
Under consideration for publication in Theory and Practice of Logic Programming 1

Proof-relevant Horn Clauses for Dependent Type
Inference and Term Synthesis

František Farka
University of St Andrews, and Heriot-Watt University

(e-mail: ff12@st-andrews.ac.uk)

Ekaterina Komendantskaya
Heriot-Watt University
(e-mail: ek19@hw.ac.uk)

Kevin Hammond
University of St Andrews

(e-mail: kevin@kevinhammond.net)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

First-order resolution has been used for type inference for many years, including in Hindley-
Milner type inference, type-classes, and constrained data types. Dependent types are a new trend
in functional languages. In this paper, we show that proof-relevant first-order resolution can
play an important role in automating type inference and term synthesis for dependently typed
languages. We propose a calculus that translates type inference and term synthesis problems
in a dependently typed language to a logic program and a goal in the proof-relevant first-order
Horn clause logic. The computed answer substitution and proof term then provide a solution to
the given type inference and term synthesis problem. We prove the decidability and soundness
of our method.

KEYWORDS: Proof-relevant logic, Horn clauses, Dependent types, Type Inference, Proof-
relevant resolution

1 Introduction

First-order resolution is well known for supporting a range of automated reasoning methods
for type inference. Simple types have been a part of mainstream languages since the 1960s;
polymorphic types have been available in advanced languages such as ML and Haskell since the
1980s; and type classes were introduced from the 1990s onwards. Logic programming has had a
role to play in each of these stages. Hindley and Milner (1978) were the first to notice that type
inference in simply typed lambda calculus can be expressed as a first-order unification problem.
For example, the rule for term application in this calculus

Γ `M : A→ B Γ ` N : A AppΓ `MN : B
gives rise to a type inference problem encoded by the following Horn clause:

type(Γ, app(M,N), B)← type(Γ,M,A→ B) ∧ type(Γ, N,A)

Given a term E, the query type(Γ, E, T) infers a type T in a context Γ such that the typing
judgement Γ ` E : T holds. This general scheme allows a multitude of extensions. For example,

2 F. Farka, E. Komendantskaya, and K. Hammond

in HM(X) type inference (Odersky et al. 1999), constrained types must be accounted for. For
this extension, a constraint logic programming CLP (X) (Sulzmann and Stuckey 2008), was
suggested, in which constraint solving over a domain X was added to the existing first-order
unification and resolution algorithms. Haskell type classes are another example of the application
of Horn clause resolution. Consider the following instances of the Haskell equality type class:

instance Eq Int where ...
instance (Eq x,Eq y) ⇒ Eq(x,y) where ...

They can be encoded by the following Horn clauses, annotated with names κInt and κPair:

κInt : eq(int)
κPair : eq(X,Y)← eq(X) ∧ eq(Y)

Type class instance resolution is then implemented as first-order resolution on Horn clauses.
There is only one caveat—a dictionary (that is, a proof term) needs to be constructed (Pey-
ton Jones et al. 1997). For example, Eq (Int, Int) is inferred to have a dictionary κPair(κInt, κInt).
This records the resolution trace and is treated as a witness of the type class instance Eq (Int, Int).
Horn clause resolution is thus extended to proof-relevant resolution (Fu et al. 2016). This line
of work is on-going: various extensions to the syntax of type classes are still being investigated
(Karachalias and Schrijvers 2017). In recent years, the idea of relational type inference has been
taken further by miniKanren (Hemann et al. 2016). This offers a range of relational domain
specific languages for ML, Rust, Haskell and many other languages. As Ahn and Vezzosi (2016)
point out, a relational language can be very convenient in encodings of type inference problems.

In the last decade, dependent types (Weirich et al. 2017; Brady 2013) have gained popularity
in the programming language community. They allow reasoning about program values within
the types, and thus give more general, powerful and flexible mechanisms to enable verification
of both the functional (correctness, compliance, etc.) and the non-functional (execution time,
space, energy usage etc.) properties of code. Automation of type inference represents a big
challenge for these languages. Most dependently typed languages, such as Coq, Agda or Idris,
incorporate a range of algorithms that automate various aspects of type inference (cf. Pientka
(2013)). Some use reflection (Slama and Brady 2017), some are based on algorithms that are
similar to first-order resolution (Gonthier and Mahboubi 2010), and others (e.g. Liquid Haskell)
incorporate third-party SMT solvers (Vazou et al. 2018). However, to the best of our knowledge,
logic programming has not yet made its definitive mark in this domain.

This paper fills this gap: we propose a first systematic approach to logic-programming based
type inference for a dependently-typed language. We demonstrate that Horn clause logic provides
a convenient formal language to express type inference problems while staying very close to the
formal specification of the dependently-typed language. Proof-relevant resolution then computes
proof terms that capture well-formedness derivations of objects in the language. We present a
method to synthesise terms of the dependently typed language from such proof terms. This
method can be applied in a more complex setting where a small kernel of a verified compiler
off-loads proof-relevant resolution to an external, non-verified resolution engine and then verifies
synthesised derivations internally.

In the next section, we explain our main idea by means of an example.

Overview of Results by Means of an Example

We rely on an abstract syntax that closely resembles existing functional programming languages
with dependent types. We will call it the surface language. Using the syntax we define maybeA,
an option type over a fixed type A, indexed by a Boolean:

data maybeA (a : A) : bool→ type where
nothing : maybeA ff

just : A→ maybeA tt

Proof-relevant Horn Clauses for Dependent Type Inference and Term Synthesis 3

Here, nothing and just are the two constructors of the maybe type. The type is indexed by ff
when the nothing constructor is used, and by tt when the just constructor is used (ff and tt
are constructors of bool). A function fromJust extracts the value from the just constructor:

fromJust : maybeA tt→ A

fromJust (just x) = x

Note that the value tt appears within the type maybeA tt→ A of this function (the type depends
on the value), allowing for a more precise function definition that omits the redundant case when
the constructor of type maybeA is nothing. The challenge for the type checker is to determine
that the missing case fromJust nothing is contradictory (rather than being omitted by mistake).
Indeed, the type of nothing is maybeA ff. However, the function specifies its argument to be of
type maybeA tt.

To type check such functions, the compiler translates them into terms in a type-theoretic
calculus. In this paper, we will rely on the calculus LF (Harper and Pfenning 2005), a standard
and well-understood first-order dependent type theory. We call this calculus the internal language
of the compiler. For our example, the signature of the internal language is as follows:

A : type
bool : type
ff tt : bool

(≡bool) : bool → bool → type
refl : Π(b:bool). b ≡bool b
elim≡bool : tt ≡bool ff → A

maybe A : bool → type
nothing : maybe A ff
just : A → maybe A tt
elim maybeA : Π(b:bool). maybe A b

→ (b ≡bool ff → A)
→ (b ≡bool tt → A → A)
→ A

We use A → B as an abbreviation for Π(a : A).B where a does not occur free in B. The final
goal of type checking of the function fromJust in the surface language is to obtain the following
encoding in the internal language:

t fromJust := λ (m:maybe A tt). elim maybeA tt m
(λ (w:tt≡bool ff). elim≡bool w)
(λ (w:tt≡bool tt).λ (x:A).x)

The missing case for nothing must be accounted for (cf. the line (λ (w:tt≡boolff).elim≡bool w)
above). In this example (as is generally the case), only partial information is given in the
surface language. To address this problem, we extend the internal language with term level
metavariables, denoted by ?a, and type level metavariables, denoted by ?A. These stand for the
parts of a term in the internal language that are not yet known. Using metavariables, the term
that directly corresponds to fromJust is:

t fromJust := λ (m:maybe A tt). elim maybeA ?a m
(λ (w: ?A). ?b)
(λ (w: ?B).λ (x:A).x)

(I)

The missing information comprises the two types ?A and ?B and the term ?b for the construc-
tor nothing. Obtaining types ?A, ?B amounts to type inference (in the internal language, as
opposed to checking in the surface language), whereas obtaining the term ?b amounts to term
synthesis. In this paper, we are interested in automating such reasoning. We use the notion
refinement to refer to the combined problem of type inference and term synthesis. We make use
of proof-relevant Horn clause logic (Fu and Komendantskaya 2017) that was initially inspired
by type class resolution, as described above. In this logic, Horn clauses are seen as types and
proof witnesses — as terms inhabiting the types. Given a proposition—a goal—and a set of
Horn clauses—a logic program—the resolution process is captured by an explicit proof term
construction. We translate refinement problems into the syntax of logic programs. The refine-
ment algorithm that we propose takes a signature and a term with metavariables in the extended

4 F. Farka, E. Komendantskaya, and K. Hammond

internal language to a logic program and a goal in proof-relevant Horn clause logic. The unifiers
that are computed by resolution give an assignment of types to type-level metavariables. At the
same time, the computed proof terms are interpreted as an assignment of terms to term-level
metavariables. We illustrate the process in the following paragraphs.

Consider the inference rule Π-t-Elim in LF, which generalises the inference rule App given
on page 1 of this paper:

Γ `M : Πx : A.B Γ ` N : A Π-t-ElimΓ `MN : B[N/x]

When type checking the term tfromJust (defined in (I)) an application of elimmaybeA tt m to the
term λ(w :?A).?b in the context m : maybeA tt needs to be type checked. This amounts to
providing a derivation of the typing judgement that contains the following instance of the rule
Π-t-Elim:

m : maybeA tt ` elimmaybeA tt m

: (tt≡bool ff→ A)→ · · · → A m : maybeA tt ` λ(w :?A).?b :?A →?B
m : maybeA tt ` (elimmaybeA tt m) (λ(w :?A).?b) : (tt≡bool tt→ A→ A)→ A

For the above inference step to be a valid instance of the inference rule Π-t-Elim, it is necessary
that (tt≡bool ff) = ?A and A = ?B . This is reflected in the goal:

((tt≡bool ff) = ?A) ∧ (A = ?B) ∧G(elimmaybeA tt m) ∧Gλ(w:?A).?b) (II)

The additional goals G(elimmaybeA tt m) and Gλ(w:?A).?b are recursively generated by the algorithm
for the terms elimmaybeA tt m and λ(w :?A).?b, respectively. Similarly, assuming the term
λ(w :?A).?b is of type (tt≡bool ff)→ A, type checking places restrictions on the term ?b:

m : maybeA tt ` tt≡bool ff : type m : maybeA tt, w : tt≡bool ff `?b : A
m : maybeA tt ` λ(w : tt≡bool ff).?b : tt≡bool ff→ A

That is, ?b needs to be a well-typed term of type A in a context consisting of m and w. Recall
that in the signature there is a constant elim≡bool of type tt ≡bool ff → A. Our translation
will turn this constant into a clause in the generated logic program. There will be a clause that
corresponds to the inference rule for elimination of a Π type as well:

κelim≡bool
: term(elim≡bool ,Πx : tt≡bool ff . A, ?Γ)←

κelim : term(?M?N , ?B , ?Γ)← term(?M ,Πx :?A.?B′ , ?Γ) ∧ term(?N , ?A, ?Γ)∧?B′ [?N/x] ≡?B
The above clauses are written in the proof-relevant Horn clause logic, and thus κelim≡bool

and
κelim now play the role of proof-term symbols (“witnesses” for the clauses). In this clause, ?M ,
?N , ?A, ?B , ?B′ and ?Γ are logic variables, i.e. variables of the first-order logic. By an abuse of
notation, we use the same symbols for metavariables of the internal language and logic variables
in the logic programs generated by the refinement algorithm. We also use the same notation
for objects of the internal language and terms of the logic programs. This is possible since we
represent variables using de Bruijn indices.

The presence of w : tt≡bool ff in the context allows us to use the clause elim≡bool to resolve
the goal term(?M?N , A, [m : maybeA tt, w : tt≡bool ff]):

term(?M?N , A, [m : maybeA, w : tt≡bool ff]) κelim

term(?M ,Πx :?A. A, [. . .]) ∧ term(?N , ?A, [. . . , w : tt≡bool ff]) ∧ A[?N/x] ≡?B κelim≡bool

term(?N , tt≡bool ff, [. . . , w : tt≡bool ff]) ∧ A[?N/x] ≡?B κprojw

A[?N/x] ≡?B κsubstA
⊥

(III)

The resolution steps are denoted by . Each step is indexed by the name of the clause that
was used. First, the goal is resolved in one step using the clause κelim. A clause κprojw is used to
project the variable w from the context. We postpone further discussion of the exact shape of the
clauses until Section 3, since it depends on the representation we use. For the moment, we are just
interested in composing the proof terms occurring in these resolution steps into one composite

Proof-relevant Horn Clauses for Dependent Type Inference and Term Synthesis 5

proof term: κelim κelim≡bool
κprojwκsubstA . Note that, by resolving the goal (II), we obtain a

substitution θ that assigns the type A to the logic variable ?B , i.e. θ(?B) = A. At the same time,
the proof term computed by the the derivation (III) is interpreted as a solution (elim≡bool w)
for the term-level metavariable ?b. However, the proof term can be used to reconstruct the
derivation of well-typedness of the judgement m : maybeA tt, w : tt≡bool ff ` elim≡bool w : A
as well. In general, a substitution is interpreted as a solution to a type-level metavariable and a
proof term as a solution to a term-level metavariable. The remaining solution for ?A is computed
using similar methodology, and we omit the details here. Thus, we have computed values for all
metavariables in function (I), i.e. we inferred all types and synthesised all terms.

Contributions

Our main contributions are:

1. We present a novel approach to refinement for a first-order type theory with dependent
types that is simpler than existing methods, e.g. Pientka and Dunfield (2010).

2. We prove that generation of goals and logic programs from the extended language is
decidable.

3. We show that proof-relevant first-order Horn clause resolution gives an appropriate in-
ference mechanism for dependently typed languages: firstly, it is sound with respect to
type checking in LF; secondly, the proof term construction alongside the resolution trace
allows to reconstruct the derivation of well-typedness judgement.

This paper is structured as follows. Section 2 gives a nameless formulation of LF, the chosen first-
order dependent type theory. We then present the described refinement algorithm by means of a
formal calculus in Section 3 and show that it is decidable. Section 4 establishes interpretation of
answer substitutions and proof terms as solutions to refinement problems and states soundness of
the interpretation. Finally, in Sections 5 and 6 we discuss related and future work and conclude.

2 Nameless LF

Standard expositions of a type theory use variable names. However, variable names carry a
burden when implementing such a type theory. For example, types need to be checked up to α-
equivalence of bound variables and fresh names need to be introduced in order to expand terms
to η-long form. In order to avoid the burden, existing implementations use de Bruijn indices.
We use de Bruijn indices directly in our exposition as it allows us to avoid the above problems
when checking the equality of terms and types and when synthesising new terms and types.

We use natural numbers in N for de Bruijn indices ι, ι1, . . . , and we denote successor by σ(−).
We assume countably infinite disjoint sets C of term constants, and B of type constants. We
denote elements of C by c, c′, etc., and elements of B by α, β, etc.

Definition 1 (Nameless LF)
The terms, types, and kinds as well as signatures and contexts are:

Kinds K ::= type | ΠT.K
Types T ::= B | Tt | ΠT.T
Terms t ::= C | N | λT.t | tt

Signatures Sig ::= · | Sig, C : T | Sig,B : K
Contexts Con ::= · | Con, T

We use identifier L to denote kinds in K, identifiers A, B to denote types in T and identifiers
M , N to denote terms in t. We use S for signatures and Γ for contexts. In line with standard
practice, we define two operations. Shifting recursively traverses a term, a type, or a kind and
increases all indices by one.

6 F. Farka, E. Komendantskaya, and K. Hammond

Definition 2 (Shifting)
Term and type shifting, denoted by (−)↑ι is defined as follows:

c↑ι = c

(λA.M)↑ι = λA↑ι .M ↑σι

(MN)↑ι = M ↑ι .N ↑ι

ι↑0 = σι

0↑σι = 0

σι↑σι
′

= σ(ι↑ι
′
)

α↑ι = α

(ΠA.B)↑ι = λA↑ι .B ↑σι

(AM)↑ι = A↑ι .M ↑ι

Substitution with a term N and index ι replaces indices that are bound by the ι-th binder while
updating remaining indices. The index ι is increased when traversing under a binder.

Definition 3 (Substitution)
Term and type substitution, denoted by (−)[N/ι] is defined as follows:

c[N/ι] = c

(λA.M)[N/ι] = λA[N/ι].M [N ↑0 /σι]
(M1M2)[N/ι] = M1[N/ι].M2[N/ι]

0[N/0] = N

0[N/σι] = 0
σι[N/0] = σι

σι[N/σι′] = σ(ι[N/ι′])

α[N/ι] = α

(ΠA.B)[N/ι] = λA[N/ι].B ↑0 [N/σι]
(AM)[N/ι] = A[N/ι].M [N/ι]

Shifting with a greater index than 0 and substitution for other indices than 0 is not necessary
in the inference rules of neither the internal language nor refinement. For the sake of readability
we introduce the following abbreviations:

A↑def= A↑0 M ↑def= M ↑0 A[N] def= A[N/0] M [N] def= M [N/0]

Well-formedness of objects introduced by Definition 1 is stated by means of several judge-
ments. In particular, we give equality in nameless LF as algorithmic, following Harper and
Pfenning (Harper and Pfenning 2005). In order to do so we define simple kinds, simple types,
simple signatures, and simple contexts:

Definition 4
The simple kinds, simple types, and simple signatures are:

Simple kinds K− ::= type− | T− → K−

Simple types T− ::= B | T− → T−

Simple signatures Sig− ::= · | Sig−, C : T− | Sig−,B : K−

Simple contexts Con− ::= · | Con−, T−

We use identifiers κ for simple kinds, τ for simple types, S− for simple signatures and ∆ for
simple contexts. The erasure from objects to corresponding simple objects, denoted (−)− is
defined as follows:

Definition 5 (Erasure)

(type)− = type

(ΠA.L)− = (A)− → (L)−

(α)− = α

(ΠA.B)− = (A)− → (B)−

(AM)− = (A)−

The well-formedness of judgements for kinds, types and terms, weak algorithmic equality of
types, algorithmic and structural equality of terms, and weak head reduction of terms are:

S; Γ ` L : kind

S−; ∆ ` A
 A′ : κ
S; Γ ` A : L

S; Γ `M ↔M ′ : τ
S; Γ `M : A

S; Γ `M ⇔M ′ : τ
M

whr−→M ′

The inference rules for well-formedness of kinds, types, and terms are listed in Figures 1, 2,

Proof-relevant Horn Clauses for Dependent Type Inference and Term Synthesis 7

S; Γ ` L : kind

S ` Γ ctx K-tyS; Γ ` type : kind
S; Γ ` A : type S; Γ, A ` L : kind

K-Π-introS; Γ ` ΠA.L : kind

Fig. 1. Well-formedness of nameless kinds

S; Γ ` A : L

S ` Γ ctx α : L ∈ S T-conS; Γ ` α : L
S; Γ ` A : type S; Γ, A ` B : type

T-Π-introS; Γ ` ΠA.B : type

S; Γ ` A : ΠB.L S; Γ `M : B′ S−; Γ− ` B
 B′ : type−
T-Π-elimS; Γ ` AM : L[M]

Fig. 2. Well-formedness of nameless types

and 3. The inference rules of well-formedness judgements for signatures and contexts as well
as for definitional equality are standard (cf. Harper and Pfenning (2005)). The inference rules
for weak head reduction are listed in Figure 4. The well-formedness of signatures and contexts
is defined in Figure 5. Algorithmic equality of terms, structural equality of terms and weak
algorithmic equality of types are defined in Figures 6, 7, and 8 respectively.

3 Refinement in Nameless LF
Following the ideas we sketched in Section 1, we present the translation of a refinement problem
into Horn clause logic with explicit proof terms. Firstly, we extend the language of nameless
LF with metavariables, which allows us to capture incomplete terms. Secondly, we describe
the language of Horn clause logic with explicit proof terms. Finally, we give a calculus for
transformation of an incomplete term to a goal and a program.

3.1 Refinement Problem
We capture missing information in nameless LF terms by metavariables. We assume infinitely
countable disjoint sets ?B and ?V that stand for omitted types and terms and we call elements
of these sets type-level and term-level metavariables respectively. We use identifiers ?a, ?b, etc.
to denote elements of ?V and identifiers ?A, ?B , etc. to denote elements of ?B. The extended
syntax is defined as follows:

Definition 6 (Extended Nameless LF)
We define extended nameless types, terms and contexts as follows:

Types T ::= · · · | ?B
Terms t ::= · · · | ?V

Contexts Con ::= · · · | Con, ?V : T

The ellipsis in the definition are to be understood as the appropriate syntactic constructs of
Definition 1. Note that we do not define an extended signature. We assume that the signature is
always fixed and does not contain any metavariables. This does not pose any problem since well-
typedness of signature does not depend on the term being refined. We use mtvar(−) and mvar(−)
to denote the sets of type-level and term-level metavariables respectively. The well-formedness
judgements of the nameless LF are then defined on a subset of extended objects.

Lemma 1
Let L be an extended nameless kind, A an extended nameless type andM an extended nameless
term. Let S and Γ be contexts.

8 F. Farka, E. Komendantskaya, and K. Hammond

S; Γ `M : A

S ` Γ ctx c : A ∈ S conS; Γ ` c : A
S ` Γ, A ctx

zeroS; Γ, A ` 0 : A↑
S; Γ ` ι : A

succS; Γ, B ` σι : A↑

S; Γ ` A : type S; Γ, A `M : B
Π-introS; Γ ` λA.M : ΠA.B

S; Γ `M : ΠA.B S; Γ ` N : A′ S−; Γ− ` A
 A′ : type
Π-elimS; Γ `MN : B[N]

Fig. 3. Well-formedness of nameless terms

M
whr−→M ′

(λA.M)N whr−→M [N]
M

whr−→M ′

MN
whr−→M ′N ′

Fig. 4. Weak head reduction of terms

• If S; Γ ` L : kind then mvar(L) = ∅ and mtvar(L) = ∅,
• if S; Γ ` A : L then mvar(A) = ∅ and mtvar(A) = ∅, and
• if S; Γ `M : A then mvar(M) = ∅ and mtvar(M) = ∅.

Proof
By induction on the derivation of judgements.

A refinement problem is defined as a term in the extended syntax. A signature and a context of
the term are kept implicit.

Example 1 (Refinement Problem)
Taking the problem from Introduction, the term M ′ given by (elimmaybeA tt 0)(λ?A.?b) is a re-
finement problem. The appropriate context is Γ1 = ·, maybeA tt. This signature in Introduction
is adjusted to nameless signature S.

A refinement of a term is a pair of assignments (ρ,R) such that ρ : ?V → t is an assignment
of (extended) terms to term-level metavariables and R : ?B → T is an assignment of (extended)
types to type-level metavariables. We define application of refinement (ρ,R)(−) to terms, types
and kinds by induction on definition of the syntactic object.

` S sig

` · sig
` S sig S; · ` L : kind a 6∈ S

` S, a : L sig
` S sig S; · ` A : type c 6∈ S

` S, c : A sig

S ` Γ ctx

` S sig
S ` · ctx

S ` Γ ctx S; Γ ` A : type
` S; Γ, A ctx

Fig. 5. Well-formedness of signatures and contexts

Proof-relevant Horn Clauses for Dependent Type Inference and Term Synthesis 9

S−; ∆ `M ⇔M ′ : τ

M
whr−→M ′ S−; ∆ `M ′ ⇔ N

S−; ∆ `M ⇔ N

N
whr−→ N ′ S−; ∆ `M ⇔ N ′

S−; ∆ `M ⇔ N

S−; ∆ `M ↔ N : τ
S−; ∆ `M ⇔ N : τ

S−; ∆, τ1 ` (M ↑)0⇔ (N ↑)0 : τ2
S−; ∆ `M ⇔ N : τ1 → τ2

Fig. 6. Algorithmic equality of terms

S−; ∆ `M ↔ N : τ

` S− ssig
S−; ∆, τ ` 0↔ 0 : τ

S−; ∆ ` ι↔ ι′ : τ
S−; ∆, τ ′ ` σι↔ σι′ : τ

` S− ssig c : τ ∈ S−

S−; ∆ ` c↔ c : τ

S−; ∆ `M1 ↔ N1 : τ2 → τ1 S−; ∆ `M2 ⇔ N2 : τ2
S−; ∆ `M1M2 ↔ N1N2 : τ1

Fig. 7. Structural equality of terms

Definition 7 (Refinement application)
Let ρ : ?V → t be an assignment of terms and R : ?B → T be an assignment of types. Appli-
cation of the refinement (ρ,R) to kinds, types and terms is defined by:

(ρ,R)(type) = type

(ρ,R)(ΠA.L) = Π(ρ,R)(A).(ρ,R)(L)
(ρ,R)(α) = α

(ρ,R)(?A) = R(?A)
(ρ,R)(ΠA.B) = Π(ρ,R)(A).(ρ,R)(B)

(ρ,R)(AN) = (ρ,R)(A)(ρ,R)(N)

(ρ,R)(c) = c

(ρ,R)(ι) = ι

(ρ,R)(?a) = ρ(?a)
(ρ,R)(λx : A.M) = λx : (ρ,R)(A).(ρ,R)(M)

(ρ,R)(MN) = (ρ,R)(M)(ρ,R)(N)

A solution to a refinement problem t is a refinement (ρ,R) such that (ρ,R)(t) is a well-formed
term of nameless LF. That is, by Lemma 1, (ρ,R)(t) does not contain neither term- nor type-level
metavariables.

Horn clause logic is usually presented using a signature that comprises sets of function and
predicate symbols and the appropriate grammar for atomic and Horn formulae (cf. Miller and
Nadathur (2012)). Although the same presentation can be given for Horn clause logic with
explicit proof terms, for the sake of brevity we resort to a simpler presentation that is sufficient
for our purposes. We define atomic formulae using objects of nameless LF and we list all the
predicates that are needed for refinement translation explicitly in the grammar. However, we
make an exception in the case of contexts and use the usual list notation. Metavariables of

S−; ∆ ` A
 A′ : κ

` S− ssig α : κ ∈ S−

S−; ∆ ` α
 α : κ
S−; ∆ ` A
 B : τ → κ S−; ∆ `M ⇔ N : τ

S−; ∆ ` AM
 BN : κ

S−; ∆ ` A1
 B1 : type S−; ∆, (A1)− ` (A2 ↑)
 (B2 ↑) : type

S−; ∆ ` (ΠA1.A2)
 (ΠB1.B2) : type

Fig. 8. Weak algorithmic equality of types

10 F. Farka, E. Komendantskaya, and K. Hammond

S; Γ;M ` (G | A)

c : A ∈ S r-con
S; Γ; c ` (> | A)

r-t-meta
S; Γ; ?a ` (?a : term(?a′ , ?A,Γ) | ?A)

r-zero
S; Γ, A; 0 ` (A↑ ≡ ?A |?A)

S; Γ; ι ` (G | A)
r-succ

S; Γ, B;σι ` (G ∧ (A↑ ≡ ?A) | ?A)

S; Γ;A ` (GA | L) S; Γ, A;M ` (GM | B)
r-λ-introS; Γ;λA.M ` (GA ∧GM ∧ eqK(L, type,Γ) | ΠA.B)

S; Γ;M ` (GM | A) S; Γ;N ` (GN | A2)
r-λ-elimS; Γ;MN ` (GM ∧GN ∧ eqT (A,ΠA2.?B , type,Γ) ∧ (?B [N] ≡?B′) | ?B′)

Fig. 9. Refinement of terms

extended nameless LF are seen as logic variables. Furthermore, we assume a finite set K of
proof-term symbols and a countable set D of goal variables. We denote elements of K by κ with
indices and elements of D by γ with indices. For technical reasons, we also use metavariables in
positions of kinds, denoted ?L, and in position of indicies, denoted ?ι. The syntax is defined as
follows:

Definition 8 (Syntax of Horn Clause Logic with Explicit Proof Terms)
Atomic formulae, Horn formulae, programs, proof terms, and goals are generated as follows:

Atomic formulae At ::= eqat (t, t, T, Con) | eqst (t, t, T, Con) |
eqT (T, T,K,Con) | eqK(K,K,Con) |
type(T,K,Con) | term(t, T, Con) | T ↑ ≡ T | T [t] ≡ T ′ | >

Horn clauses HC ::= At← At ∧ . . . ∧At
Proof terms PT ::= K PT . . . PT

Programs P ::= · | P,K : HC
Goals G ::= D : At ∧ . . . ∧ D : At

The atomic formula > is intended to stand for a formula that is always true. The predicates eqat
and eqst denote algorithmic and structural equality respectively of terms of a certain simple type
in a context, the predicates eqT and eqK denote equality of terms of a certain simple kind, and
equality of kinds in a context respectively. The predicates term and type denote, respectively,
that a term or a type is well-formed in a context. We use A↑ ≡ A′ to denote that a type A′ is
the result of shifting of A; and we use A[M] ≡ A′ to denote that A′ is the result of substitution
of A with M . We use the identifier H to denote Horn clauses in HC. Goals in G are denoted by
G. We use P with indices to refer to programs. Proof terms in PT are denoted by δ, δ1, etc.

Note that, by Definition 8, atoms in goals are assigned variables. Later, proof terms computed
by resolution are identified by these variables (Definition 12). We omit explicit mention of goal
variables whenever we do not need to refer to proof terms that the variables identify (fresh
variables are assumed in such cases).

3.2 From a Refinement Problem to a Logic Program

In this section, we explain how a term with metavariables is transformed into a goal, and the
signature into a logic program. At the end of the section we state that, for a refinement problem,
either a goal and a program exist or else the problem cannot be refined to a well-formed term.

We define a calculus with two kinds of judgements, one for transforming refinement problems
into goals and the other – for transforming signatures into logic programs. These judgements are
defined mutually in a similar way to the well-formedness judgements of nameless LF in Figures

Proof-relevant Horn Clauses for Dependent Type Inference and Term Synthesis 11

S; Γ;A ` (G | L)

a : L ∈ S r-tcon
S; Γ; a ` (> | L)

r-T-metaS; Γ; ?A ` (type(?A, ?L,Γ) |?L)

S; Γ;A ` (GA | L1) S; Γ, A;B ` (GB | L2)
r-Π-introS; Γ; ΠA.B ` (GA ∧GB ∧ eqK(L1, type,Γ) ∧ eqK(L2, type,Γ) | type)

S; Γ;A ` (GA | L) S; Γ;M ` (GM | B)
r-Π-elimS; Γ;AM ` (GA ∧GM ∧ eqK(L,ΠB.?L,Γ) ∧ (?L[M] ≡?L′) | ?L′)

Fig. 10. Refinement of types

2 and 3. We use S; Γ;M ` (G | A) to denote the transformation of a term M in a signature S
and a context Γ to a goal G. The judgement also synthesises a type A of the term M . Similarly,
S; Γ;A ` (G | K) denotes a transformation of a type A in S and Γ to a goal G while synthesising
a kind K.

Definition 9 (Refinement Goals)

The judgements S; Γ;M ` (G | A) and S; Γ;A ` (G | L) are given by inference rules in Figures 9
and 10. Metavariables that do not occur among assumptions have an implicit freshness condition.

The inference judgement for a logic program generation is denoted by S `Prog P where S
is a signature and P is a generated logic program. A generated logic program contains clauses
that represent inference rules of type theory and clauses that are generated from a signature S.
The clauses that represent inference rules of LF are the same for all programs and Definition 10
gives a minimal program Pe that contains only these clauses.

Definition 10

Let Pe be a program with clauses that represent inference rules for well-formedness of terms
and types:

κtrue : > ←
κ0 : proj(0, ?A, ?′A : ?Γ)← ?A′ ↑ ≡ ?A
κσ : proj(σ(?ι), ?A, ?B : ?Γ)← proj(?ι, ?′A, ?Γ)∧?A′ ↑ ≡ ?A

κproj : type(?ι, ?A, type, ?Γ)← proj(?ι, ?A, ?Γ)
κT-elim : type(?A?M , ?L, ?Γ)← type(?A,Π?A1 .?L′ , ?Γ) ∧ term(?M , ?A2 , ?Γ)∧

eqT (?A1 , ?A2 , type, ?Γ)∧?L′ [?M] ≡?L
κT-intro : type(Π?A.?B , type, ?Γ)← type(?A, type, ?Γ) ∧ type(?B , type, ?B : ?Γ)
κt-elim : term(?M?N , ?B , ?Γ)← term(?M ,Π?A1 .?B′ , ?Γ) ∧ term(?N , ?A2 , ?Γ)∧

eqT (?A1 , ?A2 , type, ?Γ)∧?B′ [?N] ≡?B
κt-intro : term(λ?A.?M ,Π?A.?B , ?Γ)← type(?A, type, ?Γ) ∧ term(?M , ?B , ?Γ)

Further, there are clauses that represent weak algorithmic equality of types, algorithmic and

12 F. Farka, E. Komendantskaya, and K. Hammond

structural equality of termss, and weak head reduction of terms:

κeqTintro : eqT (Π?A1 .?A2 ,Π?B1 .?B2 , type, ?Γ)← eqT (?A1 , ?B1 , type, ?Γ)∧
eqT (?A2 , ?B2 , type, ?A1 : ?Γ)

κeqTelim : eqT (?A?M , ?B?N , ?L, ?Γ)← eqT (?A, ?B ,Π?C .?L, ?Γ) ∧ eqat (?M , ?N , ?C , ?Γ)
κeqtzero : eqst (0Γ, 0Γ, ?A, ?A : ?Γ))←
κeqtsucc : eqst (σ?ιΓ , σ?ι′Γ , ?A, ?B : ?Γ)← eqst (?ιΓ , ?ι′Γ , ?A, ?Γ)

κeqtrefl : eqst (?a, ?a, ?A, ?Γ)←
κeqtelim : eqst (?M1?M2 , ?N1?N2 , ?B , ?Γ)← eqst (?M1 , ?N1 ,Π?A.?B , ?Γ) ∧ eqat (?M2 , ?N2 , ?B , ?Γ)
κeqtwhrl : eqat (?M , ?N , ?A, ?Γ)← whr(?M , ?M′), eqt(?M′ , ?N , ?A, ?Γ)

κeqtwhrr : eqat (?M , ?N , ?A, ?Γ)← whr(?N , ?N′), eqat (?M , ?N′ , ?A, ?Γ)
κeqtstr : eqat (?M , ?N , ?A, ?Γ)← eqst (?M , ?N , ?A, ?Γ)
κeqtexp : eqat (?M , ?N ,Π?A.?B , ?Γ)←?M ↑ ≡ ?M′ , ?N ↑ ?N′ ∧ eqat (?M′0, ?N′0, ?B , ?A : ?Γ)
κeqsimpl : eqat (?M , ?M′ , ?A?N , ?Γ)← eqat (?M , ?M′ , ?A, ?G)
κwhrs : whr((λ?A.?M)?N , ?M′)←?M [?N/0] ≡?M′
κwhrh : whr(?M?N , ?M′?N)← whr(?M , ?M′)

Finally, there are clauses that represent shifting and substitution on terms and types:

κshiftTtintro : (Π?A.?M)↑ι ≡ (Π?A′ .?M′)←?A ↑ι ≡ ?A′ ∧ ?M ↑σι ≡ ?M′
κshiftTtintro : (λ?A.?M)↑ι ≡ (λ?A′ .?M′)←?A ↑ι ≡ ?A′ ∧ ?M ↑σι ≡ ?M′
κshifttelim : (?M?N)↑ι ≡ (?M′?N′)← ?M ↑ι ≡ ?M′ ∧ ?N ↑ι ≡ ?N′

κshifttgt : ι↑0 ≡ σι←
κshifttpred : 0↑σι ≡ 0←

κshifttstep : σι↑σι
′
≡ σι′′ ← ι↑ι

′
≡ ι′′

κsubstTtintro : (Π?A.?M)[?N/ι] ≡ (Π?A′ .?M′)← (?A[?N/ι] ≡?A′) ∧ (?N ↑0 ≡ ?′N)∧?M [?′N/σι] ≡?M′

κsubstintro : (λ?A.?M)[N/ι] ≡ (λ?A′ .?M′)← (?A[ι/?A′] ≡) ∧ (?N ↑0 ≡ ?′N)∧?M [?′N/σι] ≡?M′
κsubsttelim : (?M1?M2)[?N/ι] ≡ (?M′1?M′2)← ?M1 [?N/ι] ≡?M′1 ∧ ?M2 [?N/ι] ≡?M′2

κsubstz : 0[?N/0] ≡?N ←
κsubsts : 0[?N/σι] ≡ 0←
κsubstgt : σι[?N/0] ≡ σι←

κsubstpred : σι[?N/σι′] ≡ σι′′ ← ι[?N/ι′] ≡ ι′′

The clauses in Definition 10 correspond to judgements in Figures 2–5. They are direct transla-
tions of the inference rules of nameless LF in these figures. The judgement S `Prog P extends
Pe with a clause for each type and term constant in S and initialises shifting and substitution
with term and type-level constants as constant under the operation.

Definition 11 (Refinement Program)
The judgement S `Prog P is given by the inference rules of Figure 11.

The Figure 11 gives definition of signature refinement. The refinement judgement of a signature
into a program concludes our transformation of refinement problem into a goal and a program.

Theorem 1 (Decidability of Goal Construction)
Let M be a refinement problem in a well-formed signature S and a well-formed context Γ such
that a solution (ρ,R) exists. Then inference rules in Figures 9 and 10 construct the goal G and
the extended type A such that S; Γ;M ` (G | A).

Proof-relevant Horn Clauses for Dependent Type Inference and Term Synthesis 13

S `Prog P

· `Prog Pe

S `Prog P
S, c : A `Prog P, κc : term(c, A, ?Γ)←, κshiftc : (c↑0 ≡ c)←,

κsubstc : c[?M/0]] ≡ c←, κeqsc : eqs(c, c, A, ?Γ)←

S `Prog P
S, a : L `Prog P, κshiftα : (α↑0 ≡ α)←, κsubstα : α[?M/0] ≡ α←, κeqT : eqT (α, α, L, ?Γ)←,

κeqaα : eqa(?N , ?M , α, ?Γ)← eqs(?M , ?N , α, ?Γ)

Fig. 11. Refinement of signatures, with operations

Proof
By induction on the derivation of the well-formedness judgement of (ρ,R)(M).

The next example illustrates the construction of a refinement goal.

Example 2 (From an Extended Nameless Term to a Goal)
Let us take the refinement problem M ′ = (elimmaybeA tt 0)(λ?A.?b) and the implicit context
and signature from Example 1. By Theorem 1 we can generate G such that the judgement
S; Γ1;M ′ ` (G | ?B7) holds:

G = > ∧> ∧ eqT (Π bool .(Π(maybeA 0T).(Π(Π(2T ≡bool ff). A).(Π(Π(3T ≡bool tt).(Π A . A)). A))),
Π bool .?B1 ,Π type .?L1 ,Γ1)∧?B1 [tt /0T] ≡ ?B2 ∧ >∧

eqT (?B2 ,Π(maybeA tt).?B3 ,Π type .?L2 ,Γ1)∧?B3 [0Γ/0T] ≡ ?B4∧
type(?A, ?L3 ,Γ1)∧?b : term(?b, ?A1 , ?A : Γ1) ∧ eqK(?L3 , type,Γ1)∧?A1 [0T /0Γ] ≡ ?B5∧

eqT (?B4 ,Π(Π?A.?B5).?B6 ,Πtype.?L5 ,Γ)∧?B6 [(λ?A.?b)/0T] ≡ ?B7

That is, the type of M ′ will be computed as a substitution for logic variable ?B7 and resolving
the goal computes assignments to ?A and ?b as well.

Proposition 1 (Decidability of Program Construction)
Let S be a signature. Then inference rules in Figure 11 construct the program P such that
S `Prog P .

We develop our running example further to illustrate the proposition:

Example 3 (From a Signature to a Program)
The signature S contains elim≡bool hence the generated program contains the clause:

κelim≡bool
: term(elim≡bool ,Π tt≡bool ff . A, type, ?Γ)←

The following clauses come from the program Pe and represent inference rules of the internal
language:

κ0 : term(0, ?A, ?A′ : ?Γ) ← ?A′ ↑ ≡ ?A
κelim : term(?a?b, ?B , ?Γ) ← term(?a,Π?A.?B′ , ?Γ) ∧ term(?b, ?A, ?Γ)∧

eqT (?B , ?B′ , type, ?Γ)∧?B′ [?b] ≡?B

Example 2 shows unresolved meta-variables in the goal, and Example 3 gives a program against
which to resolve the goal. Now the proof-relevant resolution comes into play.

14 F. Farka, E. Komendantskaya, and K. Hammond

4 Proof-Relevant Resolution and Soundness

We utilise a variant of proof-relevant resolution (Fu and Komendantskaya 2017) as the inference
engine for solving refinement problems. A substitution of logic variables as well as substitution
composition is defined in the usual way. We use θ, θ′ to denote substitutions and θ ◦θ′ to denote
composition of substitutions θ and θ′. We use [δ1/γ1, . . . , δn/γn] to denote an assignment that
assigns, in order, proof terms δ1 to δn to proof-term variables γ1 to γn. The resolution judgement
P `θ[δ1/?γ1 ,...,δn/?γn] G states that a goal G is resolved by a program P while computing an
answer substitution θ and an assignment of proof terms. The judgement makes use of an auxiliary
judgement for resolution of atomic goals with a proof term δ, denoted P `θ[δ1/?γ1 ,...,δn/?γn] δ : At.

Definition 12 (Proof-Relevant Resolution)
Let P be a program and G a goal, At, At1, . . . , Atn be atomic formulae, δ, δ1, . . . , δn be proof
terms and γ1, . . . , γn proof-term variables. The judgements P `θ[δ1/γ1,...,δn/γn] G and P `θ δ : At
are defined by the inference rules

P `θ δ1 : At1 . . . P `θ δn : Atn
P `θ[δ1/γ1,...,δn/γn] γ1 : At1 ∧ · · · ∧ γn : Atn

and
P `θ

′
δ1 : θAt1 . . . P `θ

′
δn : θAtn

κ : At′ ← At1 ∧ · · · ∧Atn ∈ P
P `θ◦θ

′
κδ1 . . . δn : At

assuming that θAt′ = θAt.

We do not discuss a particular resolution strategy here, but instead refer the reader to the work
of Fu and Komendantskaya (2017).

Assume that G and P are a goal and a program that originate from a refinement problem M
in signature S. An answer substitution for G computed by P provides a solution to the type-
level metavariables in M . Similarly the computed assignment of proof terms to proof variables
provides a solution to the term-level metavariables in M .

We continue with our running example, building upon Examples 1–3.

Example 4 (Proof-relevant Resolution Trace)
The resolution trace of our example is rather long, and we show only a fragment. Suppose that,
in several resolution steps denoted by ∗, the goal G given in Example 2 resolves as follows:

G ∗ ?b : term(?b, A, tt≡bool ff : Γ1)

The computed substitution assigns (Π(Π(tt≡bool tt).(Π A . A)). A to the logic variable ?B7 . We
now show the trace for the remaining goal ?b : term(?b, A, tt≡bool ff : Γ1). Given the clauses of
Example 3, a resolution trace that computes a proof term for ?b can be given as follows:

term(?a, A, tt≡bool ff : Γ1) κelim

term(?a1?a2 , Π?A.?B′ , tt≡bool ff : Γ1) ∧ term(?a′2 , ?A, Γ1))

∧ eqT (?B4 , ?B′ , type, tt≡bool ff : Γ1) [?A 7→tt≡bool ff,?B′ 7→A]
κelim≡bool

term(?a′2 , tt≡bool ff, (tt≡bool ff : Γ1)) ∧ eqT (tt≡bool ff, tt≡bool ff, type, tt≡bool ff : Γ1)) κ0

eqT (tt≡bool ff, tt≡bool ff, type, tt≡bool ff : Γ1)) ∗ ⊥

Above, we omit writing full proof terms, but record the witnesses as indices of . The assignment
to the logic variable ?A is A and the subterm of the computed proof term that is bound to ?b is
κelimκelim≡bool

κ0δeqT where the subterm δeqT is a witness of the appropriate type equality.

Since we have used the types and terms of nameless LF to define our atomic formulae, the
computed substitution can be used directly. The interpretation of the computed assignment of
proof terms depends on assignment of atomic proof term symbols in the program Pe. We define
a mapping that gives the intended interpretation:

Proof-relevant Horn Clauses for Dependent Type Inference and Term Synthesis 15

Definition 13 (Interpretation of Proof Terms)
We define interpretation of proof terms p−q : PT → T as follows:

pκσδδιδ
′q = σpδιq

pκprojδιq = pδιq
pκT-elimδMδNδδ

′q = pδMqpδNq

pκT-introδAδδBq = ΠpδAq.pδBq
pκt-elimδAδMδδ

′q = pδAqpδMq

pκt-introδAδδMδ
′q = λpδAq.

−−−→
pδMq

pκ0q = 0
pκcq = c

pκaq = a.

We extend p−q to assignments of proof terms by composition and we use pRq to denote the
composition (p−q ◦R).

Example 5
In Example 4, the computed proof term bound to ?b will be interpreted as follows:

pκelimκelim≡bool
κ0δeqT q = elim≡bool 0

Hence, the original problem is refined to elimmaybeA tt 0 (λ A . elim≡bool 0) while the computed
type is ((tt≡bool tt)→ A→ A)→ A .

Finally, the above interpretation allows us to state the soundness of our system:

Theorem 2 (Soundness of Proof-Relevant Resolution for Generated Goals and Programs)
Let M be a term in the extended syntax with signature S. Let P and GM be a program and
a goal such that S, · ` (GM |A) and S `Prog P respectively. Let ρ, R be a substitution and
a proof term assignment computed by proof-relevant resolution such that P `ρR GM . Then if
there is a solution for a well-formed term, then there are solutions (ρ′, R′) and (ρ′′, R′′) such
that (ρ′, R′)M is a well-formed term and

(ρ′′, R′′)((ρ, pRq)M) = (ρ′, R′)M

Proof
Generalise the statement of the theorem for an arbitrary well-formed context Γ. By simultaneous
induction on derivation of the well-formedness judgement of (ρ′, R′)M and derivation of P `ρR G.
The theorem follows from the generalisation.

Theorem 2 guarantees that the refinement computed in Examples 2–5 is well-typed in the
internal language. That is, there is a derivation of the following judgement:

S; ·, maybeA tt ` elimmaybeA tt 0 (λ tt≡bool ff . elim≡bool 0) : (tt≡bool tt)→ A→ A)→ A

We omit the actual derivation of the judgement. However, note that it can be easily reconstructed
in a similar way as the intended interpretation of proof terms is computed in Definition 13. For
example, in case of our running example, the subterm δeqT of the proof term gives derivation of
the definitional equality that is necessary to verify application of elim≡bool to index 0.

Implementation

We have formalised the results in this paper using the Ott tool and the Coq theorem prover.
The source code can be found online1. Most importantly, we formalise definitions of nameless
LF. The exported Coq definitions are then used in formalisation of decidability of the refinement
calculus. An implementation of translation from the extended language to logic programs and
goals is obtained from the formal proof via code extraction into OCaml. A parser is extracted
from the formalisation of the grammar as well. The translation outputs logic programs and goals
suitable for an external resolution engine.

1 https://github.com/frantisekfarka/slepice

16 F. Farka, E. Komendantskaya, and K. Hammond

5 Related and Future Work

Ideas underlying our work originate in the work of Stuckey and Sulzmann (2002) on HM(X)
type inference as (constraint) logic programming. There are two key differences. First, in our
work we consider dependent types. Other approaches, such as that of Sulzmann and Stuckey
do not give a motivation for the shape of generated logic goals and programs. We make explicit
that atomic formulae represent judgements of the type theory and that the program originates
on one hand from inference rules of the type theory and on the other from a signature of a term.
We believe that a clear identification of this interpretation of generated goals and programs
makes it feasible to adjust the refinement calculus for different type theories.

Currently implemented systems (cf. Pientka (2013)) make use of a bidirectional approach
to type checking. That is, there are separate type checking and type synthesis phases. The
key difference between these systems and our own work is that we do not explicitly discuss
bidirectionality. Combining this with a clear identification of atomic formulae with judgements,
and Horn clauses with inference rules, in our opinion, makes the presentation significantly more
accessible. However, bidirectionality in our system is still implicitly present, albeit postponed
to the resolution phase. As future work, we intend to analyse structural resolution (Fu and
Komendantskaya 2017) for the generated goals. We intend to show that the matching steps
in the resolution correspond to type checking in the bidirectional approach whereas resolution
steps by unification correspond to type synthesis.

In future work, we would like to consider additional constructs in the surface language. One
example of such a construct would be a type-class mechanism, as found in e.g. Haskell. Fu et al.
(2016) have previously demonstrated that type class resolution in Haskell can be addressed by
proof-relevant resolution in Horn clause logic with explicit proof terms. This result suggests a
natural extension of our work by adding a new atomic formula that represents type-class judge-
ment and by adjusting refinement calculus with inference rules for the translation of type-class
judgements. Recently, Bottu et al. (2017) argued for quantification on type-class constraints.
Although such quantification escapes the Horn clause fragment as discussed in the work of Fu
et al., it can be addressed in the logic of hereditary Harrop formulae. Our approach scales well
by replacing the target logic by the logic of first-order hereditary Harrop formulae. Finally, we
believe that our suggested approach to refinement can also serve as a viable method for proving
the soundness of the surface language w.r.t. a semantic model. We have already presented some
initial results (Farka et al. 2016) that show that proof-relevant type class resolution is sound
w.r.t. to both inductive and coinductive interpretation of type class instances.

6 Conclusion

Functional programming languages are a convenient tool for developing software. Dependent
types in particular allow various semantic properties to be encoded in types. However, as ev-
idenced by languages such as Agda, Coq or Idris, software development in a functional pro-
gramming language with dependent types is a complex task. The usability of such languages
critically depends on the amount of assistance that an automated tool provides to a program-
mer: at a minimum, some type refinement is necessary. Current descriptions are implementation
dependent and hard to understand. This complicates the reuse of existing approaches in the
development of tools for new languages. Ultimately, it is problematic for a programmer as they
need to understand the elaboration process to some extent. We present a description of refine-
ment in LF that is significantly simpler than the existing ones. We show a translation of an
incomplete term with metavariables to a goal and a program in Horn clause logic by a syntac-
tic traversal of the term. The inference is then performed by proof-relevant resolution that is
an extension of the standard first-order resolution with proof term construction. Moreover, the
generated goal and program have a straightforward interpretation as judgements of type theory
and inference rules and hence can be easier to understand and work with.

Our discussion of related work shows how our approach links to the state of the art in re-
finement in functional languages. We have suggested two different areas for future work. Firstly,

Proof-relevant Horn Clauses for Dependent Type Inference and Term Synthesis 17

a more detailed analysis of resolution on generated goals and programs may recover bidirec-
tionality. Secondly, we have discussed a possible extension to the surface language, higher order
features and type classes, and argued that our approach scales well with extensions of the surface
language. However, extensions of the surface language may require a stronger logic as a target
logic of the refinement calculus.

Acknowledgements This work has been supported by the EPSRC grant “Coalgebraic Logic Program-
ming for Type Inference” EP/K031864/1-2, EU Horizon 2020 grant “RePhrase: Refactoring Parallel
Heterogeneous Resource-Aware Applications - a Software Engineering Approach” (ICT-644235), and by
COST Action IC1202 (TACLe), supported by COST (European Cooperation in Science and Technology).
We would like to thank Andreas Abel, Greg Michaelson, and anonymous referees for helpful comments
on earlier versions of the paper.

References
Ahn, K. Y. and Vezzosi, A. 2016. Executable relational specifications of polymorphic type
systems using prolog. See Kiselyov and King (2016), 109–125.

Bottu, G., Karachalias, G., Schrijvers, T., d. S. Oliveira, B. C., and Wadler, P. 2017.
Quantified class constraints. See Diatchki (2017), 148–161.

Brady, E. 2013. Idris, a general-purpose dependently typed programming language: Design
and implementation. J. Funct. Program. 23, 5, 552–593.

Diatchki, I. S., Ed. 2017. Proceedings of the 10th ACM SIGPLAN International Symposium
on Haskell, Oxford, United Kingdom, September 7-8, 2017. ACM.

Farka, F., Komendantskaya, E., and Hammond, K. 2016. Coinductive soundness of core-
cursive type class resolution. In Logic-Based Program Synthesis and Transformation - 26th
International Symposium, LOPSTR 2016, Edinburgh, UK, September 6-8, 2016, Revised Se-
lected Papers, M. V. Hermenegildo and P. López-García, Eds. Lecture Notes in Computer
Science, vol. 10184. Springer, 311–327.

Fu, P. and Komendantskaya, E. 2017. Operational semantics of resolution and productivity
in horn clause logic. Formal Asp. Comput. 29, 3, 453–474.

Fu, P., Komendantskaya, E., Schrijvers, T., and Pond, A. 2016. Proof relevant corecursive
resolution. See Kiselyov and King (2016), 126–143.

Gonthier, G. and Mahboubi, A. 2010. An introduction to small scale reflection in Coq. J.
Formalized Reasoning 3, 2, 95–152.

Harper, R. and Pfenning, F. 2005. On equivalence and canonical forms in the LF type
theory. ACM Trans. Comput. Log. 6, 1, 61–101.

Hemann, J., Friedman, D. P., Byrd, W. E., and Might, M. 2016. A small embedding of
logic programming with a simple complete search. In Proceedings of the 12th Symposium on
Dynamic Languages, DLS 2016, Amsterdam, The Netherlands, November 1, 2016, R. Ierusal-
imschy, Ed. ACM, 96–107.

Karachalias, G. and Schrijvers, T. 2017. Elaboration on functional dependencies: func-
tional dependencies are dead, long live functional dependencies! See Diatchki (2017), 133–147.

Kiselyov, O. and King, A., Eds. 2016. Functional and Logic Programming - 13th International
Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings. Lecture Notes in
Computer Science, vol. 9613. Springer.

Miller, D. and Nadathur, G. 2012. Programming with Higher-Order Logic. Cambridge
University Press.

Milner, R. 1978. A theory of type polymorphism in programming. Journal of Computer and
System Sciences 17, 348–375.

Odersky, M., Sulzmann, M., and Wehr, M. 1999. Type inference with constrained types.
TAPOS 5, 1, 35–55.

18 F. Farka, E. Komendantskaya, and K. Hammond

Peyton Jones, S., Jones, M., and Meijer, E. 1997. Type classes: an exploration of the
design space. In Haskell workshop.

Pientka, B. 2013. An insider’s look at LF type reconstruction: everything you (n)ever wanted
to know. J. Funct. Program. 23, 1, 1–37.

Pientka, B. and Dunfield, J. 2010. Beluga: A framework for programming and reasoning
with deductive systems (system description). In Automated Reasoning, 5th International
Joint Conference, IJCAR 2010, Edinburgh, UK, July 16-19, 2010. Proceedings, J. Giesl and
R. Hähnle, Eds. Lecture Notes in Computer Science, vol. 6173. Springer, 15–21.

Slama, F. and Brady, E. 2017. Automatically proving equivalence by type-safe reflection.
In Intelligent Computer Mathematics - 10th International Conference, CICM 2017, Edin-
burgh, UK, July 17-21, 2017, Proceedings, H. Geuvers, M. England, O. Hasan, F. Rabe, and
O. Teschke, Eds. Lecture Notes in Computer Science, vol. 10383. Springer, 40–55.

Stuckey, P. J. and Sulzmann, M. 2002. A theory of overloading. In Proceedings of the
Seventh ACM SIGPLAN International Conference on Functional Programming (ICFP ’02),
Pittsburgh, Pennsylvania, USA, October 4-6, 2002., M. Wand and S. L. P. Jones, Eds. ACM,
167–178.

Sulzmann, M. and Stuckey, P. J. 2008. HM(X) type inference is CLP(X) solving. J. Funct.
Program. 18, 2, 251–283.

Vazou, N., Tondwalkar, A., Choudhury, V., Scott, R. G., Newton, R. R., Wadler,
P., and Jhala, R. 2018. Refinement reflection: complete verification with SMT.
PACMPL 2, POPL, 53:1–53:31.

Weirich, S., Voizard, A., de Amorim, P. H. A., and Eisenberg, R. A. 2017. A specification
for dependent types in haskell. PACMPL 1, ICFP, 31:1–31:29.

