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Abstract

From the polynomial approach to the definition of opetopes of Kock et al., we derive a category O
of opetopes, and show that its Set-valued presheaves, or opetopic sets, are equivalent to many-to-one
polygraphs.

As an immediate corollary, we establish that opetopic sets are equivalent tomultitopic sets, introduced
and studied by Harnick et al.

§1. Introduction

Opetopes were originally introduced by Baez and Dolan in [5] as a algebraic structure to describe com-
positions and coherence laws in weak higher dimensional categories. They differ from other shapes (such
as globular or simplicial) by their (higher) tree structure, giving them the informal designation of “many-
to-one”. Pasting opetopes give rise to opetopes of higher dimension (it is in fact how they are defined!),
thus the analogy between opetopes and cells in a free higher category starts to emerge. On the other
hand, polygraphs (also called computads) are higher dimensional directed graphs used to generate free
higher categories by specifying generators and the way they may be pasted together (by means of source
and targets).

In this paper, we relate opetopes and polygraphs in a formal way. Namely, we define a category O
whose objects are opetopes, in such a way that the category of its Set-valued presheaves, or opetopic sets,
is equivalent to the category of many-to-one polygraphs.

The notion of multitope [4, 3] is related to that of opetope, and has been developed based on similar
motivations. However the approaches used are very different: opetopes are based on operads [9], while
multitopes are based on multicategories. It is known that multitopic sets are equivalent to many-to-one
polygraphs [4, 3, 2], and thus together with our present contribution, we obtain an equivalence between
multitopic sets and opetopic sets.

We begin by recalling elements of the theory of polygraphs and polynomial trees in Section 2. We
then give the definition of polynomial opetopes from [8] in Section 3. Lastly, we outline the proof of
the equivalence in Section 4, by introducing the “opetal” functor O[−] : O −→ Pol∇ from opetopes to
many-to-one polygraphs, and the auxiliary notion of shape of a generator in a many-to-one polygraph.
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§2. Preliminaries

§2.1. Polygraphs

A polygraph (also called a computad) P consists of a smallω-category P∗ and sets Pn ⊆ P∗n for n ∈ N, such
that P0 is the set of objects of P∗, and such that the underlying (n+1)-category P∗|n+1 is freely generated
by Pn+1 over its underlying n-category P∗|n, for all n ∈ N. A morphism of polygraphs is an ω-functor
mapping generators to generators. Let Pol be the category of polygraphs and morphisms between them.

A polygraph P is said to bemany-to-one if the target of a generator is also a generator, i.e. if each target
map t : Pn+1 −→ P∗n corestricts as t : Pn+1 −→ Pn. Let Pol∇ be the corresponding full subcategory.

For more comprehensive surveys about polygraphs, we refer to [10] or [3].

§2.2. Polynomial trees

We review some elements of the theory of polynomial functors and polynomial trees. For more complete
references, see [7] or [6].

Definitions. A polynomial endofunctor1 is a Set-diagram of the form

E B

I I.

s

p

t (2.1)

Elements of B are called nodes, elements of the fiber E(b) = p−1(b) are the inputs of b, and elements
of I are edges. Let PolyEnd be the category of polynomial endofunctors and morphisms of polynomial
functors.

A polynomial tree (or just tree) T is a polynomial endofunctor as above where all sets are finite, where
I ̸= ∅ (by convention), where all nodes can be reached from a certain edge called the root by a unique
sequence of adjacent edges, and where no two distinct nodes have the same associated sequence. For
b ∈ B, and e0, . . . , ek this sequence of edges, where e1 is the root edge, where there is xi ∈ E such that
ei−1 = tp(xi) and ei = s(xi), and t(b) = ek, denote by &b = [e0 · · · ek] the address of b. We also call
b the [e0 · · · ek]-source of T and write b = s[e0···ek] T . The path from the root node (that whose target is
the root edge) to itself is empty, so we write the address of the root node as [ε]. Let T• be the set of node
addresses of T . A leaf is an edge e ∈ I that is not the target of any node, i.e. there is no b ∈ B such that
t(b) = e. Clearly, edges can be assigned addresses too, and we let T | be the set of leaf addresses of T .

F-trees. Given F ∈ PolyEnd as in equation (2.1), an F-tree T is a polynomial tree ⟨T⟩ together with a
morphism of polynomial functors T : ⟨T⟩ −→ F. We denote by tr F a chosen skeleton of the category of
F-trees. Nodes of T are thought of as “decorated” in B via T , and likewise for edges.

Some trees deserve particular attention. Let I be the trivial tree, containing only one edge and no node
(hence its set E is empty). Let Yn be a corolla, containing only one node b with n inputs. Then, with F as
above, and i ∈ I, let Ii be the trivial F-tree whose only edge is decorated in i. We have ⟨Ii⟩ = I. Likewise,
for b ∈ B, let Yb be the corolla whose only node is decorated in b, so that ⟨Yb⟩ = Yn, where n = #E(b).

Grafting. For F ∈ PolyEnd as in equation (2.1), S, T ∈ tr F, and [l] ∈ S| such that the [l]-leaf of S and
the root edge of T are both decorated by the same i ∈ I. We may form the grafting S ◦[l] T , defined by the

1The denomination “functor” is comes from the fact that such a diagram induces a functor Set/I s∗
−−→ Set/E

∀p
−−→ Set/B ∃t−−→

Set/I by composition of the pullback along s, dependent product along p, and dependent sum along t, respectively.
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following pushout:

Ii S

T S ◦[l] T.
⌜

Every P-tree is either of the form Ii, or obtained by iterated grafting of corollas.

§3. Opetopes

§3.1. The Baez–Dolan construction

Polynomial monads. A polynomial monad is a strong cartesian monad whose underlying endofunctor
is polynomial, and let PolyMnd be the category of polynomial monads and morphisms of polynomial
functors that are also morphisms of monads. Any polynomial endofunctor F as in equation (2.1) admits
a free polynomial monad F⋆, whose underlying polynomial endofunctor is given by

tr| F tr F

I I

s

p

t (3.1)

where tr| F are F-trees with a marked leaf, s maps an F-tree with marked leaf to the label of that leaf, p
forgets the marking, and tmaps a tree to the label of its root. Remark that for T ∈ tr F we have p−1T = T |.
The adjunction (−)⋆ : PolyEnd ⊣←→ PolyMnd : U is monadic, and we abuse notation by letting (−)⋆ be
the associated monad on PolyEnd.

LetM be a polynomial monad as in equation (2.1), or equivalently, a (−)⋆-algebra. Write its structure
mapM⋆ −→M as:

tr|M trM

I E B I

I I.

℘ t⌟
(3.2)

For T ∈ trM, the node t T ∈ B is called the target of T , while the map ℘T : T |
∼=
−→ E(t T) is called the

readdressing map of T . If we think of the element of B as corollas, with leaves (or input edges) indexed
in the relevant fiber in E, thenM-trees are indeed trees obtained by coherent graftings of those corollas.
The target map t then contracts a tree to a corolla, and since the middle square is cartesian, the number
of leaves is preserved. The map ℘ establishes a coherent correspondence between the leaf addresses of a
tree, and the node addresses of its target. The importance of that correspondence is argued in the proof
of theorem 3.3.

The (−)+ construction. For M ∈ PolyMnd as in equation (2.1), define M+, the Baez–Dolan con-
struction onM, as the following polynomial endofunctor:

tr•M trM

B B,

s

p

t
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where tr•M is the set ofM-trees with a marked node, where s maps such anM-tree decoration of that
node, p forgets the marking, and t is part of the structure map of M as in equation (3.2). If T ∈ trM,
remark that T• = p−1T , and thus if [p] ∈ T• (i.e. p is a path in T), then s[p] = s[p] T .

Theorem 3.3 ([8]). The polynomial functorM+ has a canonical structure of a polynomial monad.

Proof (sketch). The partial law µ+ : tr•M ×B trM −→ trM is given by substitution as we now explain.
Take U ∈ tr•M, T ∈ trM such that sU = b = t T , i.e. (U, T) ∈ tr•M ×B trM. We may think of U as a
context corresponding to the selected node: U = U[Yb]. The readdressing map ℘T of T gives a bijection
between Y|

b and T |, and thus specifies “rewiring instructions” to replace Yb by T in U: µ+(U, T) = U[T ].
✓

§3.2. Polynomial approach

We make use of the polynomial functor approach to the definition of opetopes as presented in [8]: let Z0

be the identity polynomial monad, Zn = (Zn−1)+, and expand Zn as

O•
n+1 On+1

On On.

s

p

t

An n-opetope is then an element of On, or equivalently a Zn−2-tree, if n ≥ 2. In the latter case, an n-
opetope is then a tree whose nodes are (labeled in) (n− 1)-opetopes, and edges are (labeled in) (n− 2)-
opetopes. For ω ∈ On with n ≥ 2, an element of O•

n(ω) is a morphism of Zn−2-trees of the form
Yψ −→ ω, where ψ ∈ On−1.

Let ω ∈ On with n ≥ 2, [p] ∈ ω•, and ψ = s[p]ω ∈ On−1. Then by construction, there is a bijection
between the input edges of the node at address [p] in ω and ψ•. If [q] ∈ ψ•, we call [[q]] the associated
input edge, so that the address of that specific edge inω is [p[q]]. Moreover, the (n−2)-opetope decorating
that edge is by construction s[q]ψ = s[q] s[p]ω.

An opetopeω ∈ On with n ≥ 2 is called degenerate if it is of the formω = Iϕ for some ϕ ∈ On−2. We
call an edge inner if it is neither the root nor a leaf. Inner edges of ω are exactly those whose address is
of the form [p[q]], with [p] ∈ ω•, [q] ∈ (s[p]ω)•, and [p[q]] ∈ ω•.

§3.3. The category of opetopes

Akin to the work of Cheng [1], we define a category of opetopes by means of generators and relations.
The difference with the aforementioned is our use of polynomial opetopes (also equivalent to Leinster’s
definition [9, 8]), while Cheng uses an approach by multicategorical slicing, yielding symmetric opetopes.

Theorem 3.4 (Opetopic identities). Let ω ∈ On with n ≥ 2.

(i) (Inner edge) For [p[q]] ∈ ω• we have t s[p[q]]ω = s[q] s[p]ω.

(ii) (Globularity 1) If ω is non degenerate, we have t s[ε]ω = t tω.

(iii) (Globularity 2) If ω is non degenerate, and [p[q]] ∈ ω|, we have s[q] s[p]ω = s℘ω[p[q]] tω.

(iv) (Degeneracy) If ω is degenerate, then tω is not (so that [ε] ∈ (tω)•), and we have s[ε] tω = t tω.

With those identities in mind, we define the category O of opetopes by generators and relations as
follows.

(i) Objects: We set obO =
⊔
n∈N On.

(ii) Generators: Let ω ∈ On with n ≥ 1. We introduce a generator, called target embedding: tω t
−→

ω. If [p] ∈ ω•, then we introduce a generator, called source embedding: s[p]ω
s[p]
−−→ ω. A face

embedding is either a source or target embedding.
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(iii) Relations: We impose 4 relations described by commutative squares, that are well defined thanks to
theorem 3.4. To help with intuition, we give on the right informal diagrams that depicts an opetope
as a tree (reverse triangle with some features explicitly drawn). Let ω ∈ On with n ≥ 2

(a) [Inner] for [p[q]] ∈ ω• (forcing ω to be non degenerate),

s[q] s[p]ω s[p]ω

s[p[q]]ω ω

s[q]

t s[p]
s[p[q]]

s[p]ω

s[p[q]]ω

t s
[p

[q
]]

ω
s [
q
]

s [
p
]
ω

ω

(b) [Glob1] if ω is non degenerate,

t tω tω

s[ε]ω ω.

t

t t
s[ε] t

s[
ε
]
ω

· · ·

ω tω

t
t
ω

· · ·

(c) [Glob2] if ω is non degenerate, and for [p[q]] ∈ ω|,

s℘ω[p[q]] tω tω

s[p]ω ω.

s℘ω[p[q]]

s[q] t
s[p]

· · ·

s
[
q
]
s
[
p
]
ω

ω tω

· · ·

s
℘
ω

[
p
[
q
]
]
ω

(d) [Degen] if ω is degenerate,

t tω tω

tω ω.

t

s[ε] t
t

tω

s[
ε
]

t
ω

t
t
ω

§4. Outline of the equivalence

We now aim to prove that the category of opetopic sets, i.e. Set-presheaves over the category O defined
previously, is equivalent to the category of many-to-one polygraphs Pol∇. We achieve this by first con-
structing the opetal2 functor O[−] : O −→ Pol∇ that “realizes” an opetope as a polygraph, in that it freely
implements all its tree structure by means of adequately chosen generators in each dimension. Secondly,
writing Ô = SetOop

(as per French tradition), we consider the “polygraphic realization” |− | : Ô −→ Pol∇,
which is the left Kan extension of O[−] along the Yoneda embedding. This realization has a right adjoint,
the “opetopic nerve” N : Pol∇ −→ Ô, and we prove this adjunction to be an adjoint equivalence. This
is done using the shape function, which to any generator x of a many-to-one polygraph P associates an
opetope x♮ along with a canonical projection x̃ : O[x♮] −→ P.

2The name intends to follow the unofficial “-al” convention e.g. cubical, dentroidal, oriental, simplicial, etc.
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§4.1. The opetal functor

An opetope ω ∈ On, with n ≥ 1, has one target tω, and sources s[p]ω laid out in a tree. If the sources
s[p]ω happened to be generators in some polygraph, then that tree would describe a way to compose
them. With this in mind, we define a many-to-one polygraph O[ω], whose generators are essentially
iterated faces (i.e. sources or targets) of ω. Moreover, O[ω] will be “maximally unfolded” (or “free”) in
that two (iterated) faces that are the same opetope, but located at different addresses, will correspond to
distinct generators. The opetal functor O[−] is defined inductively, together with its boundary ∂O[−].

Initial cases. For ♦ the unique 0-opetope, let ∂O[♦] be the polygraph with no generators in any di-
mension, and O[♦] be the polygraph with a unique generator in dimension 0, which we denote by ♦.

For ■ the unique 1-opetope, let ∂O[■] = O[♦] + O[♦], and let O[■] be the obvious cellular extension(
∂O[■]

s,t←− {■}
)
, where s and t map ■ to distinct 0-generators. There are obvious functors O[s[ε]], O[t] :

O[♦] −→ O[■], mapping ♦ to s ■ and t ■ respectively.

Inductive step. Let n ≥ 2 and assume by induction that ∂O[−] and O[−] are defined on O<n, the full
subcategory of O spanned by opetopes of dimension strictly less than n. Letω ∈ On and start by defining

∂O[ω] = colim
O<n/ω

O[−].

This extends as a functor ∂O[−] : O≤n −→ Pol∇, mapping a k-opetope to a (k− 1)-polygraph, for k ≤ n.
In ∂O[ω], each source s[p]ω is an (n−1)-generator, whileω itself is a tree whose nodes are its sources.

Thus, ω can be thought of as a composition tree of (n− 1)-generators, and the result of that composition
is a cell sω ∈ ∂O[ω]∇n−1. On the other hand, the target of ω is a generator: tω ∈ ∂O[ω]n−1. One can
show that sω and tω are parallel, and thus there is a well defined extension

O[ω] =
(
∂O[ω]

s,t←− {ω}
)
,

where s and t map ω to sω and tω respectively.

The opetopic “realization–nerve” adjunction. We have a functor O[−] : O −→ Pol∇, and since
Pol∇ is cocomplete, we consider the “opetopic realization” | − | : Ô −→ Pol∇, which is the left Kan
extension of O[−] along the Yoneda embedding O ↪−→ Ô. It has a right adjoint N : Pol∇ −→ Ô, the
“opetopic nerve”, given by NP = Pol∇(O[−], P), for P ∈ Pol∇.

§4.2. The shape function

Take P ∈ Pol∇. We now define functions (−)♮ : Pn −→ On by induction. The cases n = 0, 1 are trivial,
since there is a unique 0-opetope and a unique 1-opetope. Assume n ≥ 2, and take x ∈ Pn. Then
the composition tree of s x is a coherent tree whose nodes are (n− 1)-generators, and edges are (n− 2)-
generators. Replacing those (n−1) and (n−2)-generators by their respective shape, we obtain a coherent
tree whose nodes are (n− 1)-opetopes, and edges are (n− 2)-opetopes, in other words, we obtained an
n-opetope, which we shall denote by x♮.

g1

g2

g3

g4

e
1

e
2

e
3 e 4

e 5

e
6 e 7

x
7−→

g
♮
1

g
♮
2

g
♮
3

g
♮
4

e
♮ 1

e ♮
2

e ♮
3 e

♮
4

e
♮
5

e
♮ 6 e

♮
7

x♮

The fact that x♮ corresponds to the intuitive notion of “shape” of x is argued by the following result.
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Proposition 4.1. Let P ∈ Pol∇ and x ∈ Pn, for any n ∈ N.

(i) There is a unique morphism of polygraphs x̃ : O[x♮] −→ P mapping x♮ ∈ O[x♮]n to x.

(ii) If ω ∈ On and f : O[ω] −→ P maps ω to x, then ω = x♮ and f = x̃.

Corollary 4.2. The function (̃−), that maps a generator x of P to x̃ : O[x♮] −→ P, is a bijection Pn −→⊔
ω∈On

NPω.

Theorem 4.3. The adjunction |− | : Ô ⊣←→ Pol∇ : N is an adjoint equivalence of categories.

Proof (sketch). The unit η is proved to be an isomorphism by inspection. For the counit ε, consider the
following diagrams.

N N

N|N− |,

idN

ηN Nε

|NP| P

N|NP| NP.

ε

(̃−) (̃−)
−1

Nε

The first is a triangle identity, and shows that Nε is a natural isomorphism. It is routine verification to
prove that the second commutes, for P ∈ Pol∇, and it shows that ε itself is an isomorphism. ✓

Many-to-one polygraphs have been the subject of other work [4, 3], and proved to be equivalent to
the notion of multitopic sets. This, together with our present contribution, proves the following:

Corollary 4.4. The category Ô of opetopic sets is equivalent to the category MltSet of multitopic sets.

§5. Conclusion

We proved the equivalence between opetopic sets (where “opetope” is understood in the sense of Leinster
[9, 8]) and many-to-one polygraphs. Along the way, we introduced formal tools and notations to ease
the manipulation of opetopes, and demonstrated that the shape they represent are indeed very present
in higher category theory.
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