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Abstract

In the graphical calculus of planar string diagrams, equality is generated by the
left and right exchange moves, which swaps the heights of adjacent vertices. We
show that for connected diagrams the left- and right-handed exchanges each give
strongly normalizing rewrite strategies. We show that these strategies terminate
in O(n3) steps where n is the number of vertices. We also give an algorithm to
directly construct the normal form, and hence determine isotopy, in O(n ·m) time,
where m is the number of edges.

1 Introduction

1.1 Overview

String diagrams are seeing increasingly broad application across theoretical computer
science, in areas including quantum computation [1, 6, 7], natural language process-
ing [5], interacting agents [9], circuit design [10], and rewriting [17]. In this paper we
study planar combinatorial string diagrams—henceforth simply diagrams—in which 2-
dimensional tiles with input and output wires are composed in the plane (see Figure 2
for an example), and prove results regarding normal forms.

The theory of diagrams is rich, because diagrams can be acted on by arbitrary recum-
bent1 isotopies of the plane [12]. Here we quotient by local isotopy in the neighbourhood
of each vertex, yielding a combinatorial reduction of the notion of diagram, in which the
only nontrivial moves are the right exchange and left exchange, illustrated in Figure 1
in the most general case. These diagrams, as with all the diagrams we consider, are in
generic position, with at most one vertex at each height.2 We give a formal treatment
of our notion of diagram and exchange moves in Section 2, but informally, two nodes
with adjacent heights can be exchanged if and only if they have no common edges. As
indicated in the diagram, we write →R and →L for the relations on diagrams given by
right exchange and left exchange respectively.

∗Department of Computer Science, University of Oxford. antonin.delpeuch@cs.ox.ac.uk
†School of Computer Science, University of Birmingham and Department of Computer Science,

University of Oxford. j.o.vicary@bham.ac.uk
1An isotopy is recumbent when it does not cause any edge to have a point with zero tangent.
2This is a technical assumption that simplifies the formal development, without restricting generality,

since any diagram can be made generic by an infinitesimal perturbation.
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We illustrate some interesting cases of these exchange moves. In degenerate cases
where u and v have no inputs or outputs, it can be possible to apply two right exchanges
in sequence to the same pair of vertices:

u

v. . .

. . .

u

v

. . .

. . .
u

v . . .

. . .
→R →R

Furthermore, if there are no edges at all, then right exchanges can be applied indefinitely:

u

v u

v u

v
→R →R →R · · ·

It is well-known that if we define equality of diagrams as the least equivalence relation
generated by left and right exchange, then we obtain a sound and complete graphical
calculus for free bicategories generated by a signature3, and in particular for free monoidal
categories [12, 18]. An algorithm for determining equality would give a solution for
the word problem in these settings. The study of right and left exchange moves on
string diagrams is therefore well-motivated, but so far not well studied (although see
Section 1.2.)

We contribute to this theory with the following main results. In these statements,
we write n for the number of vertices in a diagram, and m for the number of edges; also,
we say that a diagram is connected just when its graphical representation is connected
in the ordinary sense.4

• For connected diagrams, the rewrite systems →R and →L are strongly normalizing
(Theorem 16), and terminate in O(n3) steps (Theorem 19.)

• For connected diagrams, the R- or L-normal forms can be constructed in O(n ·m)
time. (Theorem 22.)

In particular, our results yield a polynomial-time algorithm for deciding equality of
connected diagrams, and may have direct application in proof assistants (such as Glob-
ular [2, 3]) which allow direct manipulation of diagrammatic structure.

3Such a signature would carry type information, which we neglect here since it does not affect the
geometry of the string diagram; all that matters is the length of the source and target type for each
generator.

4While our main results concern connected diagrams, they can trivially be extended to apply to
diagrams with a path from every vertex to a boundary edge, by composing with additional vertices at
the top and bottom of the diagram (see Corollary 18.)
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Figure 1: Right and left exchanges as rewrites on diagrams.
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1.2 Related work

The use of rewriting techniques on diagrams is ubiquitous in the communities which
use monoidal or higher categories, as it is much more natural than term rewriting.
Diagrammatic rewriting has been studied in detail for particular signatures, such as those
of boolean circuits [13, 14], the ZX-calculus [6, 7]. More generally, rewriting theory of
2-polygraphs was developed by Guiraud and Malbos [11], extending classical results on
monoids. In these approaches, the goal is to decide equality of diagrams up to the axioms
in the signature, and structural equalities such as the exchange law or even symmetry are
strict. Our results focus instead on the structural equalities, and do not allow equalities
in the signature.

The foundational work of Burroni [4] establishes the link between the word problem
for an algebraic structure and the path problem in the next dimension. Makkai [16]
studied the word problem for computads, in arbitrary dimension. Our work explores the
computational aspects of this path problem at dimension two.

The study of equivalence in category theory often takes the form of coherence results.
These state that all morphisms between given source and targets and built from a par-
ticular signature are equal. These results often rely on rewriting techniques, whose spirit
was present since Mac Lane’s coherence theorem for monoidal categories [15]. More re-
cently, Forest and Mimram [8] use rewriting to prove coherence for Gray monoids. They
use similar techniques, with a focus on coherence of reductions rather than their length.

1.3 Outline

This paper has the following structure. We first introduce our formalism, defining dia-
grams and a rewriting relation on them. In Section 3, we show that the rewriting relation
terminates on connected diagrams. The asymptotic upper bound on reduction length is
derived in Section 4. Section 5 shows confluence of the rewriting relation, which gives
an initial algorithm to normalize diagrams. By analyzing the structure of normal forms,
we describe in Section 6 a more efficient algorithm to compute them directly and hence
decide the word problem.

1.4 Acknowledgements

We thank the members of the Séminaire de catégories supérieures, polygraphes et homo-
topie at IRIF, Paris for their feedback on these results, in particular Simon Forest and
Samuel Mimram, and we are also grateful to Vincent Vidal for assistance with TikZ.

2 Formalism

Here we give an encoding scheme for the data of a planar combinatorial string diagram.
This is essentially identical to that used by the system Globular [3], although the result
in this section is new, and is not implied by the existing literature. This encoding
scheme serves as a formal foundation for our results, although we will build most of our
arguments at a more intuitive level with the corresponding graphical calculus [18]. We
use this encoding to argue that certain key tests and operations can be performed in
constant time.
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2.1 Encoding

We begin with the formal definition of a diagram. Intuitively, a diagram comprises a
number of incoming source edges, and then sequence of vertices, one at each height, each
of which has some number of source and target edges.

We give an example of a diagram, together with its encoding, in Figure 2. Note
that in this example diagram, and in the other diagrams later in the paper, we use
small circles for the vertices, rather than the boxes which are more standard and used
in Section 1.

Definition 1. For a natural number n ∈ N, we define the total order [n] = {0, . . . , n−1}.

Definition 2. A diagram D = (D.S,D.N,D.H,D.I,D.O) comprises D.S ∈ N, the num-
ber of source edges ; DN ∈ N, the diagram height ; and functions D.H,D.I,D.O : [D.H]→ N
of vertex horizontal positions, vertex source size and vertex target size respectively.

Given a diagram, we can compute the number of edges that exist at level just below
each vertex, by starting with the number of source edges D.S, and then supposing that
each vertex n ∈ [DN ] removes D.I(n) wires and adds D.O(n) wires.

Definition 3. For a diagram D, we define D.∆ : [D.N ] → N as D.∆(n) = D.O(n) −
D.I(n).

Definition 4 (Wires at each level). For a diagram D, we define D.W : [D.N + 1]→ N
as D.W (0) = D.S, and for n ∈ [D.N ] as D.W (n + 1) = D.W (n) + D.∆(n).

Not all diagrams will be geometrically meaningful, and we give validity conditions
which check that there are enough edges available below each vertex to serve as its source
edges.

Definition 5. A diagram D is valid when for all n ∈ [D.N ], we have D.W (n) ≥ D.H(n) + D.I(n).

2.2 Exchange moves

We now formalize the right and left exchange moves illustrated in Figure 1. All that
needs to be checked is that there are no edges in common between the vertices.

Definition 6. For n ∈ [D.N − 1], a diagram D admits a right exchange move at height
n when D.H(n + 1) ≥ D.H(n) + D.O(n), and admits a left exchange move at height n
when D.H(n) ≥ D.H(n + 1) + D.I(n + 1).

D = (3, 3, [0, 2, 1], [0, 1, 2], [1, 0, 1])

Figure 2: Example of a diagram D together with its encoding.
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Definition 7. For a diagram D which admits a right or left exchange move at height
n ∈ [DN − 1], its right exchange DR,n or left exchange DL,n, respectively, is defined to
be identical to D, except at heights n, n + 1 as follows:

DR,n.H(n) = D.H(n + 1)−D.∆(n) DL,n.H(n) = D.H(n + 1)

DR,n.I(n) = D.I(n + 1) DL,n.I(n) = D.I(n + 1)

DR,n.O(n) = D.O(n + 1) DL,n.O(n) = D.O(n + 1)

DR,n.H(n + 1) = D.H(n) DL,n.H(n + 1) = D.H(n) + D.∆(n + 1)

DR,n.I(n + 1) = D.I(n) DL,n.I(n + 1) = D.I(n)

DR,n.O(n + 1) = D.O(n) DL,n.O(n + 1) = D.O(n)

Lemma 8. For a valid diagram D which admits a right (or left) exchange move at
height n, its right exchange DR,n (or left exchange DL,n) is a valid diagram.

2.3 Complexity

With respect to our data structure described in the previous subsection, it is clear that
the following operations can be performed in constant time, since they involve computing
fixed formulae over the natural numbers, and testing a fixed number of inequalities:

• checking whether a left or right exchange is admissible at a given height;

• given an admissible left or right exchange, computing the rewritten diagram.

We will use these as building blocks for our complexity arguments later in the paper.

3 Termination

To prove termination we first introduce the class of linear diagrams, which we will study
before tackling the general case. We will see in Lemma 31 that they exhibit the longest
reductions.

Definition 9. A diagram with n vertices is linear if its vertices form a line, i.e. k is
connected to exactly k − 1 and k + 1 for all 1 < k < n (identifying its vertices with the
indices 1, . . . , n).

Definition 10. In a linear diagram of size n ≥ 2, the final vertices are the vertices n−1
and n.

Definition 11. In a linear diagram, the final interval is the set of vertices whose height
is between the height of the final vertices, including the final vertices themselves. If the
final interval only consists of the final vertices, the diagram is collapsible.

We will draw the final vertices of a linear diagram in red. Figure 3 shows examples of a
linear diagram where the non-final nodes in the final interval are drawn in blue.

Definition 12. A right reduction is collapsible when its source and target are collapsibe,
and any exchange between a non-final vertex v and a final vertex f1 is adjacent to an
exchange between v and the other final vertex f2. In other words, all non-collapsible
steps of the reduction are isolated.
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(a) A linear string diagram, not collapsible (b) A collapsible linear diagram

Figure 3: Example of linear string diagrams

We call these reductions collapsible because as the final vertices move synchronously,
they can be merged together: this defines a reduction on a shorter linear diagram. Here
is an example of a collapsible reduction:

By merging the final edge into a single vertex, we obtain a reduction on the induced
linear diagram of smaller length:

Definition 13. A right reduction of string diagrams r : A →∗R B is called a funnel
when:

• each non-final vertex is exchanged at most once with a final vertex.

• if an exchange involves non-final vertices u and v, then both u and v are exchanged
with a final vertex in the course of the rewrite, and these two final vertices are
different.

We are especially interested in the cases where the source or target of the funnel is
collapsible, as in Figure 4. The name funnel comes from the shape of these reductions
when depicted as braids: these are reductions where the final vertices converge or diverge
from each other.

The following lemma decomposes reductions on linear diagrams into two parts: a
collapsible part and a funnel part. This decomposition is illustrated by Figure 5. As a
collapsible reduction can be seen as a reduction on a shorter linear diagram, this will let
us work inductively on the length of the linear string diagram.

Lemma 14. Let r : A →∗R B be a reduction with A collapsible. Then r can be rearranged
and decomposed as

c; f : A →∗R X →∗R B
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with c collapsible and f a funnel.

Proof. By induction on the length of the reduction. See Appendix A for the details.

Lemma 15. Let r : A →∗R B be a sequence of right exchanges on a linear diagram.
Then r can be extended on some side such that its domain or codomain is collapsible.

We can now show termination of right reductions. A finer analysis of the bound
obtained on the length of reductions is presented in the next section.

Theorem 16. Right reductions are terminating on connected diagrams.

Some diagrams that are not connected as graphs but all their vertices are connected to
a boundary. Theorem 16 can be extended to these cases.

Definition 17. A diagram D is connected via the boundary if all vertices in D are
connected to one of the two vertical boundaries of the diagram.

Corollary 18. Right reductions terminate on diagrams that are connected via the bound-
ary.

4 Upper bound on reduction length

We derive a precise bound on the maximum reduction length.

Theorem 19. Right exchanges are terminating on connected diagrams and the maximum
length of a reduction on a diagram of size n vertices is O(n3). The same holds for
connectedness via the boundary.

5 Confluence

Lemma 20. The right reduction relation is locally confluent.

Theorem 21. Right exchanges are confluent and therefore define normal forms for di-
agrams under the equivalence relation induced by exchanges. The word problem for free
monoidal categories can be decided in O(n4).

(a) A funnel with collapsible source (b) A funnel with collapsible target

Figure 4: Example of funnels
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(a) Reducing a diagram to its normal form

collapsible funnel

(b) Decomposition from Lemma 14

Figure 5: Decomposition into collapsible and funnel reductions

6 Computing normal forms

It follows from Theorem 21 that applying the right-exchange rewrite strategy allows us
to find normal forms in O(n4) time, where n is the number of vertices. In this section
we show that this complexity can be improved, giving a procedure which constructs the
normal form directly in O(nm) time, where n is the number of vertices and m is the
number of edges.

Theorem 22. The word problem for connected string diagrams in free monoidal cate-
gories can be decided in time O(n ·m) where n is the number of vertices and m is the
number of edges.
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A Material to support Lemma 14

The following lemmas will establish various properties of funnels that we will need for
the decomposition of Lemma 14.

Lemma 23. Let r : A →∗R B be a funnel with A collapsible and e : B→R C be a right
exchange of two non-final vertices u and v that are not touched by r. Then the reduction
r; e : A →∗R B→RC can be rearranged as e′; r′ : A→RB →∗R C, where e′ exchanges u
and v in A, and r′ is a funnel.

Proof. As u and v are not touched by r, the two reductions commute directly.

Lemma 24. Let r : A →∗R B be a funnel reduction where A or B is collapsible. Then,
the trajectory of all non-final vertices is monotone in r.

Proof. Let us assume by symmetry that the source A of the reduction is collapsible.
Consider an exchange of non-final vertices u and v in r. By definition, u and v are
exchanged with two different final vertices over the course of r. Because A is collapsible,
this means that both u and v have entered the final interval earlier in the reduction, by
being exchanged with the bottom and top final vertices (respectively). Figure 8 shows
the general position of such an exchange.

u

v

(a) The general position of an ex-
change of final vertices in r

(b) Relative horizontal positions of
nodes in r

Figure 8: Horizontal position of non-final nodes in a funnel

As all the exchanges involved are right exchanges, u and v are on different sides of
the final edge when they are exchanged: u is on the left and v is on the right of the
final edge. This means that u necessarily goes up and v goes down. As this applies
to all exchanges of non-final vertices, this means that the trajectory of both vertices is
monotone.

Definition 25. An interval right exchange i : A →∗R B is a series of right exchanges
moving a vertex x past a set of consecutive vertices v1, . . . , vk which is adjacent to x in
A and b. The vertex x is exchanged first with v1, then v2, up to vk.

An interval right exchange looks like this:

...
...

Lemma 26. Let r : A →∗R B be a funnel reduction with A collapsible and e : B→RC
be an exchange of a non-final vertex v with a final vertex f2, such that v is exchanged
with the other final vertex f1 in f . This gives a reduction path r; e : A →∗R B→RC. A
reduction of the same length can be obtained: i; r′ : A →∗R D →∗R C where r′ is final
and i exchanges v with the final interval in A.
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Proof. By symmetry let us assume that f1 is the highest final vertex, and f2 is the lowest.
Somewhere in r, v enters the final interval by being exchanged with f1. By Lemma 24,
the trajectory of v in r is monotone. In fact, because v ends up being adjacent to f1 in
B, v is exchanged exactly once with each non-final vertex that is exchanged with f2 over
the course of r.

Exchanges that do not involve v can be divided in two blocks: the ones that are on
the right of the trajectory of v, and the ones that are on the left. The block on the right
commutes with e because the vertices they exchange are disjoint, so we can permute the
two.

left block

right block

v
f1
f2

e

We now need to pull the block on the left through the exchanges involving v. Notice
that v is the first vertex to be exchanged with f1 over the course of r. This is because
all other such vertices cannot be exchanged with v in f and v is adjacent to f2 in
B. Thus, the block on the left does not contain any exchange involving f1: it only
contains exchanges involving non-final vertices or f2. By successive application of the
Reidemeister moves, we can therefore pull the left block through the trajectory of v.

Lemma 27. Let r : A →∗R B be a funnel reduction with A collapsible, followed by an
exchange e : B→RB′ of two non-final vertices u, v such that both vertices are exchanged
with the same final vertex f in r. Then, the sequence r; e can be rewritten as e′ : r′ :
A→RA′ →∗R B′ where e′ exchanges u and v in A, and r′ is a funnel.

Proof. We show that e can be pulled through all exchanges involving u or v in r. By
symmetry, we will assume that the final vertex f exchanged with u and v is the lowest
one, and that u is the vertex below v in B.

By induction, consider the last exchange in r that involves one of u or v and another
vertex x. Because the trajectories of u and v always go up by Lemma 24, the trajectory
of x goes down. As u and v are adjacent in B, this last exchange must be between
u and x, and x must have been exchanged previously with v. Moreover, this previous
exchange is necessarily the last one involving v (otherwise any later exchange with y
would require a later exchange between y and u). Therefore, e can be pulled through
the last exchanges involving u and v.

x
v
u

r e

→
x
v
u

e′ r′

12



We perform these pull-through inductively, which eventually moves e′ at the beginning
of the reduction. The subsequent exchange the same nodes as r in the same order, so
they form a funnel.

Proof of Lemma 14. We construct the decomposition into collapsible and funnel parts
by induction on the length of the rewrite r. For length 0, the result is clear. For length
1, there are two cases: if the exchange touches a final vertex, then it goes in the funnel
part of the decomposition, otherwise it forms the collapsible part.

Assume we have a rewrite of length k+1. Use the induction hypothesis to decompose
the first k exchanges:

c; f ; z : A →∗R X →∗R B′→RB

with c collapsible and f a funnel.
If f ; z is also a funnel, then this gives us the required decomposition. Otherwise, this

funnelity can fail for multiple reasons.
First, it can be that z exchanges a final vertex v with a non-final vertex w that is

already exchanged with a final vertex in f . In this case, by Lemma 26, we can rearrange
f ; z into i; f ′ where f ′ is a funnel and i exchanges v with the final interval. As the domain
of i is collapsible, i is collapsible itself so we have the required decomposition.

Second, it can be that z exchanges two non-final vertices that are not exchanged with
any final vertex in f . In this case, by Lemma 23, z commutes with f : we obtain c; z; f :
A →∗R X→RX ′ →∗R B, and c; z is collapsible so we have the required decomposition.

It cannot be the case that only one of the two non-final vertices z exchanges has
been previously exchanged with a final vertex in f . This is because the heights of all
vertices which have been exchanged with a final vertex lie in the final interval, and all
other non-final vertices are outside the final interval.

Third, it can be that z exchanges two non-final vertices that are both exchanged in f
with a final vertex. In this case, as we have assumed that f ; z is not final, it must be the
vertices were exchanged with the same final vertex. We can therefore apply Lemma 27
and rearrange the rewrite into e′; f ′ with e′ exchanging the same non-final vertices as z
and f ′ funnel. As e′ is collapsible, this gives the required decomposition.

B Further omitted material

Here we give further supporting material to the main text, including proofs of all lemmas
and theorems.

Proof of Lemma 15. Our strategy to extend r depends on the topology of the final ver-
tices. We know that vertex n is connected solely to n− 1 and that n− 1 is connected to
both n− 2 and n. Here are the possible ways these connections can happen:

(a) (b) (c) (d) (e) (f)

The orientation of the edges involved is preserved by the reductions so the same situation
is observed in both A and B.
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Consider situation (a). If the terminal layout B is not collapsible, non-final nodes are
present between n and n−1. Some of them are on the left side of the edge connecting the
final vertices and the others are on the right-hand side. Any two such nodes which are
not on the same side of the final edge can be exchanged, so by appending a series of right
exchanges to r we can ensure that all the ones on the left are just below n−1, and all the
ones on the right are just above n. Then, by adding further right exchanges, we can move
these non-final nodes outside the final interval, leading to a collapsible configuration.
This is illustrated in Figure 6a. In the situation illustrated in Figure 6b, we choose
instead to prepend right exchanges before r: this is necessary to expell vertices nested
inside the cap outside the final interval. The other cases are similar: in each of them, we
can either prepend or append right exchanges to obtain a collapsible configuration.

Proof of Theorem 16. We first show termination for linear diagrams. Notice that the
length of a funnel reduction on a linear diagram of length n is bounded by O(n2). This
is because exchanges involving final vertices happen at most O(n) times and exchanges
involving only non-final vertices happen at most once per pair of non-final vertices by
Lemma 24.

We can now show that right reductions terminate on linear diagrams, by induction
on the length. By Lemma 15, we can assume that one end of the reduction is collapsible.
By Lemma 14, we can decompose the reduction into a funnel part and a collapsible part.
The collapsible part corresponds to a reduction on a smaller diagram, whose length
is bounded by induction. Because an exchange involving the last vertex in the longer
diagram corresponds to two exchanges in the longer diagram, we obtain a bound for the
collapsible part. The funnel part is bounded as noticed above. Hence, termination holds
for linear diagrams.

We now move to the general case of connected diagrams. Assume by contradiction
that there is an infinite reduction on a connected diagram. By the pigeonhole principle,
there is a pair of vertices that are exchanged infinitely often. Consider a simple path
between these two vertices and erase all vertices not visited by this path. The infinite
reduction on the connected diagram induces an infinite reduction on the linear diagram,
which contradicts termination.

Proof of Corollary 18. Let D be connected via the boundary. Consider the diagram D′

obtained from D by adding two vertices b, t at the bottom and top boundaries, and
adding two edges from b to t on each side of the diagram, as in Figure 7. Every edge
connected to the boundary in D is connected to one of b, t in D′, so D′ is connected.Any
right reduction on D induces a reduction of the same length on D′, therefore right
reductions on D′ terminate.

Definition 28. Given a reduction r on a linear string diagram of size n and an integer
w, the cost of r at weight w is

{exchanges not involving vertex n in r}+ w · {exchanges involving vertex n in r}

Lemma 29. The maximum cost at weight w of a funnel with a collapsible end is
f(n,w) = O(n2 + wn), where n is the length of the linear diagram.

Proof of Lemma 29. A funnel contains two types of exchanges. Those with final vertices
account for at most n − 2 exchanges, because there is at most one for each non-final
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vertex. The ones with only non-final vertices are bounded by O(n2) as any pair of non-
final vertices is exchanged at most once by Lemma 24. The bound follows from the
definition of the cost.

Theorem 30. The maximum cost of a right exchange on a linear diagram is O(n3 +w ·
n2), where n is the size of the diagram.

Proof of Theorem 30. Let g(n,w) =
∑n

k=1 f(k, w+n−k). We show that g(n,w) bounds
the cost of any right exchange on a linear diagram of size n. By Lemma 29, the desired
bound will follow. We work induction on n. For n ≤ 1, no right exchanges can be
performed, so the bound holds. Consider a reduction r : A →∗R B on a linear diagram
of size n. By Lemma 15, we can assume that A or B is collapsible (up to an extension
which increases the cost of r). By Lemma 14, we can rearrange the exchanges in r to
obtain a funnel and a collapsible reduction. By definition, the cost of the funnel part is
bounded by f(n,w). For the collapsible part, consider the reduction induced by merging
the final vertices together: this gives a reduction on a diagram of size n − 1. Each
exchange involving the last vertex in this induced reduction corresponds to an exchange
of both final vertices in the original reduction, which has cost w + 1. Therefore, by
induction, the cost of the collapsible part is bounded by g(n − 1, w + 1). We therefore
obtain the bound g(n− 1, w + 1) + f(n,w) = g(n,w) on the cost of r at weight w.

This asymptotic bound on reduction length is attained by a class of spiral-shaped dia-
grams:

S2 = S3 = S4 = S5 = →∗R

Lemma 31. For all n, the diagram Sn right reduces to its normal form in
(
n
3

)
steps.

Proof of Theorem 19. Consider a connected string diagram D. Pick a spanning tree on
D and let D′ be the string diagram obtained from D by removing all edges which are
not in the spanning tree. Any reduction on D induces a reduction of the same length on
D′, so it is enough to bound the length of reductions on D′.

Pick an arbitrary vertex of D′ as root for the tree and consider a depth-first search
of D′ from that root. This defines an envelope on the tree, which can be seen as a
linear diagram l if we duplicate the nodes every time they are visited (see Figure 10).
The length of this diagram is linear in the number of edges in D′, which is linear in the
number of vertices in D′.

Any right reduction on D′ translates to a right reduction on L, where exchanging
vertices x and y corresponds to exchanging all the copies of x and y in the same way.
The reduction on L is therefore at least as long as the reduction on d′. By Theorem 30
and because the number of vertices in L is linear in n, the reduction on L has length
O(n3). This bound also applies the original reduction on D′ and hence on D. The same
argument as Corollary 18 extends the result to connectedness via the boundary.

Proof of Lemma 31. A reduction of Sn to its normal form starts with n − 2 exchanges
of one end with the rest, followed by the reduction for Sn−1 where the end weighs
one more vertex. Therefore, the cost of a right reduction of Sn to its normal form is
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s(n,w) = w(n− 2) + s(n− 1, w + 1). We also have s(2, w) = 0 for all w. From this we
obtain

s(n,w) =
(n− 1)(n− 2)(n− 3 + 3w)

6

which gives
(
n
3

)
for w = 1.

Proof of Lemma 20. Let F,G,H be diagrams in this configuration:

F

G H

R R

If the two pairs of nodes exchanged in the two branches are disjoint, then the ex-
changes commute and we can close the diagram in one step: we have H→RK and
G→RK. Otherwise, the rewriting patterns overlap. There are nodes u, v and w in F ,
such that u and v are adjacent and are exchanged to obtain G, and v and w are adjacent
and are exchanged to obtain H. The situation looks like this:

u

v

w

u

v

w

u

v

w

u

v

w u

v

wu

v

w

R R

RR

R R

As u and v can be exchanged in F , there is no edge from the output of v to the input
of u, and any edge going from the output of w to the input of u has to pass to the left
of v. As v and w can be exchanged in F , there is no edge from the output of w to the
input of v, and any edge going from the output of w to the input of u has to pass to the
right of v, which is impossible by the previous observation, so there is no edge from w
to u. Therefore, w and u can be exchanged both in G and H. In the resulting diagrams,
we can then exchange (v, w) and (u, v) respectively, which closes the diagram.

(a) A connected diagram d (b) A spanning tree D′ on D (c) A linear diagram L ob-
tained from D′

Figure 10: Transforming a connected diagram to a linear diagram
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Proof of Theorem 21. By Theorem 19 the reduction is terminating and by Lemma 20 it
is locally confluent, so by Newman’s lemma right reductions are confluent. Therefore,
the right normal form for a given diagram can be obtained by applying any legal right
exchanges until a normal form is reached. As it is possible to find a right exchange to
perform in linear time in the size of the diagram and the number of reductions is O(n3),
this gives a solution in O(n4) time complexity to the word problem for free monoidal
categories.

Lemma 32. Let D be a connected diagram in right normal form. Let D′ be a diagram
obtained from D by adding a leaf l connected to an existing vertex v. There is a unique
vertical position of l such that D′ is in right normal form.

Proof of Lemma 32. Let us first show that there is a vertical position for l such that D′

is in right normal form. First, pick an initial vertical position for l, such as the position
immediately above or below v (depending on the orientation of the connection between
v and l). Then, normalize by applying right exchanges. All the right exchanges involve
l: otherwise, by contradiction, consider the first exchange not involving l. Removing l
from its domain gives us D again (because the relative positions of vertices in D has not
changed), and the exchange still applies to this diagram, which contradicts normality
of D. This shows the existence of the vertical position and uniqueness follows from
confluence.

This observation already gives us a way to construct the right normal form of any
acyclic connected diagram. For any tree, we can remove one leaf, compute the right
normal form of the remaining tree inductively, and add the leaf at the height given by
the lemma. The running time of such an algorithm is quadratic, because for each vertex
we are performing a linear number of exchanges which can be located efficiently (we only
need to look for exchanges involving the vertex being currently added). However, this
does not let us normalize cycles yet.

Definition 33. A face in a string diagram is a cycle whose interior region does not
contain any other vertex or edge.

Definition 34. Let p be an oriented path in a diagram. For each vertex v in the interior
of p, we define the number of rotations of v as follows:

+1 −1 +1 −1 0 0

Definition 35. Given a face in a diagram D and an edge e in the face, the mountain
range starting on e is the sequence of partial sums of number of rotations when visiting
the face in direct rotation, starting from e.

Figure 11 gives an example of a mountain range for an edge in a face. Because a
cycle forms a closed loop in the plane, the number of rotations of its vertices sums up
to two when visited in direct rotation. This means that a mountain range always stops
2 levels higher than it started.

Definition 36. An edge in a face is eliminable if the mountain range starting from it
never reaches 0 after the first step.

17



For instance, the edge above is eliminable, but its predecessor is not because the
montain range starts with a valley that goes at level −1 and then 0.

Lemma 37. In each face there are exactly two eliminable edges.

Proof of Lemma 37. Pick an edge in the face and draw the mountain range for it. Let m
be the minimum level it reaches. Consider the last edge to reach m, we will denote it by
e1. The mountain range on the right of m never goes below m + 1 by definition. When
drawing the mountain range for e1, the left part of the range is shifted upwards by 2, so
this part never goes below 1 when drawn as part of the mountain range for e2. So e1 is
eliminable. Similarly, consider the last edge e2 to reach m + 1: it is also eliminable for
the same reason. These are the only two edges which satisfy the criterion.

Lemma 38. Let D be a connected diagram in right normal form and e be an eliminable
edge in a face of D. Then the diagram D′ obtained from D by removing e is in right
normal form.

Proof of Lemma 38. Consider such an edge. We first analyze what it means to be elim-
inable in geometrical terms. Let us call u the starting point of e and v its end point.
We know that e is immediately followed by a left turn (number of rotations +1) at v.
The next vertex where a rotation happens w also has rotation number +1 (otherwise
the number of rotations from e to the edge after w would be null). By symmetry let us
assume that e points upwards when travelling in the direct orientation on the face.

There are three sorts of right exchanges that could potentially be enabled by re-
moving e. The first one would be exchanging the endpoints of e together, but this is
impossible because of the left turn on v which imposes a horizontal ordering. The second
one would be exchanging one of the endpoints of e with another vertex. This other ver-
tex must be in the interval between the endpoints (otherwise the exchange was already
possible before). That is not possible for v because of the left turn there. For u, this
would require having another vertex x immediately to the left of e with no edge linked
from below. We will see later that this is not possible. Finally, the third case consists in
exchanging two nodes x and y between u and v, x immediately to the left of e with no
edge linked from below, and y immediately to the right of e with no edge from above.
We will show that no such x exists.

(a) An edge in a face

(b) The montain range for this edge

Figure 11: Example of a chosen edge in a face and its mountain range
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u

w

v

e
x

y

Because e is the right boundary of the face, such an x must be a part of the boundary of
the face. As part of this cycle, it has two edges coming from above. Browsing the cycle
in the direct orientation can visit x in two directions: from left to right or from right to
left.

If x is visited from left to right, this contradicts the fact that x is immediately to the
left of e, because the interior of the face is contained between the two edges linked to x.

If x is visited from right to left, consider the path from w to x. It starts upwards and
ends downwards, so it has odd number of rotation. As x itself is a right turn, this number
cannot be negative: otherwise, travelling from e to the edge following x would have null
or negative number of rotation, contradicting the assumption that e is eliminable. So,
the path from w to x has positive number of rotation, and therefore one edge in this
path is located between x and e, which contradicts the fact that x is immediately to the
left of e.

Proof of Theorem 22. We construct the right normal form of any connected string dia-
gram by induction on the number of edges. The initial case is clear.

Given a diagram D, there are two cases. If D has a leaf, then we remove this leaf
and obtain a diagram D′ with one less edge that we can inductively normalize. Then, by
Lemma 32, we can deduce the right normal form for D, by inserting back the leaf at the
unique spot which makes the diagram normalized. Such a spot can be found in O(n). If
D does not have any leaf, then it has a face. In that case, by Lemma 37, there are two
eliminable edges in this face. We can remove one of them and inductively normalize the
resulting diagram. By Lemma 38 we can then add the edge back and obtain the normal
form for D. This can also be computed in O(n). We therefore obtain a normalizing
algorithm in O(n ·m).
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