(s1, . . . , t, . . . ,sn), with t having replaced si. In the pure
rewriting semantics, this operation creates a completely new term, and other occurrences of A(s1, . . . ,sn)
are not affected. However, in destructive semantics, the same storage is used for A(s1, . . . , t, . . . ,sn) as
was used for A(s1, . . . ,sn), and just the i-th element is modified, so all other occurrences of A(s1, . . . ,sn)
in the same equivalence class are also modified to A(s1, . . . , t, . . . ,sn). Thus the destructive operation may
have a side effect. A similar situation can occur for a change to a pointer in the middle of a list; other
references to this list will also have the pointer changed in destructive semantics, but not in rewriting
semantics.

We use the notation⇒destr for the effect of an operation with destructive semantics, and⇒trs for the
effect with rewriting semantics. As before, we indicate the equivalence class of term u by id : u. For the
array modification example above, we have

t[id′ : replace(t, i, id : A(s1, . . . ,sn)), id : A(s1, . . . ,sn)]

⇒destr t[id : A(s1, . . . , t, . . . ,sn), id : A(s1, . . . , t, . . . ,sn)],

and
t[id′ : replace(t, i, id : A(s1, . . . ,sn)), id : A(s1, . . . ,sn)]

⇒trs t[id′ : A(s1, . . . , t, . . . ,sn), id : A(s1, . . . ,sn)].

In the expression t[. . . ], the terms inside the brackets indicate distinct subterm occurrences in term t.
In general, for an operation f that is destructive on the i-th argument, we have

r[ f (s1, . . . ,sn),si,u[si]]⇒destr r[t, t,u[t]]
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but r[ f (s1, . . . ,sn),si,u[si]]⇒trs r[t,si,u[si]]. However, the situation can be more complicated than in-
dicated. For example, there could be more than one equivalence class that is affected by a destructive
operation, and the destructive operation may have other arguments besides the affected term. Addition-
ally, some of the affected subterms could end up in the term that results from the destructive operation,
and some affected subterms could be subterms of other affected subterms.

We will assume that for any destructive operation there is a sequence

α = 〈r1→ s1,r2→ s2, . . . ,rn→ sn〉

of decorated rewrite rules such that if the destructive operation has a side effect that transforms r to s,
then there is a rewrite sequence as follows:

t1⇒d
1 t2⇒d

2 t3 · · · ⇒d
n tn

where r ≡ t1, s ≡ tn, and ⇒d
i indicates rewriting with the single rewrite rule ri → si using decorated

rewriting. We also write t1⇒d
α tn.

Definition 7.1 The rewrites ri → si are called primary modifications, changes to any other terms as a
result are called secondary modifications.

In the array assignment example, there is one primary modification, the rule

A(s1, . . . ,sn)→ A(s1, . . . , t, . . . ,sn).

Equivalent terms s and t will have affected subterms at corresponding locations, and so will both be
affected in the same way by the destructive operation. This leads to the following proposition.

Proposition 7.2 For terms s and t in the same equivalence class, if s⇒d
α u, then t⇒d

α u.

As a result of this, the entire effect of the destructive operation can be summarized by giving its effect on
each equivalence class of (constructor) terms, and even by the maximal (size) affected terms.

Destructive semantics is not confluent, so the evaluation strategy has to be defined to give a program
a precise meaning with the destructive semantics. Consider the following program, with starting term
f (〈1,2〉).

f (x)→ 〈arg(1,x),replace(1,2,x)〉

If the first element of the tuple is evaluated first we get 〈1,〈2,2〉〉, which agrees with the rewriting
semantics. Otherwise, we get 〈2,〈2,2〉〉, which does not, noting that the two occurrences of x on the
right hand side of the rule are in the same equivalence class, and assuming replace is destructive.

In general, in any primary modification ri→ si, both ri and si will be constructor terms, which is not
allowed for ordinary rewriting. These rules ri→ si introduce a critical pair between rules, which leads to
non-confluence.

One way to handle this situation is to modify the program P to obtain a program P′, such that the
rewriting semantics of P′ is the same as the destructive semantics of P. An alternative is to develop proof
methods for destructive semantics, which still has a fairly simple syntax and semantics. Destructive
semantics permits a simpler translation into imperative languages, while rewriting semantics appears to
be better for proofs of correctness.
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8 Translation Issues

The programs translated from a rewrite program should be efficient and correct. As for program con-
structs in the translated program, one obtains recursion automatically from term rewriting. Iteration
results from last call optimization. Assignment statements can be obtained from the single assignment
style of the rewrite programs. When translating, one can assume that compiled procedures are already
implemented in the target language.

As for correctness, the idea is that one only needs to prove it once for an abstract rewriting pro-
gram; then correctness follows for the translated, concrete programs in various languages assuming the
translations are correct. This can be shown as follows:

Suppose one has the partial correctness of an abstract program P in the following form: I(t1, . . . , tn)∧
f (t1, . . . , tn)⇒ u∧ (u is irreducible) implies O(t1, . . . , tn,u), As before, I is an input assertion and O is an
output assertion. Suppose we also have the following relation between the translated program Tr(P) and
the original (abstract) program P: If Tr( f (t1, . . . , tn)) has output u′ then there is an irreducible u such that
f (t1, . . . , tn)⇒ u and Tr(u) = u′. Let the input and output assertions I′ and O′ on the translated program
Tr(P) be: I′(t ′) is (∃t1, . . . , tn)I(t1, . . . , tn)∧Tr( f (t1, . . . , tn)) = f ′(t ′1, . . . , t

′
n), and O′(t ′1, . . . , t

′
n,u
′) is

∃t1, . . . , tn,u [Tr( f (t1, . . . , tn)) = f ′(t ′1, . . . , t
′
n)∧ f (t1, . . . , tn)⇒ u∧O(t1, . . . , tn,u)∧Tr(u) = u′].

Then the following theorem holds.
Theorem 4 I′(t ′1, . . . , t

′
n) and ( f ′(t ′1, . . . , t

′
n) has output u′) imply O′(t ′1, . . . , t

′
n,u
′).

Proof. Suppose I′(t ′1, . . . , t
′
n), then ∃t1 . . . tn Tr( f (t1, . . . , tn)) = f ′(t ′1, . . . , t

′
n)∧ I(t1, . . . , tn). Then because

f ′(t ′1, . . . , t
′
n) has output u′, we know by properties of the translation that there is an irreducible term u

such that f (t1, . . . , tn)⇒ u and Tr(u) = u′. By partial correctness of the original program, O(t1, . . . , tn,u).
Thus there exist t1, . . . , tn,u such that

Tr( f (t1, . . . , tn)) = f ′(t ′1, . . . , t
′
n)∧ f (t1, . . . , tn)⇒ u∧O(t1, . . . , tn,u)∧Tr(u) = u′,

hence O′(t ′1, . . . , t
′
n, u′).

For proofs of partial correctness it is necessary to use different axioms that distinguish terms that are
equal in the declarative semantics. For example, when adding two numbers m and n, one wants to return
a single number p equal to their sum, but in the declarative semantics, p = m+n so the input and output
terms cannot be distinguished. This applies both to the original and translated programs. We may want
to specify for example that the output is a sequence of bits representing an integer.

9 Conclusion

Term rewriting has long been used to model computation, and as a way of implementing functional
languages. In this paper, a system based on term rewriting is developed to express abstract programs
which can be translated into programs in mainstream languages. Term rewriting is similarly used in the
ASF+SDF Meta-Environment [5], which can be used to generate programs from algebraic specifications.
In the system presented here, programs are designed to be similar to imperative programs in style, to
permit efficient translation into programs in imperative languages, and remain fairly simple for the typical
programmer to write.

To model efficient imperative languages, an equivalence relation on term occurrences can be used,
and a version of rewriting called decorated rewriting is developed for this purpose. We are interested in
exploring the use of term graph rewriting for this purpose.
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The system also permits a single assignment style of programming, and can be adapted to destructive
operations with side effects. The pure rewriting language is confluent, but the version with destructive
operations is not. We are interested in developing techniques for generating programs in which the
confluent rewriting semantics expresses the destructive semantics of other programs, in order to address
this issue.

Methods for proofs of correctness of the abstract programs as well as the translated programs have
been sketched. The approach given in this paper could be extended to more sophisticated languages
such as Coq [2] and other systems [6][4]. Issues of nondeterminism and nontermination have not been
addressed. Also, a detailed consideration of the translation mechanism is beyond the scope of this paper.
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