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This is a partial abstract of my article Weak units, divisible cells, and co-
herence via universality for bicategories [8], focussing on its last two sections.

In [6, Chapter 3], I outlined a new approach to higher categories founded
on a notion of regular polygraph, where the shapes of n-dimensional cells are
restricted to ones whose k-boundaries have geometric realisations homeomorphic
to k-balls, for all k < n. These are described using ideas from poset topology
[19] and will be the subject of an upcoming paper [7]. The advantages of this
model of higher categories are that

1. unlike most algebraic approaches, for example those based on globular
operads [15, Part III], it has a clear notion of geometric realisation;

2. similarly to cubical approaches (limited to strict ω-categories [1]), but
unlike, for example, the opetopic or multitopic approaches [2, 12], there is
a natural monoidal biclosed structure, giving access to higher morphisms;

3. similarly to the opetopic or multitopic approaches, but unlike cubical ap-
proaches, a coherent algebra of composition can be induced by the exis-
tence of cells satisfying certain universal properties (“coherence via uni-
versality” [11]).

The first aim of this approach is to answer certain open questions regard-
ing the semi-strictifiability of higher categories and groupoids, synthesising the
combinatorial-topological aspects of more explicit coherence results, like those
based on string diagrams [5, 13], with the essential features of Hermida’s abstract
coherence proof for monoidal categories [10]. In particular, I am interested in
proving a variant of C. Simpson’s conjecture [18, Conjecture 6.5.1], that there
exists an algebraic notion of higher groupoids which

1. have a composition satisfying strict associativity and interchange axioms,
but only weak unitality, and
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2. admit a geometric realisation functor that realises all homotopy types, in
such a way that the “algebraic” homotopy groups of a higher groupoid
coincide with the homotopy groups of its realisation.

A proof of C. Simpson’s conjecture based on regular polygraphs is parallelly
being pursued by S. Henry [9].

A first benchmark of any definition of higher category is the equivalence
of its 2-dimensional instance with the standard algebraic definition of bicate-
gory. For this, I endow regular 2-polygraphs with an algebraic composition,
where composable diagrams of 2-cells are the “regular” ones that can function
as boundaries of regular 3-cells. Picture a 2-cell in a regular 2-polygraph with
n input and m output 1-cells, n,m > 0, as

x−

x+2 x+m

x+

x−2 x−n

b1 bm

a1 an

p

.

A dashed arrow stand for a (possibly empty, compatibly with the regular-
ity constraint) sequence of 1-cells. Such 2-cells will be also denoted by p :
(a1, . . . , an)→ (b1, . . . , bm), and 1-cells by a : x→ y.

Composable pairs of 2-cells are those in any of the following setups:

(c)

,

(a)

(b)

(d)

(1)

the shared boundary consisting of one or more 1-cells. I call this kind of com-
position a merger.

Let X
(n,m)
2 be the set of 2-cells of a regular 2-polygraph with n inputs and

m outputs; given p : (a1, . . . , an) → (b1, . . . , bm), for 1 ≤ i1 ≤ i2 ≤ n and
1 ≤ j1 ≤ j2 ≤ m, let ∂−[i1,i2](p) = (ai1 , . . . , ai2), and ∂+[j1,j2](p) = (bj1 , . . . , bj2).

Definition 1. A merge-bicategory is a regular 2-polygraph X together with
“merge” functions

X
(n,m)
2 ∂+

[j1,j2]
×∂−

[i1,i2]
X

(p,q)
2 X

(n+p−`,m+q−`)
2 ,

mrg
[i1,i2]
[j1,j2]
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whenever 1 ≤ j1 ≤ j2 ≤ m and 1 ≤ i1 ≤ i2 ≤ p, such that ` := j2 − (j1 − 1) =
i2 − (i1 − 1), satisfy the two conditions on any side of the following square:

i1 = 1 j2 = m

i2 = p j1 = 1.

(b)

(d)

(a) (c)

The interactions of merge functions and boundaries are the ones evident from

diagram (1); the mrg
[i1,i2]
[j1,j2]

satisfy associativity and interchange equations that

guarantee the uniqueness of the merger of three or more 2-cells, whenever they
can be merged in different orders.

Given two merge-bicategories X,Y , a morphism f : X → Y is a morphism of

the underlying regular 2-polygraphs that commutes with the mrg
[i1,i2]
[j1,j2]

functions.

Merge-bicategories and their morphisms form a category MrgBiCat.

Notice that, in particular, there is no horizontal composition, nor whiskering
with 1-cells as part of the structure of a merge-bicategory.

The fundamental notion connecting merge-bicategories to bicategories is di-
visibility of cells, as in the ability to factor other cells through them (“divide”
the cell from a composite) at a certain location in their boundary; “a cell which
is divisible both at its input boundary and at its output boundary” is an ele-
mentary notion of equivalence.

For 2-cells, this encompasses both “universal” or “representing” cells as in
[10, 4], and “(absolute) Kan extensions” or “internal homs” [17]. Divisibility for
2-cells is formulated with respect to the algebraic composition, and for 1-cells
with respect to an internal composition, witnessed by divisible 2-cells.

Definition 2. A 2-cell t ∈ X(n,m)
2 is divisible at ∂+[j1,j2] if, for all 2-cells s and

well-formed equations mrg
[i1,i2]
[j1,j2]

(t, x) = s, there exists a unique 2-cell r such

that mrg
[i1,i2]
[j1,j2]

(t, r) = s.

Dually, t is divisible at ∂−[i1,i2] if, for all 2-cells s and well-formed equations

mrg
[i1,i2]
[j1,j2]

(x, t) = s, there exists a unique 2-cell r such that mrg
[i1,i2]
[j1,j2]

(r, t) = s.

A 2-cell t ∈ X(n,m)
2 is divisible if it is divisible at ∂−[1,n] and at ∂+[1,m].

Definition 3. A 1-cell e : x→ x′ in a merge-bicategory X is tensor left divisible
if, for each a : x→ y and each a′ : x′ → y, there exist divisible 2-cells

x

x′

y

e e(a

a

eR

,

x

x′

y

e a′

e⊗ a′

t (2)
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that are also divisible at ∂−[2,2]. Dually, e is tensor right divisible if, for each

b : z → x and each b′ : z → x′, there exist divisible 2-cells

z

x

x′

b′›e e

b′

eL

,

z

x

x′

b e

b⊗ e

t (3)

that are also divisible at ∂−[1,1]. The 1-cell e is tensor divisible if it is both tensor

left and tensor right divisible.
A 1-cell e : x→ x′ is par divisible if it is tensor divisible in Xco, which is X

with the direction of 2-cells reversed. Finally, e is divisible if it is both tensor
and par divisible.

Definition 4. A merge-bicategory X is representable if

1. for all 0-cells x in X, there exist a 0-cell x and a divisible 1-cell e : x→ x,
or a divisible 1-cell e′ : x→ x;

2. for all 1-cells a in X, there exist a 1-cell a and a divisible 2-cell p : (a)→
(a), or a divisible 2-cell p′ : (a)→ (a);

3. for all pairs of 1-cells a : x→ y, b : y → z in X, there exist a 1-cell a⊗b and
a divisible 2-cell t : (a, b)→ (a⊗b), or a divisible 2-cell t′ : (a⊗b)→ (a, b).

A morphism f : X → Y of representable merge-bicategories is strong if it maps
divisible cells of X to divisible cells of Y . Representable merge-bicategories and
strong morphisms form a category MrgBiCat⊗.

In the definition of representability, x can in fact be chosen to be equal to
x, and a to a, but it is one of the main conceptual points of this approach that
this is not necessary: it suffices to postulate that “equivalences” (which are not
endomorphisms) exist, and units will follow.

Theorem 5. [8, Theorem 5.17] The category MrgBiCat⊗ is equivalent to the
category BiCat of bicategories and (pseudo)functors.

The construction of a weakly associative horizontal composition from “bi-
nary” divisible 2-cells is imported straightforwardly from [10] (or, in higher di-
mensions, from the opetopic/multitopic approach). However, in the opetopic or
multitopic approach, horizontal units (generally, n-units) are constructed from
“nullary” universal 2-cells ((n + 1)-cells), while here they come from “unary”
divisible 1-cells (n-cells). The key observation is that, given a divisible 1-cell
e : x → x, both the 1-cells e( e : x′ → x′ and e› e : x → x, as in diagrams
(2) and (3), have the properties of a Saavedra unit, an alternative definition of
bicategorical unit, due to J. Kock [14].

The category MrgBiCat has monoidal biclosed structure [8, Proposition
5.24], a truncated version of the monoidal biclosed structure on regular poly-
graphs [6, Definition 3.33]. Hence, given merge-bicategories X,Y , we can form
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a merge-bicategory [X,Y ] of morphisms, (op)lax transformations, and modi-
fications; moreover, representable merge-bicategories are an exponential ideal
in MrgBiCat, in the sense that [X,Y ] is representable whenever Y is repre-
sentable.

This allows us to recover all the higher structure of BiCat in MrgBiCat⊗.
In particular, (op)lax transformations of functors of bicategories correspond to
(op)lax transformations of strong morphisms of representable merge-bicategories
which assign divisible 2-cells to divisible 1-cells [8, Theorem 5.32]. Then the def-
inition of equivalence of representable merge-bicategories can also be imported
from bicategories.

Similarly to the case of representable multicategories and monoidal cate-
gories [10], the definition of a bicategory structure from a representable merge-
bicategory is not canonically determined, but depends on a choice of divisible
cells. I define a monad (T , µ̃, η̃) on MrgBiCat with the property that any
T -algebra α : T X → X on a merge-bicategory X, such that α is a strong mor-
phism, determines the structure of a strictly associative bicategory with weak
units.

The key point is that T splits as a composite MI of two monads, (I, µ, η),
for inflate, and (M, ν, ζ), for merge, related by a distributive law [3]: roughly,
the first encodes the structure relative to units, and the second the structure
relative to composition.

The idea — extended to higher dimensions — is that “merge” compositions
are those that can be implemented, in the geometric realisation of the shapes,
as homeomorphic mappings of two or more n-balls onto a single n-ball; while
units are created by collapses of cells with identical shapes in the input and
the output boundary (“inflate” as dual to “collapse”). These can be realised
directly for cells with a single input and a single output, or by first merging
parallelly the inputs and the outputs, then collapsing, and finally “un-merging”
homeomorphically, in the general case.

For example, given any pair of 1-cells a : x → y and b : y → z of X, the
merge-bicategory IX contains a divisible 2-cell ε : (a, b)→ (a, b), corresponding
to the collapse of a 2-cell with two inputs and two outputs; then,MIX contains
a 1-cell 〈a, b〉 — a merger of the sequence a, b — and a divisible 2-cell ε̃ :
(a, b)→ (〈a, b〉), via the merger of a, b in the output of ε. The strong morphism
α :MIX → X maps this to a divisible 2-cell (a, b)→ (a⊗b), effectively picking
a composite of a, b.

The distributive law σ : IM → MI encodes the fact that, whenever we
merge some 1-cells in a sequence, and then “inflate” it to a unit, we can first
inflate the original sequence, then merge on both sides of the unit’s boundary,
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instead:
Γ

I

M 〈Γ〉

I

Γ

Γ

ε
M

〈Γ〉

〈Γ〉

ε

.

The decomposition of T leads to a semi-strictification argument that, while
sharing the essential structure of Hermida’s proof, has an explicit combinatorial
content in common with Mac Lane’s original proof [16]. The main steps are the
following:

1. any representable merge-bicategory X admits an I-algebra structure α :
IX → X such that α is a strong morphism;

2. given an I-algebra α : IX → X such that α is a strong morphism, there
is a canonical T -algebra structure β : T X →MX onMX such that β is
a strong morphism;

3. if X is representable, the unit ζX : X →MX is an equivalence of repre-
sentable merge-bicategories.

In fact, the individual steps hold under weaker conditions. Together, they imply
constructively the following result.

Theorem 6. Let X be a representable merge-bicategory. Then there exist an
equivalence f : X → Y of representable merge-bicategories, and a T -algebra
β : T Y → Y such that β is a strong morphism.

If time permits, I will sketch how this argument may be generalised to the
higher-dimensional analogues of I and M, as outlined above.

Acknowledgement. I thank the reviewers for helpful comments on the first
version of this abstract.
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