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1. INTRODUCTION

This work is part of a research project aiming at developing rewriting methods to study diagrammatic
algebras. These diagrammatic algebras appear in various domains of mathematics and physics, as for in-
stance Temperley-Lieb algebras [16] in statistical mechanics, Brauer algebras [4] in representation theory
or Birman-Wenzl algebras [3] and Jones’ planar algebras [8] in knot theory. Moreover, in representation
theory, a new approach has emerged with the idea of studying categorifications of algebras, that is actions
of algebras on higher dimensional categories. In this process, some new diagrammatic algebras with a
categorical structure appear, such as KLR algebras [10, 14] or Khovanov’s diagram algebras [5], and one
of the main issue is to compute linear bases of these algebras. Higher-dimensional rewriting, see [1],
provides new methods to compute these bases by using termination and confluence properties.

In this work, we consider diagrammatic K-algebras that can be seen as K-linear (2, 2)-categories,
that is 2-categories C with sets of 0-cells C0, 1-cells C1 and 2-cells C2 such that for all 1-cells p and q, the
set C2(p, q) of 2-cells with source p and target q is a K-vector space. According to Alleaume [1], these
categories can be presented by 3-dimensional linear rewriting systems called linear (3, 2)-polygraphs.
These polygraphs provide define the generating 1-cells and 2-cells of a presentation of C by generators
and relations. Considering the algebras coming from representation theory, we will in particular be inter-
ested in some particular cases of linear (2, 2)-categories which are endowed with braidings, adjunctions
and duals.

The termination and confluence properties of linear (3, 2)-polygraphs are essential to construct the
required linear bases. In this work, we present new termination proofs for these linear (2, 2)-categories
enriched with braidings and duals using new termination orders which are closely related to monomial
orders. A different method already exists to prove termination of 3-polygraphs, [7], but it is hard to use
in presence of a great number of relations. Our approach using this new order may be useful in some sit-
uations. The main idea is to count the generators on string diagrams and try to find some characteristics
which are both stable by adding a context, and strictly greater on sources on 3-cells than on targets. We
will at first present the different categorical structures that we will study, and then we will progressively
construct the termination heuristics depending on the kind of relations we consider.

2. SOME PARTICULAR CASES OF LINEAR (2, 2)-CATEGORIES

2.1. Categories with braidings. We consider a linear (2, 2)-category C with an additional structure
given by braidings, that is for any generating 1-cells p and q of C, there is a natural isomorphism

σ : p ?0 q→ q ?0 p

where the ?0-composition is diagrammatically depicted by placing two string diagrams next to each
other. Such natural morphisms are diagrammatically depicted by crossings:

q p

p q

In this work, we use a symmetric notation for braidings, and do not distinguish a braid from its topolog-
ical inverse because we allow linear (2, 2)-categories with relations of the form σp,q ?1 σq,p = 1p ?0 1q.



These braidings have to satisfy some naturality axioms, namely the hexagon axiom: (idq⊗σp,r)◦αq,p,r◦
(σp,q ⊗ idr) = αq,r,p ◦ (σq,r⊗p ◦αp,q,r) where αp,q,r : (p⊗ q)⊗ r→ p⊗ (q⊗ r). This naturality yield
to the Yang-Baxter equation, which can be diagrammatically depicted by:

p q r

=

p q r

(1)

It appears that these braidings structures are often combined with other kinds of operations and
in particular, adjunctions on the 1-cells of the linear (2, 2)-category. These adjunctions are defined as
follows: for any 1-cell p : x → y of C, there is a 1-cell p̂ : y → x and two 2-cells ε and η in C defined
as follows:
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called the counit and unit of the adjunction, such that the equalities
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hold. We denote the fact that p is a left adjoint of p̂ by p a p̂. In a string diagrammatic notation, these
units and counits are represented by caps and cups morphisms as follows:
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The axioms of an adjunction require that the equalities between composites of 2-morphisms
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p

p

(2)

are satisfied. When we are in the situation where p̂ is also a left-adjoint of p, that is p and p̂ are biadjoint,
that we denote by p a p̂ a p, the symmetric zig-zag relations hold similarly.

2.2. Categories with duals. Following [15] for monoidal categories, in a strict linear (2, 2)-category
an exact pairing between two 1-morphisms p and q such that p a q is given by a pair of morphisms
η : 1y → q ?0 p and ε : p ?0 q → 1x which are the unit and counit of the adjunction and such that the
following two adjuction triangles commute

p
1p?0η

//

1p
''

p ?0 q ?0 p

ε?01p

��
p

q
η?01q

//

1q
''

q ?0 p ?0 q

1q?0ε

��
q

In such an exact pairing, B is called the right dual of A and A is the left dual of B.

2.3 Definition. A linear (2, 2)-category is said right autonomous if every 1-morphism p has a right dual,
which we then denote by p∗. It is said left autonomous if every 1-morphism p has a left dual, which we
denote by ∗p. It is autonomous if it is both left and right autonomous.
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2.4. Mateship under adjunction. We recall following [13] the 2-category theoretic notion of mate-
ship under adjunction introduced by Kelly and Street in [9]. This is a certain correspondence between
2-morphisms in the presence of adjoints.

Given adjoints η, ε : p a q : x→ y and η ′, ε ′ : p ′ a q ′ : x ′ → y ′ in the 2-category C, for any 1-cells
f : x → x ′ and g : y → y ′ in C, there is a bijection M between 2-morphisms ξ ∈ C(g ?0 q, q ′ ?0 f) and
2-morphisms ζ ∈ C(p ′ ?0 g, f ?0 p), where ζ is given in terms of ξ by the composite:

M : C(g ?0 q, q ′ ?0 f) −→ C(p ′ ?0 g, f ?0 p)

ξ 7→ (
p ′ ?0 g

p ′?0gη +3 p ′ ?0 g ?0 q ?0 p
p ′?0ξ?0p+3 p ′ ?0 q

′ ?0 f ?0 p
ε ′?0f?0p+3 f ?0 p

)
= ζ ,

and ξ is given in terms of ζ by the composite:

M−1 : C(p ′ ?0 g, f ?0 p) −→ C(g ?0 q, q ′ ?0 f)

ζ 7→ (
g ?0 q

η ′?0g?0q+3 q ′ ?0 p
′ ?0 g ?0 q

q ′?0ζ?0q+3 q ′ ?0 f ?0 p ?0 q
q ′?0f?0ε+3 q ′ ?0 f

)
= ξ .

We then say that ξ and ζ are mates under adjunction. Diagrammatically, this notion of mateship under
adjunction can be expressed as:

M : • ξy ′ x

x ′

y
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fq ′
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η
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2.5. Cyclic 2-morphisms. Given a pair of 1-morphisms p, q : x→ ywith chosen biadjoints (p̂, ηp, η̂p, εp, ε̂p)
and (q̂, ηq, η̂q, εq, ε̂q), then any 2-morphism α : p⇒ q has two obvious duals ∗α,α∗ : q̂⇒ p̂, or mates,
one constructed using the left adjoint structure, the other using the right adjoint structure. Diagrammati-
cally the two mates are given by

∗α := •α

y

x

q̂

p̂

εq

ηp

α∗ := •α

x

y

q̂

p̂

ε̂p

η̂q

(3)

We will call α∗ the right dual of α because it us obtained from α as its mate using the right adjoints of
p and q. Similarly, ∗α is called the left dual of α because it is obtained from α as its mate using the left
adjoints of p and q.

In general there is no reason why ∗α should be equal to α∗, see [13] for a simple counterexample.

2.6 Definition ([6]). Given biadjoints (p, p̂, ηp, η̂p, εp, ε̂p) and (q, q̂, ηq, η̂q, εq, ε̂q) and a 2-morphism
α : p⇒ q define α∗ := p̂η̂q.ε̂pq̂ and ∗α := εGp̂.̂ηq as above. Then a 2-morphism α is called a cyclic 2-
morphism if the equation ∗α = α∗ is satisfied, or either of the equivalent conditions ∗∗α = α or α∗∗ = α
are satisfied.

3. TERMINATION OF 3-DIMENSIONAL LINEAR REWRITING SYSTEMS

We present a method to prove termination of a given linear (3, 2)-polygraph presenting a linear (2, 2)-
category with a particular additionnal structure coming from braidings or duals. This method is based on
the construction of a termination order similar to a monomial order, that is compatible with contexts and
well-founded but that is not required to be total. Actually, as shown by Alleaume [1] computing such a
monomial order on a linear (2, 2)-category is not always possible.
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3.1. The general idea: counting the generators. In [7], Guiraud and Malbos described a method to
prove termination of a 3-dimensional string rewriting system by constructing a derivation defined on gen-
erating 2-cells of the category presented and ensuring that for 3-cell α, this derivation is strictly greater
on s(α) than t(α). However, this method is not efficient when the number of rules or generating 2-cells
is too important, since computing the values of the derivation may become complicated. We want to find
another method which could be used for many kinds of such linear (2, 2)-categories.

We fix a presentation of our linear (2, 2)-category by choosing an orientation of the 3-cells and we
try to find some characteristics of the diagrammatic sources of 3-cells for which they could be compared
to the targets. For instance, with a rule of the form

⇒
we notice that the number of crossings is strictly greater on the source of the 3-cell (since it is 1) than
on the target (since it is 0). Besides, this characteristic is ”monomial” in a sense, because it is stable by
context. Namely, if we put our source into a given context, that is if we plug with compositions ?0 and ?1
of the category new diagrams to this crossing, the number of crossings of the resulting diagram is strictly
greater that on the same diagram with the crossing replaced by the identity.

3.2. Decreasing order operators. Given a linear (3, 2)-polygraph Σ, one defines a decreasing order
operator for Σ as a family of functionsΦp,q : Σ2(p, q)→ Nm(p,q)×Z indexed by pairs of 1-cells p and
q satisfying the following conditions:

• For each diagrams D1 and D2 in Σ2(p, q) such that there exists a 3-cell α : D1 V D2 in Σ, the
function Φp,q satisfy Φp,q(D1) > Φp,q(D2) where > is the lexicographic order on Nm(p,q) × Z.
We denote this by D1 >lex D2.

• TheΦp,q are stable by context in the following sense: for any diagramsD1 andD2 and any context
C of Σ, if D1 >lex D2, then C[D1] >lex C[D2].

Note that the lexicographic order on Nm(p,q) × Z is not well-founded, but in general we use decreasing
order operators with no Z-component or with a lower bound on this component as we will explain in 3.9.

3.3. Termination with braidings. We assume that C is a linear category having for generating 2-cells
only the crossings σp,q for each generating 1-cells p and q in C1. Let us choose Σ a linear (3, 2)-
polygraph presenting C, then the set Σ3 has to contain all the Yang-Baxter relations with a fixed choice
of orientation for each one. We assume that:

• Σ3 contains only these Yang-Baxter relations (1), and we decide to choose the following orientation
for each of these relations:

p q p

V

p q p

Then, for any 1-cells p and q, the functions Φp,q counting the number of occurences of the 2-cell
σp,q?0 idp in a given diagram allows to prove that such a rewrite system is terminating, because the
number of such occurences can not increase using the exchange law of the category and is stable
by context. This idea is similar to the termination order counting the number of occurences of the
generator s in the monoid B+

3 = 〈 s, t | sts⇒ tst 〉.

• Σ3 contains the Yang-Baxter relations and some other relations making the number of braidings
decrease, as double permutations relations in the symmetric group:

p q

V
p q

(4)
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Then we can add as first component to the functionsΦp,q defined above a component counting the
number of crossings of any diagram. Similarly, it is clearly stable by exchange law and contexts.

Assume now that there are an additional 2-morphism α in C2(q, q) for q ∈ C1 diagrammatically
depicted by

• α

and that we denote by a simple dot when there is no ambiguity. If α appears in relations with the
braidings of type commutation or at least commutation with creation of lower terms for the order already
defined. For instance, with a rule of the form (α ?0 idp) ?1 σp,q = σp,q ?1 (idp ?0 α) + (lower terms),
diagrammatically represented by

• V
•

+ lower terms (5)

for any p, q ∈ C1, the termination of the associated rewriting system can be ensured in the follow-
ing way: for each 1-cell p in C1, we denote by `(p) the length of p corresponding to the number
of generating 1-cells appearing in its decomposition in ?0-composition of these generators. We fix
m(p, q) = max(`(p), `(q)). For a diagram D in C2(p, q), we add to our previous order m new com-
ponents, which are defined as follows: we numerate the strands of the diagram from 1 to m(p, q) (on
top or bottom, depending on which 1-cell has the maximal length) and for each 1 ≤ k ≤ m, we add the
components (ck(D))1≤k≤m(p,q) defined by:

• 0 if the k-h strand is not a through strand, that is a strand linking a point of the top and a point of
the bottom boundaries of the diagram; this can not occur in category with only braidings.

• the number of crossings below the upper dot of the k-th strand.

Then we define a decreasing order operator byΦ(p, q) = (c(D), ybg(D), c1(D), . . . , cm(D) where
c(D) corresponds to the number of crossings, ybg(D) corresponds to the number of occurences of a
σp1,q1⊗ idp1 for generating 1-cells p1 and q1. It is clearly stable by context as we add a constant number
of crossings under each dot of the diagrams, and is well-founded.

3.4 Nil Hecke algebra. For n ∈ N, let us consider the Nil-Hecke algebra NH0n which is a K-algebra
for a given field K given by:

• generators ξi for 1 ≤ i ≤ n and ∂i for 1 ≤ i < n;

• relations:
ξiξj = ξjξi,
∂iξj = ξj∂i if |i− j| > 1, ∂i∂j = ∂j∂i if |i− j| > 1,
∂2i = 0, ∂i∂i+1∂i = ∂i+1∂i∂i+1,
ξi∂i − ∂iξi+1 = 1, ∂iξi − ξi+1∂i = 1.

This K-algebra can be seen as a linear (2, 2)-category with only one 0-cell, the 1-cells are given by
permutations of the set {1, . . . , n} and 2-cells between two permutations are given by braiding diagrams
linking these two permutations. The generating 2-cells can be pictured as

ξi =

1

. . . •

i

. . .

n

, ∂i =

1

. . .

i i+1

. . .

n

and the local relations are represented by:

= 0, = , • =
•

+ • =
•

−

The other algebraic relations correspond to the exchange laws of the 2-category and are implicit in this
context. If we define a linear (3, 2)-polygraph by orienting the relations as suggested above, then we
can prove that it is terminating using the following decreasing order operator: for a given diagram D in
NH0n(σ, τ),

Φσ,τ(D) := Φ = (c(D), ybg(D), c1(D), . . . , cn(D)).
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3.5. Categories with adjunctions. We consider a linear (2, 2)-category C whose 1-morphisms are
equipped with given biadjunctions, which yield isotopy relations of the form

= ; = (6)

where we omit the labelling on morphisms when not necessary. If we orient these relations from left
to right, we have to add new components to ”count the degree of isotopy of a diagram”, which can be
realised by counting its number of caps and cups. It is also stable by context. Now, assuming that there
is an additional 2-morphism α which is cyclic with respect to some biadjunction p ` q ` p, we have to
impose some new relations of the form:

• = = • (7)

More over, this linear (3, 2)-polygraph is not confluent, and the first steps of Knuth-Bendix compu-
tation forces us to add some relations of the form

• = • , • = • ,

allowing to make dots move in each direction on a cup or a cap. These relations also arise naturally in
the context of pivotal categories, which are a particular case of categories with duals in which p∗∗ ' p
for any 1-cell p, since they are just axiom consequences of the pivotal structure following [13].

3.6. The (3, 2)-polygraphs of pearls. In this section, we consider a particular case of a linear (2, 2)-
category with adjunctions and an additionnal cyclic dot 2-morphism, see [7] for details on this rewriting
system. Namely, let C be the linear (2, 2)-category with:

• only one 0-cell ∗;
• only one 1-cell p;

• generating 2-cells: • , , ;

subject to the following relations:

= , = , • = • , • = • .

We fix a linear (3, 2)-polygraph presenting C by orienting the above relations from left to right. We
notice that if we orient the relations in such a way that dots move in different directions on composable
cups and caps, we automatically lose termination because we create cycles of the following form:

•
= • V •

= • V • .

To prove that such a linear (3, 2)-polygraph is terminating, we define the following order associated with
the functionsΦp,p(D) = (I(D), l-dot(D)) where:

• I(D) corresponds to the isotopy degree of D, that is the number of caps and cups it contains;

• l-dot(D) corresponds to the number of positively left-dotted caps and cups, that is the number of

elements • and • with at least one dot appearing in D with the convention that

l-dot
( •n

)
= l-dot

(
•n

)
:= n

The lexicographic order defined by this function is stable by context because by composing a diagram
using ?0 and ?1-compositions, we add a constant number of cups and caps to the diagram, and so is the
number of positively dotted left cups or caps since a dot cannot move from right of a cap/cup to its left
even by adding a context.
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3.7. Indexed critical branchings. We described a method to study termination of a linear (3, 2)-
polygraph which contains the rules of the linear (3, 2)-polygraphs of pearls. However, we saw that
we had to to orient the dot-moves in the same direction to preserve termination. We will see that this
may be an obstruction to prove the confluence of the rewriting system and that we may choose to lose
the termination and consider quasi-terminating linear (3, 2)-polygraphs.

According to [12, 7], in 3-dimensional set-theoretic rewriting there are unusual forms of critical
branchings which appear. They are called indexed critical branchings and have the following form:

s(α)

g

k

. . .

. . .

=

f

g

kh

. . .

. . .

=

f

k

s(β)

. . .

. . .

where f, g, h, k ∈ C2, and s(α)
α
V t(α) is a 3-cell in the linear (3, 2)-polygraph Σ.

With isotopy relations given by the biadjunction structure, keeping the dot-move relations with the
same orientation may generate a huge number of new indexed critical branchings. If we consider a lin-
ear (2, 2)-category also equipped with braidings and a linear (3, 2)-polygraph presenting Σwith relations
oriented as above, then whenever the following compositions make sense we create for each n ∈ N an
indexed critical branching in Σ whose form is given in Figure 1 below. This may be source of obstruc-
tions to prove the confluence of our system. In fact, for each 2-cell that one can plug in the diagram
below, there is an indexed critical branching depicted in Figure 2-below. From [7] these indexed branch-
ings are confluent when the 2-cell k is one of diagrams given in Figure 3 below.

Figure 1 Figure 2 Figure 3

• •
n

• k , , , •n

To avoid the computations of critical pairs being too complicated, we sometimes choose to deliber-
ately lose the termination of the rewriting system by allowing new orientations for the dot-move rules:

• V • , • V • .

We will then study the property of quasi-termination of the new linear (3, 2)-polygraph.

3.8. Quasi-termination and quasi-reduced monomials. Following [1], we say that a linear (3, 2)-
polygraph Σ is quasi-terminating if for each sequence (un)n∈N of 2-cells such that for each n in N
there is a rewriting step from un to un+1, the sequence (un)n∈N contains an infinite number of oc-
curences of the same 2-cell. A 2-cell φ of Σ is called a quasi-normal form if for any rewriting step
from φ to another 2-cell ψ, there exist a rewriting sequence from ψ to φ. A quasi-normal form of
a 2-cell φ is a quasi-normal form ˜phi such that there exists a rewriting sequence from u to ũ. We
say that Σ is exponentiation free is for any 2-cell φ, there does not exist a 3-cell α in Σ such that

φ
α
V λφ+ u with λ ∈ K∗ and u 6= 0. In a quasi-terminating context, there is an equivalent to the criti-

cal pair lemma, which states that it remains an interesting property to study since there exists confluence
issues in a quasi-terminationg context [2].
These termination heuristics can be extended to prove quasi-termination when the dot-move relations
are oriented in different directions. The main idea is to ensure that the linear (3, 2)-polygraph Σ con-
sidered only the bubbles cycles described above and no other rewriting cycles. We define a notion of
quasi-reduced monomial in Σ which is a monomial on which we can only apply the rules

•n V •n−1 • ,
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and we apply the same process of defining a decreasing order operator which does not count the number
of left-dotted cups and caps on the set of quasi-reduced monomials to ensure that there is no other
obstruction to termination that these cycles.

3.9. A Z-degree component with a lower bound . Some diagrammatic algebras are equipped with
a Z-grading, which may be used as a criterion for termination provided that the grading is bounded
below. Consider a linear (2, 2)-category C is equipped with a Z-grading on 2-cells having caps and cups
2-cells so that we can define bubbles in C (which are ?1-compositions of a cap above a cup in C). As
illustrated on the example of KLR in the appendix, the algebraic context may enforce some bubbles to
be 0 whenever their degree decrease too much. In particular, this is the case for a linear (2, 2)-category
in which all bubbles with negative degree are 0.

If we assume that there is a relation implying bubbles in C for which the degree is strictly decreasing,
then there can not exist an infinite rewriting step using this relation since there exists a point from which
this degree will be strictly negative, and thus the whole diagram will rewrite to 0. This can be formalized
by adding this degree in the last component of a decreasing order operator, with the convention that the
degree of 0 is −∞, so that 0 is the minimal element for this order (because each other component of the
diagram 0 is 0). We will illustrate this idea on the linear (3, 2)-polygraphs KLR in the appendix.

3.10. General heuristics. We generalize the previous heuristics constructed in this section for a lin-
ear (3, 2)-polygraph presenting a linear (2, 2)-category with braidings and duals. We will illustrate our
approach on the linear (3, 2)-polygraphs KLR given in the appendix.

3.11 Proposition. Let C be a linear (2, 2)-category endowed with braidings, duals and some additionnal
cyclic 2-morphisms which admits a presentation by generators and relations containing further of the
following:

• Yang-Baxter relations (1);

• relations making the number of braidings decrease as symmetric group relations (4);

• commutation of some of the cyclic 2-morphisms with the braidings, eventually creating residues
with lower crossings (5);

• the isotopy relations coming from the adjunctions and the cyclicity of the 2-morphisms (6, 7);

• some other relations that make the number of crossings or the number of cups and caps decrease;

• in a Z-graded context, some relations making the degree decrease with a lower bound on the
degree under which all diagrams are zero as explained in 3.9.

Then, any linear (3, 2)-polygraph presenting C in which the relations are oriented in such a way that the
functionsΦp,q satisfy Φp,q(s(α)) > Φp,q(t(α)) for all 1-cells p,q and 3-cell α is terminating.

The proof of this result is given by our previous heuristics: if we have braidings with relations making
the number of crossings decrease, we add a component for the number of crossings and the number of
occurences of a σp,q ?0 idp in the diagram. If there is an additionnal 2-morphism which commutes with
the braidings, we add the required number of components ck(D) defined above. If we have the isotopy
relations, we add a component counting the number of cups and caps. If we have a dot-move relation of
the additionnal 2-morphism, with cups and caps we count the positively left-dotted cups and caps and
if we have relations implying decreasing degree conditions we can add a last component counting this
degree. The 3-cells are then oriented naturally with respect to this order.

CONCLUSION

In this work, we have presented new heuristics to prove termination of linear (3, 2)-polygraphs presenting
linear (2, 2)-categories arising in the context of representation theory. We have illustrated this to prove
the termination of the linear (3, 2)-polygraphsKLR. The construction of such heuristic is the first step to
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get a linear basis of the 2-category from [11] which is a candidate categorification for a quantum group.
We now need to develop new confluence criteria. The isotopy relations may bring non-confluent critical
branchings, as it is the case forKLR, and we want to develop a theory of rewriting modulo these isotopy
relations, and to obtain new bases results in this context.
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A. THE LINEAR (3, 2)-POLYGRAPHS KLR

In this appendix, we describe explicitely the termination proof of a linear (3, 2)-polygraph defined from
a linear (2, 2)-category arising in a process of categorification of quantum deformations of some Kac-
Moody algebras, see [11] for more details. These Kac-Moody algebras have a weight lattice, that we
will just see as a set X in here.

Each Kac-Moody algebra comes from the data of a Cartan datum and a root datum associated. Ac-
tually, the data of a Cartan datum is equivalent to the data of a given oriented graph, and we will con-
sider this approach here. Let Γ be a graph whose set of vertices is denoted I, and K any field. We set
V =

∑
i∈I
νi.i ∈ N[I] an element of the free semi-group generated by I. We setm := |V | =

∑
Vi.

For such an element V , we define the set SSeq(V) as the set of sequences of vertices of Γ in which
the vertex i appears exactly Vi times, and endowed with signs in {−,+}. For instance,

SSeq(i+ 2j) = {(+i,−j,−j), (+i,−j,+j), (+i,+j,−j), (+i,+j,+j), (−i,−j,−j), (−i,−j,+j), . . . }

A.1 Definition. Let KLR be the linear (3, 2)-polygraph defined by:

• KLR0 = X the weight lattice of the Kac-Moody algebra;

• KLR1 = SSeq :=
∐
V∈N[I]

SSeq(V), that is signed sequences of vertices of Γ ;

• KLR2 admits for generating 2-cells:

•
i i j

λ •
i i j

λ

i

λ i

λ
i

λ i

λ

• KLR3 consists of the following 3-cells:

1) The 3-cells of the given by the natural orientation of the relations of the KLR algebras in
which we add an upward (resp. downward) orientation on each strand, see [10] for a precise
description of these rules.

2) The ”isotopy” 3-cells: for any i ∈ I and λ ∈ X

i

λ V

i

λ ;
i

λ V
i

λ ;

i

λ =

i

λ ;
i

λ =
i

λ .

•
i

λ V •
i

, •
i

λ V •
i

, •
i

λ V •
i

, •
i

λ V •
i

;

•
i

λ
V

i

λ
• ,

i

λ• V •
i

λ

•
i

λ
V

i

λ
• ,

i

λ• V •
i

λ
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3) Some 3-cells coming from the definition of new generators: for any i, j ∈ I, λ ∈ X

ij

V
j i

λ ;

λ

•−〈hi,λ〉

V
i

λ
for 〈hi, λ〉 ≤ 0;

λ
• 〈hi,λ〉

V
i

λ

for 〈hi, λ〉 ≥ 0

4) Some 3-cells for degree conditions on bubbles: for any i ∈ I, λ ∈ X

i

λ•n V

{
11λ if n = 〈hi, λ〉− 1
0 if n < 〈hi, λ〉− 1

i

λ •n V
{
11λ if n = −〈hi, λ〉− 1
0 if n < −〈hi, λ〉− 1

5) The ”Infinite-Grassmannian” 3-cells: for any i ∈ I, λ ∈ X and α > 0,

i

λ•〈hi,λ〉−1+α V −

α∑
l=1

i

•〈hi,λ〉−1+α−l

i

λ •−〈hi,λ〉−1+l

6) Some invertibility 3-cells: for any i, j ∈ I and λ ∈ X,

λ
V −

i

j

λ ;
λ
V −

i

j

λ

λ
V −

i

i

λ +

〈hi,λ〉−1∑
n=0

∑
r≥0

i

λ
i •−n−r−2
• r

i
•n

,

λ
V −

i

i

λ +

−〈hi,λ〉−1∑
n=0

∑
r≥0

i
•r

i
λ

•−n−r−2

• n
i

.

7) Some ”sl2” 3-cells: for any i ∈ I and λ ∈ X,

λ
V
〈hi,λ〉∑
n=0

i
•n

i

λ
•−n−1 ; λ

V −

−〈hi,λ〉∑
n=0

i
•−n−1

i

λ
•n ;

λ
V −

−〈hi,λ〉∑
n=0

i
•n

i

λ
•−n−1 ;

λ
V
〈hi,λ〉∑
n=0

i
•−n−1

i

λ
•n .

The 2-cells in KLR. Given two signed sequences E and F with respective lengths n andm, the 2-cells
between E and F correspond to diagrams drawn in the strip of the plane R × [0, 1]. We place n points
on the line R × {0}: (1, 0), . . . , (n, 0) and m points R × {1}: (1, 1), . . . , (m, 1). Each of this point is
linked with another dot by an oriented strand using our generating 2-morphisms. The strands are oriented
following the signs of the vertices, if a strand start from a vertex with a positive (resp. negative) sign, it
will be upward (resp. downward) oriented.
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Termination of KLR. Let E and F be two elements of SSeq(V) with max(|E |, |F |) := m. Then we
define a function

ΦE ,F := Φm : KLR2(E ,F) → Nm+4 × Z
D 7→ (c(D), c1(D), . . . , cm(D), ybg(D), I(D)l-dot(D), degb(D))

where:

• c(D) is the number of crossings between strands in D;

• for 1 ≤ k ≤ m, ck(D) is defined as above;

• ybg(D) corresponds to the number of instances of the target of the Yang-Baxter 3-cell with an
upward or downward orientation;

• I(D) corresponds to the number of rightward caps and leftward cups that appear in D;

• l-dot(D) corresponds to the number of positively leftward dotted caps and cups as described above.

• degb(D) :=


#{bubbles in D}+

∑
π clockwise oriented bubble in D

deg(π) if D is a diagram with bubbles,

0 if D is a diagram without bubbles,
−∞ if D = 0.

Then, for each pair of 1-cells E and F in KLR1, we define a partial order on KLR2(E ,F) in the
following way:

D1 ≺ D2 ⇔ |E | = |F |(:= m) and Φm(D1) ≤lex Φm(D2)

where ≤lex is the usual lexicographic order.

A.2 Lemma. ≺ is a well-founded order.

Proof. We first begin by stating that for anym ∈ N, 0 ∈ KLR2(E ,F) for any E ,F ∈ KLR1 because of
the structure of vector space for each space of 2-cells. Besides, Φm(0) = (0, . . . , 0︸ ︷︷ ︸

m + 4 terms

,−∞) is the lowest

element in Nm+4 × Z.

Now, let’s assume that there exist an infinite stricly decreasing sequence for ≺:

u1 ≺ u2 ≺ . . .

Then, using the well-foundation of the lexicographic order on N, there exists a rang k from which it is
the last Z-component that strictly decreases, that is to say

degb(uk) < degb(uk+1) < . . .

Then necessarily, there exist a rank l ≥ k such that degb(ul) < 0 and thus u1 has at least one clockise
oriented bubble of degree < 0 in it. Then using the 3-cells for the degree conditions, this bubble reduces
to 0, and so necessarily ul+1 = 0.

AsΦm(0) is the lowest element for the lexicographic order on Nm+4×Z, there can’t exist ul+2 such
that ul+1 = 0 ≺ ul+2. So ≺ is well-founded.

A.3 Proposition. The aforegiven order ≺ is a monomial order on the underlying 2-polygraph of KLR
and satisfies the following condition:

s(α) ≺ g for any g ∈ Supp(t(α))
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Proof. ≺ is well founded according to A.2. The monomiality is clear because if we haveD1 ≺ D2, then
plugging a context in D1 and D2 whenever it makes sense, we add a constant number of crossings, a
constant number of instances of the right Yang-Baxter 3-cell, a constant number of (dotted or not) caps
and cups, the same clockise oriented bubbles and the same number of new crossing below each dot.
It remains to check the condition on the 3-cells. All our 3-cells are between 2-cells with the same length
2 or 3, and one can notice thatΦ does not depend on the orientation of the through strands. We have the
following equalities for any labelling of the strands:

Φ(0) = (0, 0, 0, 0, 0, 0, 0, 0,−∞); Φ(11λ) = (0, 0, 0, 0, 0, 0, 0, 0);

Φ

( )
= (2, 0, 0, 0, 0, 0, 0, 0, 0);

Φ


 = (3, 0, 0, 0, 1, 0, 0, 0); Φ


 = (3, 0, 0, 0, 0, 0, 0, 0);

Φ

(
•

)
= (1, 1, 0, 0, 0, 0, 0); Φ

(
•

)
= (1, 0, 0, 0, 0, 0, 0);

Φ

(
•

)
= (1, 0, 1, 0, 0, 0, 0); Φ

(
•

)
= (1, 0, 0, 0, 0, 0, 0);

Φ

 λ
•〈hi,λ〉−1

 = Φ

(
λ

)
= (1, 0, 0, 0, 0, 0);

Φ


•n λ
•−n−1

 = (0, 0, 0, 0, 0, 1); Φ


•nλ

•−n−1

 = (0, 0, 0, 2, 0,−〈hi, λ〉− 1− n− 1);

Φ

 λ

 = Φ

 λ

 = (2, 0, 0, 0, 0, 0, 0);

Φ

(
i

λ•
)

= (0, 0, 0, 0, 1, 0); Φ

(
•

i

λ
)

= (0, 0, 0, 0, 0, 0)

Φ


λ

 = Φ

(
λ

)
= Φ

(
λ

)
= Φ


λ

 = (0, 0, 0, 1, 0, 0);

Φ

(
• λ

)
= Φ

(
• λ

)
= (0, 0, 0, 1, 0, 0); Φ

(
• λ

)
= Φ

 • λ

 = (0, 0, 0, 1, 2, 0);

Φ

(
λ•〈hi,λ〉−1+α
)

= (0, 0, 0, 2, 0,A);

Φ

(
•〈hi,λ〉−1+α−l λ •−〈hi,λ〉−1+l

)
= (0, 0, 0, 2, 0, Bl);

where A = 1 + αi · i and Bl = 2 + (α − l)i · i, so that A > B because l ≥ 1 and i · i = 2. Besides, as
Φ is clearly zero for identities or identities with dots, the required inequalities are satisfied.
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