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Abstract. Replaceability is a form of generalized substitutability whose features
make it potentially of great importance for problem simplification. It differs from
simple substitutability in that it only requires that substitutable values exist for
every solution containing a given value without requiring that the former always
be the same. This is also the most general form of substitutability that allows in-
ferences from local to global versions of this property. Building on earlier work,
this study first establishes that algorithms for localized replaceability (called con-
sistent neighbourhood replaceability or CNR algorithms) based on all-solutions
neighbourhood search outperform other replaceability algorithms by several or-
ders of magnitude. It also examines the relative effectiveness of different forms
of depth-first CNR algorithms. Secondly, it demonstrates an apparent complexity
ridge, which does not occur at the same place in the problem space as the com-
plexity areas for consistency or full search algorithms. Thirdly, it continues the
study of methods for inferring replaceability in structured problems in order to
improve efficiency. It is also shown that some strategies for inferring replaceable
values can be extended to disjunctive constraints in scheduling problems.

1 Introduction

Among the many methods devised for simplifying constraint satisfaction problems,
those based on substitutability form a significant class. In contrast to methods that dis-
cover and remove inconsistent values, i.e. values that cannot appear in any solution,
substitutability methods remove values that may be perfectly viable. However, in these
cases other viable values can be substituted for the value removed without affecting the
validity of the solution. Hence, removal depends on the fact that these values are in
some sense redundant with respect to solution validity.

As with consistency methods, there is now a body of work concerned with specify-
ing various forms of substitutability as well as related properties such as interchange-
ability or mutual substitutability. A useful summary of this work is found in [1]. One
of the most interesting developments in this area is the demonstration that generalized
forms of substitutability can be defined that effectively loosen the criteria for value re-
moval without affecting the guarantee that, given a solution with those values, other
solutions can still be found [2–4].

Recently it was shown that some of these substitutability properties can be arranged
into a well-formed hierarchy, called the substitutability hierarchy. It was also possible to



show that within that hierarchy a particular form of generalized substitutability has cer-
tain maximal features that make it of great potential interest. Bordeaux and co-workers
called this property “removability”. However, this term can lead to confusion with a
more general property called “dispensability” [5], so it seems best to use a different and
more apposite term. For this purpose, we have chosen the term “replaceability”, which
seems to have exactly the right connotations.

Perhaps the most important feature of replaceability is that it is the most gen-
eral form of substitutability that supports local to general reasoning. Unfortunately, as
shown earlier and discussed below, this still does not give us a form of the property that
is tractable, in contrast to the simpler form of substitutability (or local consistency).
Nonetheless, earlier work has shown that algorithms for local forms of replaceability
can be devised that are feasible for some problems [4]. Algorithms for local replace-
ability have been proposed by [4] and [6].

Building from the results reported in [4], the present work extends the analysis of
this property. In the first place, we consider other algorithms that have been proposed in
recent years to determine whether they are reasonable alternatives to the algorithms we
devised. Then we examine a potentially significant critical complexity effect found with
replaceability algorithms. Although it is based on a dynamics that is similar to the well-
known phase transition, involving a tradeoff between number of possible tuples and a
decreasing likelihood that any one of them will be viable, it does not involve a phase
transition. Finally, we extend earlier work on inferring replaceability to the important
class of scheduling problems with disjunctive constraints.

2 Background and Basic Concepts

A constraint satisfaction problem (CSP) involves choosing values for a set of variables,
V , which satisfy a set of constraints, C, which specifies permissible combinations of
values for subsets of the variables. Each value selected for variable Vi must come from
a domain of values Di associated with that variable. A choice of values for a subset,
S, of the variables is an instantiation of S. If the instantiation is consistent with the
constraints involving S, then we say that it satisfies those constraints. An instantiation
of all the variables, V , which satisfies all the constraints is a solution.

CSPs can be simplified by removing values that are “inconsistent”, i.e. that can-
not appear together with any value in any solution. In addition, simplification can be
effected if whenever a value appears in a solution, another value can be found to substi-
tute for it without making the solution invalid.

The basic property of substitutability in CSPs was first characterised in [7]. Here,
we will use an equivalent definition that corresponds to later definitions in which the
focus is on the value discarded.

Definition 1. Given a value v in domain Di of variable Vi, if for any solution in which
v appears, we can substitute u and still have a solution, then v has the property of
substitutability and value u is substitutable for v.

The same work introduced a local form of substitutability, called neighbourhood
substitutability.



Definition 2. (From [7]) For two values u and v belonging to the domain of variable
Xi, u is neighbourhood substitutable for v iff for every constraint on Xi, if v satisfies
the constraint then u also satisfies it.

This latter property had two important features: (i) neighbourhood substitutability is
sufficient (but not necessary) for full substitutability, (ii) neighbourhood substitutability
can be determined in polynomial time.

As already noted, an important generalization of substitutability is when for a given
value v we can substitute some value, not necessarily unique, in any solution in which
it appears. This property we call replaceability. More formally,

Definition 3. (From [3]) An instantiation v is replaceable if for any solution involving
v, there is some other instantiation that can be substituted for v and still have a solution.

In other words, a value is replaceable if any value can be found to substitute for it in
any solution, but it is substitutable only if a single other value can be substituted for it
in every solution. Obviously, this is weaker than the original substitutability property in
that the latter implies replaceability, while replaceability does not imply substitutability.
At the same time, it is more general since any values that can be removed on the basis
of substitutability are also replaceable, but not vice versa.

While weaker and more general forms of substitutability can be defined, including
minimal substitutability [4], these properties lack an important feature of the stronger
properties. This is that up to and including replaceability, the property in question is
defined with respect to all solutions in which instantiation v appears, i.e. all solutions
supported by a replaceable value v are still supported. In particular, in [4] it was shown
that:

Proposition 1. Replaceability is the most general form of substitutability for which all
solutions consistent with a discarded value are consistent with some remaining value.
It can therefore be said that replaceability is a “maximal property” with respect to this
feature.

In this paper we will not consider generalizations of these properties that involve k-
tuples of values with k > 1 and which can involve sets of values or tuples to be replaced.
This is because they entail complexities in computation and representation that will
make it difficult to use them in practice. In particular, as shown in [4], substitutability in
terms of k-tuples over a variable set R does not imply that individual values in the set
are substitutable. In other words, the property of substitutability when applied a k-tuple
is not decomposable.

Removing instantiations based on these properties, either in preprocessing or dy-
namically during search, can reduce search effort. In general, however, determining
various forms of substitutability can be as intractable as solving the original problem.
However just as with substitutability, for replaceability we can define local forms that
imply full replaceability (see [4] for proofs). Here, we will focus on the simplest and
most useful form that we call neighbourhood replaceability.

Definition 4. An instantiation of a single variable V is neighbourhood replaceable if it
is replaceable with respect to the closure of V .



In fact, as shown in [4], replaceability is the most general substitutability prop-
erty that supports such local to global reasoning. Unfortunately, in contrast to substi-
tutability, the complexity of even the local form of replaceability is non-polynomial.
Nonetheless, there are cases where such computations are feasible. So we turn next to
a consideration of algorithms for this task.

3 Neighbourhood Replaceability Algorithms

1 Repeat
2 Set no-change to true
3 Set Q to list of all variables
4 While not empty Q
5 Remove variable V from Q; set S to neighbours of V
6 For each value v in domain of V
7 Set domain of V to {v}
8 If arc-inconsistent({v} ∪ S) or replaceable(v,S)
9 Remove v from domain
10 Set no-change to false
11 Until failure or no-change

Fig. 1. CNR-1 algorithm for neighbourhood replaceability.

There seem to be two general approaches that one can take for computing replace-
ability and removing all neighbourhood replaceable values. In the first, replaceability
is computed locally in a manner analogous to the local computation of neighbourhood
inverse consistency [8]. The second approach depends heavily on inferences about the
number of neighbourhood tuples associated with a given value and the number avail-
able to replace it. This is exemplified by the algorithm described by Likitvivatanavong
and Yap [6].

In this section we briefly descibe the two neighbourhood search algorithms that
were introduced in [4]. (There one can find soundness proofs for these algorithms.)
These algorithms are designated as “consistent neighbourhood replaceability” (CNR)
algorithms because they remove all values that are locally replaceable including arc-
inconsistent values. In this form neighbourhood replaceability subsumes (and therefore
dominates with respect to value removal) NIC and neighbourhood SAC. In addition,
we describe a slightly altered version of the Likitvivatanavong-Yap algorithm. (An-
other algorithm for generalized substitutability was proposed by [2], but since it is not
oriented toward finding single replaceable values, and it seems fairly inefficient, it is
not described here.)

The first CNR algorithm, CNR-1, uses an AC-1 style procedure in which all values
in the problem are repeatedly tested for replaceability until no value is discarded. In the
implementation of this algorithm, the replaceable procedure uses a MAC-style search
(MAC=maintained arc consistency) to find all solutions for the subproblem, and for



each solution it seeks a value from the current domain that can replace value v. Pseu-
docode for this algorithm is shown in Figure 1. The second algorithm, CNRQ, uses a
queue updating mechanism in place of the repeat loop used by CNR-1. Pseudocode for
this algorithm is shown in Figure 2.

1 Set Q to list of all variables
2 While not empty Q and not failure
3 Remove variable V from Q; set S to neighbours of V
4 For each value v in domain of V
5 Set domain of V to {v}
6 If arc-inconsistent({v} ∪ S) or replaceable(v,S)
7 Remove v from domain
8 Put neighbours of V in Q if not there already

Fig. 2. CNRQ algorithm for neighbourhood replaceability.

Since the algorithm described in [6] processes only a single value, the CNRQ top-
level queue was used for handling the entire problem. In addition NIC was substituted
for the maxRPC algorithm in the original description; this made the present algorithm
more compatable with the other algorithms. Pseudocode for this algorithm is shown in
Figure 3.

The algorithm begins with some initialization steps. The most elaborate is the set-
ting up of merge tables for each variable in the problem. Here, we will consider only
problems with binary constraints. In this case, the tables for each variable V contain
the values in the domain of V that are supported by each value in the domain of each
adjacent variable. Suppose, for example, that V has only one neighbour W, that each
variable has three values, and the constraint is an inequality constraint. Then the merge
table would have the form,

{2 3}1
{1 3}2
{1 2}3

where the values in brackets are those in the domain of V that go with the value in the
domain of W, which is indicated on the right. In this paper the values in brackets are
called merge sets. (In practice, the latter value can be represented implicitly by an array
index.)

In the main procedure, at each step a variable is taken off the queue and all values
in its domain are checked for replaceability. Following the removal of neighbourhood-
inconsistent values (line 6), this algorithm carries out a series of steps, each of which



1 Set up merge tables for entire problem
2 Set Q to list of all variables
3 While not empty Q
4 Remove variable V from Q; set S to neighbours of V
5 For each value v in domain of V
6 Establish neighbourhood inverse consistency
7 If any merge list is singleton v % value is irreplaceable
8 continue
9 goal-count← tuples
10 ub-count← tuples
11 If ub-count < goal-count % value is irreplaceable
12 continue
13 Choose any constraint on V
14 While potential tuples remain
15 Form next tuple that can replace v from merge-lists
16 and save if not already in store
17 If —tuples in store— = goal-count
18 remove value and continue
19 If values removed return missing neighbours of V to Q

Fig. 3. Likitvivatanavong-Yap (LY) algorithm for neighbourhood replaceability embedded within
a top-level AC-3 style queue.

determines if the value being tested is irreplaceable or replaceable. In the first test the
merge sets are checked to determine if the present value is contained in a singleton; in
this case, the value is irreplaceable. Prior to the next two tests, two values are computed:
the number of neighbourhood tuples associated with the value being tested (goal-count)
and the number of neighbourhood tuples associated with alternative values (ub-count).
(In the merge table above for value 1 the goal-count is 2 and the ub-count is also 2.)
Then, the next test checks whether the ub-count is less than the goal-count; if it is, then
the value is irreplaceable. Finally, viable tuples are collected for the values that could
substitute for the value being tested; if ever their number equals the goal-count, then the
value being tested is replaceable.

The final test is the most elaborate since it must calculate a union of tuples. In the
present work two methods were tried. The first uses an array with dimensions Number
of Adjacent Variablesi X Domain Size X Number of Tuples. Array entries are t or
nil depending on whether or not the kth value in tuple m has value a. This allows fast
checking, but can require O(num−neighbourhood−tuples) tuple checks. The second
method uses a trie-like structure in which if the kth value in tuple m has value a, then at
that level the (domain size) array will point to another array representing the next value
in the tuple (or if a is the last value, the array entry will have the value t). This allows
for fast checking, although there is a proliferation of small arrays each time a value is
checked for replaceability. Since the second method was found to improve performance
by at least an order of magnitude, this was the version used in experimental tests.

Although replaceability algorithms terminate with a set of irreplaceable values,
these sets can vary depending on the order of testing. In other words, replaceability



algorithms do not have unique fixpoints. This can be shown by example, as in Figure 4.
In this problem, if we begin with variable 1 we can either replace value a with b, c or
vice versa. This will then yield different fixpoints.

1

2

3

{a,b,c}

{a,b}

{a,b}

(aa)
(ab)
(ba)
(ca)
(cb)

(aa)
(ab)
(bb)
(ca)
(cb)

Fig. 4. Example showing that more than one fixpoint is possible when all replaceable values are
removed.(Domains are shown in brackets, constraint tuples are in parentheses.)

4 Notes on Experimental Methods

As stated in our earlier work, higher-order properties such as replaceability will become
more useful as the field moves away from one-shot problem solving to more long-term
venues involving problem compilation and/or repeated solving in evolving situations.
However, we can still learn something about the effects of establishing replaceability, as
well as the costs in experiments involving preprocessing and then search on individual
problems.

The present tests were carried out using three types of problems:

1. Heterogeneous random problems with “geometric” constraint graphs in which the
probability of support was varied 1,

2. Random distance problems, i.e. problems with constraints of the form |Xi−Xj | >
k,

3. Random relop problems, i.e. problems with (binary) constraints based on relational
operators, e.g. Xi > Xj . All problems included not-equals constraints to ensure
intractability.

Geometric problems had 120 or 300 variables, both with domain size 20. Constraint
graphs were constructed using the procedure described in [9], which gives the graphs a
‘clumpy’ character. For 120 variables the (Euclidean) distance parameter was 0.17 and
problems were filtered to allow only those with 540 constraints ± 3. For 300 variables

1 As noted earlier, homogeneous random problems have few replaceable values except in do-
mains of variables of very low degree.



the distance parameter was 0.1 and the number of constraints was 1320± 5. There were
two levels of support: for 70% of the values tightness (obverse of support) was 0.2; for
30% it was 0.8. Support for different adjacent variables was computed independently
of other constraints.

Distance problems had 50 variables, domain size 10, constraint graph density 0.10,
and fixed k = 3. Relop problems had 40 variables, domain size 10, and constraint graph
density = 0.60. These problems had > and <> constraints in equal proportions.

Samples of 50 problems were tested in all cases except the 120-variable geometric
problems where the sample size was 100. The parameters used allowed samples of
satisfiable and unsatisfiable problems to be generated in each case.

In these experiments search was done with MAC-3. For smaller problems the do-
main/forward degree variable ordering heuristic was used, while for larger problems the
domain/weighted degree heuristic of [10] was used.

In most tests, in addition to CNR algorithms, three other kinds of preprocessing
were also performed: simple arc consistency, neighbourhood singleton arc consistency
(NSAC), and neighbourhood inverse consistency (NIC). The comparisons of interest
were runtimes and number of values removed.

5 Comparing the Three CNR Algorithms

The first set of tests was run to compare our all-solutions search algorithms with the
Likitvivatanavong-Yap algorithm. This is important because of the very different strate-
gies used in the two cases.

For reasons that will become evident, these experiments were run with very small
problems. Random geometric problems were used with 20 variables, domain size ten,
and a distance factor of 0.200. Two levels of support were used: 60% of the values had
a support = 0.8, and the remaining 40% had a support of 0.2. Problems were filtered
during generation so that, (i) all problems had 36 ± 2 constraints, (ii) all problems had
solutions. Fifty problems were tested.

CNR algorithms removed an average of 122 values our of 200, while AC removed
16 and both NSAC and NIC removed 34. Of much greater consequence is the runtimes.
CNRQ required an average of 0.12 seconds per problem; CNR-1 was slightly slower at
0.16 seconds. (AC required < 0.01 seconds, NSAC 0.03, NIC 0.06.) This was markedly
different from CNR-LY, which required 30,382 seconds on average, so that the run for
this algorithm could barely be finished.

Further insight into the differences in runtime is obtained by considering individ-
ual runtimes, which are summarized in the frequency histogram shown in Figure 5. To
accomodate the large variation in a single figure, runtimes (in seconds) are binned ac-
cording to successive powers of ten. As shown here, all 50 problems give runtimes less
than one second when CNRQ or CNR-1 is used, while for CNR-LY, runtimes are at
least 100 seconds and are sometimes more than 105.

Given the enormous difference in efficiency between algorithms based on all-solutions
search and those based on counting and inference, in the remainder of the paper only
the former will be considered. Some spot-checking of the latter was done in a few cases,
with results resembling those in the present section.
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6 Comparing CNR-1 and CNRQ

For random geometric problems, CNR finds a large number of replaceable values, about
25% more than NIC, showing that it is effective in simplifying problems (see Table 1;
because of space constraints only satisfiable problems are shown). For smaller prob-
lems, the reduction in subsequent search time actually compensates for the extra pre-
processing time. (As a side note, it is also interesting to see how effective NIC alone was
on these problems.) A similar pattern of results was found with unsatisfiable problems;
in addition either NIC alone or CNR proved unsatisfiability in approximately 90% of
the cases.

Table 1. Search Efficiency and Values Removed
for Geometric Problems with Variable Support

satisfiable-120 satisfiable-300
rem nodes preproc search rem nodes preproc search

AC 39 46,265 0.1 266.2 95 7,917 0.2 258.3
NSAC 184 20,906 8.8 89.8 492 2,236 300.3 81.2
NIC 301 268 36.9 0.7 924 1,402 2304.4 45.4
CNR-1 370 269 149.6 0.7 – – – –
CNRQ 370 269 67.8 0.6 1148 1,451 5269.6 49.1
Notes. Means for values removed during preprocessing (rem),
search nodes, preprocessing and search times (sec).

For the 300-variable problems, only partial results were collected with CNR-1 for
both satisfiable and unsatisfiable problems. Runtimes exceeded CNRQ by up to five
times depending on the problem, so that times of O(104) were observed. Hence, no
attempt was made to use this algorithm on the entire problem set.

For distance problems, CNR also simplified problems effectively, as indicated by
the number of search nodes, although because these problems were fairly easy, the
overall processing time was much greater (Table 2). For the relop problems, however,
some inconsistency algorithms (but not AC) were able to remove almost as many values
as the replaceability algorithms. Here, also the difference in cost was even greater than
with the distance problems.



Table 2. Search Efficiency and Values Removed
for Distance and Relop Problems

distance relop
rem nodes preproc search rem nodes preproc search

AC 0 901 0.01 0.67 0 39,659 0.01 59.32
NSAC 17 522 0.15 0.43 260 160 2.63 0.16
NIC 19 522 0.43 0.42 269 189 27.91 0.15
CNR-1 300 59 169.48 0.02 276 181 1021.57 0.14
CNRQ 300 59 168.04 0.02 276 181 960.60 0.14
Notes. Measures as in Table 2.

These tests show that many problem types are amenable to simplification by remov-
ing replaceable values. They also show that unless stronger forms of inference can be
brought to bear, even local forms of replaceability will remain impractical. This was
also found with the distance problems, where increasing domain size to 15 or 20 made
it impossible for CNR to finish in a reasonable time. This indicates the importance of
devising methods by which replaceability or non-replaceability can be inferred.

7 Patterns of Difficulty Across the Problem Space

While testing neighbourhood replaceability algorithms, a pattern of effort as a func-
tion of problem parameters was discovered that is remniscent of the well-known phase
transition effect for CSP search. An example is shown in Figure 7, where a curve for
CNR runtime appears along with a corresponding curve for NIC. In this experiment,
constraint density is the parameter that is varied. 2 As with other types of local consis-
tency algorithms, the curve for NIC reaches its highest point near the phase transition.
In contrast, the peak of the CNR curve is found well to the left of this point in the “easy”
region with respect to search effort. (Mean search effort following AC in terms of nodes
was 106 at 0.5 density, 930 at 0.6, and 518 at 0.7, using min domain/forward-degree.)

Similar results were found with distance problems. With ‘geovarsat’ problems the
results were not clear-cut, but in this case varying constraint density also changes
patterns of connectivity (i.e. with more constraints the constraint graph becomes less
clumpy); hence, it isn’t clear whether complexity effects like those found with other
problem types should be found here as well.

To get some insight into the basis for this effect, tests were done on the same prob-
lems where various operations and other measures were counted, in particular num-
ber of neighbourhood solutions and queue additions. (Value removals were already
counted.) While value deletions and queue additions did not show any clear relation to
runtimes, there was a strong correlation with the number of neighbourhood solutions,
as shown in Table 3.

Why are there so many neighbourhood solutions? With increasing density, neigh-
bourhood size increases, and therefore the number of possible tuples grows as dk, where

2 In this case density is in terms of the edges added to a spanning tree. Thus all graphs are
connected. This means that 0 represents a spanning tree, while 1 as usual is a complete graph.
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k is the number of neighbors. But at the same time the number of constraints among
neighbours will also increase. Given a particular variable with neighbourhood of size
k, we can calculate the likelihood that an additional constraint will either produce a
new neighbour or increase the number of constraints within the neighbourhood sub-
graph composed of the variable and its neighbours. The former is 1/n * (n-k-1)/n =
(n-k-1)/n**2, the latter is (k/n)**2. For problems with 30 variables, and density = 0.1
(in terms of the proportion of edges added to a spanning tree), the average degree is 5.
This, in turn, gives a probability of about 0.027 for adding a new neighbour and 0.028
for adding a constraint to the neighbourhood subgraph. For density = 0.3, the average
degree is about 10, and the two probabilities are approximately 0.021 and 0.111, re-
spectively. So we can see a shift in relatively likelihood between these two densities.
By setting the two expressions equal to each other, we can derive a value of k equal to
5 for the crossover point for problems of this size.

It might be argued that since there is no phase transition in this case, this cannot
be considered a complexity peak. Although I can’t yet be certain that this is a gen-
uine asympototic complexity effect, for some classes of problems (perhaps for random
problems of the RB type), this may well be the case. The implication is that complex-
ity peaks are a more general phenomenon than phase transitions. In fact, garden path
based complexity (backtrack search algorithms), support path based complexity (in-
consistency algorithms), and neighbourhood solution based complexity (CNR) share a
basic property. All are related to a situation where the number of possibilities increases
at the same time that the likelihood that a possibility is a viable member of the desired
set is decreasing.

The present difficulty peak is obviously related to one that might be found for all-
solutions search (depending on the problem model and manner of search). A significant



difference is that, as shown in the table, the result obtained in this case (number of
deletions) does not itself increase.

Table 3. CNR Statistics
for Relop Problems

density neigh-sols removals Q-addits prove unsol
0.1 297,025 193 99 –
0.2 3,889,129 101 67 –
0.3 9,564,750 82 57 –
0.4 6,706,596 95 58 –
0.5 1,809,104 122 72 1
0.6 72,054 152 70 17
0.7 2,236 79 20 44
0.8 5 14 1 50
0.9 – – – 50

Note. Same relop series as in Figure 7.

Beyond its potential theoretical significance, knowledge of such a pattern of diffi-
culty is of great practical importance in using CNR algorithms. In fact, before I was
aware of this effect I had thought it was impossible to test certain structured problems
beyond a very small number of variables, because on testing with increasing density I
had quickly come up against very long runtimes and had thought the situation would
only get worse as the density increased. Now I know that the limits are not quite as
severe provided one stays away from the peak complexity areas.

Given that it is based on the requisite all-solutions search, it may be possible to
ameliorate this effect by standard methods of checking for cycle breaking and then
and passing cross-products of remaining domain values to be tested for replaceability.
However, this has not yet been attempted.

8 Inferring Replaceability: Further Discussion

In our earlier paper we argued that for some structured problems it is possible to deduce
replaceability of some of the values. In particular, for distance constraints of the form
|Xi − Xj | ⊗ k that do not involve equalities there are several ways to avoid checking
individual values. First, depending on the minimal distance, it may be possible to infer
substitutability for values near the extremes, since support for extreme values will al-
ways include the support for less extreme values. (Here, we will refer to these as subset
inferences.) There are also symmetry relations with respect to support for values in the
lower and upper halves of the range such that if a value in one half-range can be shown
to be replaceable then its complement in the other half-range is also replaceable.

However, conditions must be met to ensure that this maneuver is valid. In previous
work we did not include a proof of this technique, and in fact there was a minor flaw
in the program. In this paper we present a proof, which involves the conditions under
which this strategy will give valid results.



We first consider the simplest case in which all domains contain a complete se-
quence of integers, i.e. there are no breaks in the sequence, and constraints are all of the
form |Xi −Xj | > k, i.e. there is only one k value. smallskip
Proposition 2. For problems based on distance constraints with the properties just
given, if a value v is replaceable, then the symmetric value n−v +1 is also replaceable
provided that there is a symmetrical set of values around the midpoint of the domain.

Proof. Without loss of generality, we assume that the initial domains are complete in-
teger sequences between 1 and mi for each variable Xi. (The necessary property is
that for each value v below the midpoint, there is a value n − v + 1 above the mid-
point.) Suppose we have found the first replaceable value v for a given variable Xi. We
consider any set of replacement values. Since the domain is a complete sequence, for
every replacement value w, where w − v = d, there will be a corresponding domain
value w′ where the difference between w′ and n − v + 1 will also be d. In fact, if we
add dv−symm, the difference between v and n − v + 1, to any value w we obtain the
corresponding w′.

Next, we consider the set of neighbourhood tuples supported by either v or n −
v + 1, respectively. Note that the cardinality of these sets may differ depending on the
neighbour domains. However, taking either set and some replacement set {w} or {w′},
the complementary set, {wcomp} or {w′comp}, will be found in the domain of Xi by
virtue of the symmetry of the domain. Hence, if v is replaceable it will be possible to
replace the symmetrical value n− v + 1.

Now, suppose we have replaced k values in a domain, and the remaining values are
symmetrical around the midpoint. Then by the same reasoning, if a value v is shown to
be replaceable, then n− v + 1 can also be replaced. 2

This argument can be extended to constraints of the form |Xi − Xj | < k, or to
corresponding forms where the operator is ≥ or ≤. In addition, for these problems, if
a value is filtered by an inconsistency algorithm, then its symmetric complement will
also be deleted. (Although AC algorithms are not able to delete any values, SAC-based
reasoning (with neighbourhood SAC or higher-order SAC-based methods) is effective.)
This ensures that asymmetries are not introduced by inconsistency processing.

It is of particular interest that these arguments can be extended to problems with dis-
junctive constraints of the same character, which includes scheduling problems. Here,
the constraints usually have the form Xi + k1 < Xj

∨
Xj + k2 < Xi. The two com-

ponents can be rewritten as Xj − Xi > k1 and Xi − Xj > k2, respectively. This, in
turn, implies the constraint |Xi−Xj | > min(k1, k2). It follows that if for a given value
v all members of the replacement set satisfy the derived constraint, and the conditions
specified in Proposition 9 also hold, then we can also replace the symmetrical value
n− v + 1.

In this case, however, care must be taken to ensure that asymmetries are not intro-
duced by inconsistency processing. In the present work a very conservative procedure
was used. (Whether there are more efficient procedures is an open question.) After each
deletion, the symmetrical complement was the next value tested; if it was not inconsis-
tent, then a symmetry flag for that domain was set to nil, and after that no inferences
based on symmetrical values were attempted.



In earlier work [4] we found that by using subset and symmetry inferences along
with skipping replaceability checks for extreme values, we could reduce the time to find
an irreplaceable set by three orders of magnitude, from O(104) to O(101) seconds. In
the present work problems derived from the Taillard benchmarks were tested, specifi-
cally the os-taillard-4-100 set [11], which includes ten problems. Since even these prob-
lems had domains that were much too large to apply value-by-value tests, the domains
were reduced to about a quarter of their original size, which is roughly from 200 to 50.
(The resulting problems still had solutions.)

Despite this reduction, the basic CNRQ algorithm required an average of 30,000
seconds. A large portion of this effort was due to one problem that required 267,000
seconds to process. However, four other problems required O(104) seconds, ranging
from 10 to 36 thousand.

Using either subset or symmetry inferences alone reduced the mean to 16 and 14
thousand seconds, respectively. Using these methods together along with skipping the
extreme values brought a further reduction to 8 thousand seconds. Moreover, for some
problems it was possible to reduce the time from O(104) to O(102) or O(101). So,
while not finding the spectacular overall reduction obtained for simple distance prob-
lems, it was possible to bring about a significant reduction with these methods, which
in some case was marked.

9 Conclusions and Future Work

This work has clarified some issues related to the important property of replaceabil-
ity. In particular, we have determined what is presently the best algorithmic approach
to finding a neighbourhood irreplaceable set, and we have corrected and clarified some
questions in regard to inferring replaceability for constraints with certain kinds of struc-
ture.

In addition, we have discovered a new critical complexity region associated with
neighbourhood replaceability algorithms and analyzed some of its features. This is of
both theoretical and practical interest.

This work extends the general study of substitutability in connection with CSPs.
Even more generally, it contributes to the study of higher-level properties that can be
used to simplify problems.

However, we think that the real opportunities for using ‘higher-level’ properties
such as replaceability remain to be discovered. For example, in cases where effort is
made to compile CSPs into more compact forms such as MDDs, the task of establish-
ing replaceability or other related properties may be obviated to a degree. (In fact, it
should be possible to compile properties such as replaceability, so that instead of dis-
carding such values, they are ‘kept on hand’ as potential substitutes.) Also, in dynamic
situations where information from previous situations can be reused, it may be possible
to amortize the cost of establishing high-level properties like replaceability, thus facili-
tating the process of finding new solutions to new problems. Finally, it may be possible
to find approximations to full replaceability that are reasonably effective whilst being
more efficient.



There are still many other topics that need to be considered. Most important, per-
haps, is the use of replaceability in compilation techniques such as MDDs. The fact that
there is no unique fixpoint raises several issues such as the existence of minimal sets
of irreplaceable values and smallest minimal sets, although whether such sets can be
found efficiently remains to be determined. Finally, it may be possible to find approx-
imations to full replaceability that are almost as effective whilst being more efficient.
In this connection, it is obvious that if the degree of the variables whose domains are
tested for a property like replaceability is limited by a certain value, then one can obtain
a fixed-parameter tractable form of the property. Whether such variants are useful in
practice is a question that must be decided in the future.
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