
1

An Enhanced Genetic Algorithm with the BLF2G
Guillotine Placement Heuristic for the Orthogonal

Cutting-Stock Problem*

Slimane Abou-Msabah1 — Ahmed Riadh Baba-Ali2— Basma Sagr1

1 Department of Computer Science, University of Science and Technology Houari
Boumedienne, USTHB, Bab Ezzouar, Algiers, Algeria, slmalg@yahoo.com

2 Department of Electronics, University of Science and Technology Houari Boumedienne,
USTHB, Bab Ezzouar, Algiers, Algeria, riadhbabaali@yahoo.fr

Abstract. The orthogonal cutting-stock problem tries to place a given set of items
into a minimum number of identically sized bins. As a part of solving this
problem with the guillotine constraint, the authors propose combining the new
BLF2G, Bottom Left Fill 2 direction Guillotine, placement heuristic with an
advanced genetic algorithm. According to the item order, the BLF2G heuristic
creates a direct placement of items in bins to give a cutting format. The genetic
algorithm exploits the search space to find the supposed optimal item order. Other
methods try to guide the evolutionary process by introducing a greedy heuristic
to the initial population to enhance the results. The authors propose enriching the
population via qualified individuals, without disturbing the genetic phase, by
introducing a new enhancement to guide the evolutionary process. The evolution
of the GA process is controlled, and when no improvements after some number
of iterations are observed, a qualified individual is injected to the population to
avoid premature convergence to a local optimum. To enrich the evolutionary
process with qualified chromosomes a set of order-based individuals are
generated. Our method is compared with other heuristics and metaheuristics
found in the literature on existing data sets.

KEYWORDS: Cutting and Packing, Guillotine Constraint, Combinatorial
optimization, Genetic algorithms, Heuristics, premature convergence, local
optimum.

1. Introduction

The cutting or packing problem is a combinatorial optimization problem. The objective
is to determine a suitable arrangement of various items within a wider set of bins. The
main objective is to maximize the use of raw materials, thus minimizing losses. This
problem is interesting because it is applicable to several fields. For example, in the
wood or steel industries, it is necessary to consider how to cut rectangular pieces from
large sheets of material. In the transportation and logistics fields, objects of different
sizes have to be packed in larger containers of standard size. In floor planning, it is

* paper under review

2

necessary to consider very-large-scale integration (VLSI) design. If a cost equal to its
area is assigned to each piece, this problem can be formulated as a knapsack problem.

This paper considers the orthogonal cutting-stock problem, which utilizes a strip of
fixed width and supposed infinite height to generate items of rectangular shape. Since
items are packed in levels; with height equal to the height of the tallest item in the level;
these generated levels are projected directly to bins, so our aim is to reduce the height
of levels in the strip. The production machines can be the guillotine shears, which
impose the cut from edge-to-edge (the guillotine constraint). The items keep their
original orientations to be cut in decorated plates or for the draft layout of pages of
newspapers (the orientation constraint).

Several placement heuristics are used to solve this problem. The authors find that the
new BLF2G guillotine placement heuristic introduced by Msabah and Baba-Ali [1] is
the most adaptive heuristic, since it packs items in levels to ensure that the guillotine
constraint is satisfied and has a strong policy to exploit gaps vertically and horizontally
by checking the guillotine constraint vs FC and SHF methods.

In this paper, we are going to combine this heuristic with a genetic algorithm
improved cleverly. According to the item order, the BLF2G heuristic makes a direct
placement of items on levels to give a cutting format. The genetic algorithm exploits
the search space to find a supposed optimal order. We introduce a notion of the stability
of the evolutionary process, i.e., we observe that, when there are no improvements, a
locally optimal solution has been found. After stability is detected, we propose injecting
an ordered list of items into the population based on a greedy heuristic to diversify the
search in another area of the solution space. We also propose a set of order-based
heuristics to be injected into the population to enhance the ability of the genetic
algorithm to find good solutions.

After this introduction to the problem, we will discuss in section 2 the guillotine
placement heuristics found in the literature that verify the guillotine constraint adapted
to our case. In section 3, we present the genetic algorithm and propose a set of fast
greedy techniques that gives qualified order-based individuals. The computational
experiments will be discussed in section 4, followed by our improvement where we
describe the stability controlled genetic algorithm, and then we make a comparison of
our method to other heuristics on data sets found in the literature. We shall end our
article with the conclusion and further work, which are presented in section 5.

2. Guillotine placement heuristics

In this section, we are interested in investigating placement heuristics from existing
methods found in the literature to propose a heuristic that fits our case. We focused our
research on guillotinables heuristics, which are suitable for an edge-to-edge cut.

We first consider the Floor-Ceiling (FC) approach introduced by Lodi et al. [2],
which separates the placement of items into two levels. The FC approach places the
items from left to right at the bottom of the level (floor). When no more items will fit
on the current level, the approach attempts to place items from right to left at the top of
the level (ceiling). They propose a new variant of the FC approach to check the
guillotine constraint which performs the cuttings from edge to edge, bold lines, as
shown in Figure1

3

Fig. 1. The guillotine variant of the FC algorithm proposed by Lodi et al. [2]

Fig. 2. The SHF algorithm proposed by Ben Messaoud et al. [3]

Fig. 3. The BLF2G guillotine placement heuristic [1]

Ben Messaoud et al. [3] modified the guillotine variant of the FC approach and
proposed a Shelf Heuristic Filling approach (SHF). They propose to inject items placed
in the ceiling from right to left below from left to right, as shown in Figure 2.

Recently, Msabah and Baba-Ali [1] proposed a new guillotine placement approach
based on levels and proposed exploiting intra-level residues while checking the
guillotine constraint. An item can be laid out on the strip in three possible ways: Fig. 3.

Placement in levels: The strip is structured in levels, and the items are packed
according to the famous BL heuristic, that places items sequentially at the first Bottom
Left suitable position. When no more space is available in the current level they create
a new level, and so on. For each item packed horizontally in a level a Bottom Left
Guillotinable Sub-Level “BLGSub-Level” is created.

Placement in BLGSub-level: Items are placed in a vertical order on these residues;
which are delimited by the width of the bottom item and the height of the level;
according to the Bottom Left heuristic. For each item packed vertically in a BLGSub-
Level a Bottom Left Fill Guillotinable Sub-Level “BLFGSub-Level” is created.

Placement in BLFGSub-level: Items are placed in BLFGSub-levels horizontally.

3. Our contribution

The BLF2G guillotine placement heuristic is the most adaptable to our case among the
studied approaches, because it verifies the guillotine constraint, and has a strong policy
to exploit gaps. We will combine it with a genetic algorithm. According to the order of
items, in a given individual, the BLF2G heuristic packs items directly on a strip to give
a layout.

1

 2

 3 7

Level 8
 5 6

 4

 9

BLFG Sub-Levels

BLG Sub-Levels

1

 2

 3
 4

 5

 7

 8 6 9

Floor

Ceiling

1

 2

 3

 5

 4

 8 6

 9

 7

Ceiling

Floor

4

The genetic algorithm investigates the solution space to find the best order of items
that offer good results by applying the BLF2G placement heuristic. An initial randomly
chosen population is created. All the individuals in this population are evaluated by
applying the BLF2G heuristic; to each individual we assign a fitness corresponding to
the height of the items packed in the strip. Depending in the fitness and randomly
chosen operators, the genetic algorithm evolves till stop criteria achieved or the optimal
solution is reached, i.e. when the sum of the surfaces of all items is equal to the surface
of the strip.

As introduced in Msabah and Baba-Ali [1], the genetic algorithm failed vs. a greedy
heuristic for a large data set; sometimes the greedy heuristic gives an immediate good
result with regard to the GA which requires much more time to give a less effective
result. They propose to guide the genetic algorithm by introducing sorted lists of items
to the initial population; they called this approach BLF2G+GAimprv. There are several
sorting policies. We will propose some new sorting policies that promote characterized
items to appear first in the layout process. We use these greedy policies, to be injected
in the initial population, to enhance the quality of the GA, and we will surmount various
difficulties, which will be discussed below.

 (b)

Fig. 4. (a) a fast greedy heuristic and (b) a slow standard genetic algorithm

Fast

Individual
 Individual

 Individual
 Individual

 Individual
 Individual

Individual

Individual

 Individual
 Individual

 Individual
 Individual

Population

Individual
 Individual

Individual

Individual
 Individual

Individual

Individual

BLF2G Guillotine
Placement heuristic

 Resu
lts

H
ei

gh
t

=

Fitn

Resu
lts

H
ei

gh
t

=

Fitn

Resu
lts

H
ei

gh
t

=

Fitn

Resu
lts

H
ei

gh
t

=

Fitn

Resu
lts

H
ei

gh
t

=

Fitn

Resu
lts

H
ei

gh
t

=

Fitn

Resu
lts

H
ei

gh
t

=

Fitn

Resu
lts

H
ei

gh
t

=

Fitn

Resu
lts

H
ei

gh
t

=

Fitn

Resu
lts

H
ei

gh
t

=

Fitn

Evaluated Population

Genetic Algorithm
Operators

A Decreasing Height (DH) ordered based
individual

BLF2G Guillotine

Placement heuristic

Results

H
ei

gh
t

=
 7

7

Fitness=77

Best Individual

H
ei

gh
t

Best Fitness

Stop condition

Slow

(a)

5

A greedy heuristic, such as the well-known Decreasing Height (DH); which sorts out
items according to the decreasing height policy; gives an instant result in around one
second depending on the problem size, and it is efficient for large sized problems. A
standard GA method is less efficient and slow for large sized problems but gives better
results for small sized problems. (cf. [1]).
3.1. The genetic algorithm

We used a real-coded genome (cf. [5]). Each item has an identifier; the chromosome
is defined as being a suite of identifiers, which determines the order of appearance of
items in the chromosome. Based on the BLF2G policy, the appearance order of items
in the layout process determined the quality of every individual. We implemented a
genetic algorithm approach with a population size of 100, and we fixed the number of
generations to 20 times the number of items. Initially, we generated a random
population with a random ordering item in each individual. At each generation, our
BLF2G policy gave the quality of each individual. The genetic operators were defined
as follows:

Crossover operator: The crossover operator used is based on one-point cut operator
(cf. [9]). The crossover rate is 0.8. The application of the crossover gives an invalid
offspring; we made a correction to make the children valid. We corrected child 1 by
replacing the double genes by the missing genes according to their order of appearance
in parent 2 and replaced the double genes in child 2 by the missing genes according to
their order of appearance in parent 1.

Mutation operator: This is about swapping two randomly chosen sites at which the
mutation rate is 0.15, figure 5.

Fig. 5. The genetic operators, crossover and mutation.

6

3.2. Fast greedy heuristics

In this section, the authors will present various fast order-based policies, ranging from
a simple greedy policy to a more sophisticated one, to be injected in the evolutionary
process. The objective is to generate qualified individuals by applying fast greedy
techniques to be integrated in the evolutionary process, Fig. 6, fig. 7.

 Decreasing Height (DH) policy: The list of items is sorted according to the
decreasing height of items. When two items have the same height, we promote
the widest one; see Figure 6 (a).

 Increasing Height (IH) policy: The list of items is sorted according to the
increasing height of items. When two items have the same height, we promote
the smallest one; see Figure 6 (b).

 DH-Reverse policy: This policy applies the DH heuristic on two sides. We put
the longest item on the right side, then the next longest one on the left side,
and so on, until the last item, and then we concatenate the right side with the
inversed list of the left side to obtain a DH-Reverse sorted list; see Fig. 6 (c).

 IH-Reverse policy: This policy applies the IH heuristic on two sides. We put
the shortest item on the right side, then the next shortest one on the left side,
and so on, until the last item, and then we concatenate the right side with the
inversed list of the left side to obtain an IH-Reverse sorted list; see Fig. 6 (d).

 Harmonic policy: This policy applies, alternately, the IH heuristic and then the
DH heuristic. The list of items is sorted alternately: take the highest item, then
the shortest one, and so on; see Fig. 6 (e).

Fig. 6. The greedy heuristics, items sorted according to different sorting policies

Fig. 7. The Divide Rule policy

(a) (b)

(c) (d)

(e)

1 2

3
4 5

6
7 8

9 10
11

3

6

11
10

8
9 1 2 4 5 7

7

 Decreasing Height Optimization Width heuristic (DHOptW): Msabah and
Baba-Ali [1] proposed this intelligently sorted policy by simulating the
BLF2G guillotine placement heuristic to improve their genetic algorithm. The
list of items is sorted alternately: take the longest item, then the widest items
according to the available width in the level, and so on.

 Divide Rule heuristic (DR): The longest item will form a level; the largest
items will determine the shape of the layout, and the smallest items are
favoured to fill gaps. Another possible improvement is to subdivide the list of
items into two parts such that the first part contains a half number of items that
are large (choosing alternately, longer item rather than wider item), and the
second contains the other half of items taking it with their order of appearance
in the original list. Thus, the large items are favored to be first. See Figure 7.

4. Experimental results

For our experiments, we firstly evaluate the quality of each fast greedy heuristic
by applying the BLF2G guillotine placement heuristic to the engendered individuals,
then evaluate the comportment of each fast greedy heuristic by combining it with the
GA, which are developed in section 4.2., section 4.3. will describe our proposed method
by using the fast greedy heuristics in the GA. Improvements are proposed and discussed
in section 4.4.. for all our test we use the data set found in the literature, section 4.1.

4.1. Data sets found in the literature

To assess the performance of our new algorithm, we use the Msa datasets of Msabah
and Baba-Ali [1], the C datasets of Hopper and Turton [6] and the N datasets of Burke
et al. [4] (Table 1).

Table 1. Datasets found in the literature
 Name # of Item Plates dimension Optimal height

M
sa

ba
h

an
d

B
ab

a-
A

li
 [

1]

Msa17(a, b, c) 17 200 x 200 200

Msa35(a, b, c) 35 200 x 200 200

Msa75(a, b, c) 75 200 x 200 200

Msa150(a, b, c) 150 200 x 200 200

H
op

pe
r

 a
nd

T

ur
to

n
[6

]

C1(1, 2, 3) 16 or 17 20 x 20 20
C2(1, 2, 3) 25 40 x 15 15
C3(1, 2, 3) 28 or 29 60 x 30 30
C4(1, 2, 3) 49 60 x 60 60
C5(1, 2, 3) 73 60 x 90 90
C6(1, 2, 3) 97 80 x 120 120
C7(1, 2, 3) 196 or 197 160 x 240 240

B
ur

ke
 e

t a
l.

[4
]

N1 10 40 x 40 40
N2 20 30 x 50 50
N3 30 30 x 50 50
N4 40 80 x 80 80
N5 50 100 x 100 100
N6 60 50 x 100 100
N7 70 80 x 100 100
N8 80 100 x 80 80
N9 100 50 x 150 150
N10 200 70 x 150 150
N11 300 70 x 150 150
N12 500 100 x 300 300
N13 3152 640 x 960 960

8

4.2. Preliminary results
Table 2 shows the height of the strip for each fast greedy heuristic; the best solutions
are highlighted in bold and the optimal solution are highlighted by grey shadow; we
can conclude that the DH policy and the DR policy are better and give often the best
solution 44 times, in other hand the IH policy and the Harmonic policy are the worse
with 0 best solution, the other policies gives weak results with 1, 2 and 4 best solution.

Table 2. Evaluation of the fast-greedy policies.

N
am

e

D
H

 policy

IH
 policy

D
H

-R
everse policy

IH
-R

everse policy

H
arm

onic policy

D
H

O
ptW

 policy

D
R

 policy

Msa17a 240 340 270 280 260 240 240
Msa17b 245 395 330 270 260 265 245
Msa17c 263 388 326 314 289 263 263
Msa35a 220 340 320 270 240 230 220
Msa35b 225 285 265 265 250 245 225
Msa35c 229 344 291 302 269 223 229
Msa75a 214 300 270 261 220 225 214
Msa75b 210 300 285 260 235 220 210
Msa75c 210 294 282 280 233 222 210
Msa150a 205 295 270 225 215 215 205
Msa150b 205 285 285 220 215 215 205
Msa150c 218 278 281 229 231 238 218

C11 20 29 33 28 31 24 20
C12 25 34 32 28 32 26 25
C13 25 34 24 26 28 26 25
C21 17 27 20 20 19 19 17
C22 17 23 20 19 18 21 17
C23 16 24 20 18 18 17 16
C31 36 49 41 36 39 36 36
C32 36 42 46 40 39 38 36
C33 34 59 46 44 36 35 34
C41 72 93 91 79 74 77 72
C42 72 103 101 96 81 73 72
C43 63 119 109 77 75 80 63
C51 96 120 127 112 105 99 96
C52 102 138 160 125 114 113 102
C53 100 154 115 113 113 105 100
C61 130 180 168 148 146 143 130
C62 128 205 179 159 142 156 128
C63 135 177 173 150 139 153 135
C71 251 321 304 275 275 274 251
C72 250 371 358 342 271 301 250
C73 252 366 345 296 275 294 252
N1 40 48 40 60 48 60 40
N2 61 87 69 65 63 63 61
N3 53 87 75 71 67 60 53
N4 87 147 131 148 104 106 87
N5 109 127 137 117 117 125 109
N6 108 120 135 123 114 110 108
N7 118 235 249 234 125 164 118
N8 88 172 134 107 93 106 88
N9 158 276 264 220 175 181 158

N10 161 283 216 212 164 157 161
N11 156 217 181 164 161 172 156
N12 315 448 446 366 326 366 315
N13 973 1159 1154 1004 1026 1022 973

Best result 44 0 2 1 0 4 44

9

Table 3. Evaluation of the fast-greedy policies combined with a genetic algorithm.

N
am

e

B
L

F
2G

+
G

A

G
eneration

B
L

F
2G

+
G

A
D

H

generation

B
L

F
2G

+
G

A
IH

generation

B
L

F
2G

+
G

A
D

H
-R

everse

generation

B
L

F
2G

+
G

A
IH

-R
everse

generation

B
L

F
2G

+
G

A
H

arm
onic

generation

B
L

F
2G

+
G

A
D

H
O

ptW

generation

B
L

F
2G

+
G

A
D

R

generation

Msa17a 200 2 200 0 200 44 200 24 200 22 200 45 200 49 200 27
Msa17b 200 41 200 91 200 129 200 78 200 19 200 2 200 128 200 1
Msa17c 200 5 200 3 200 2 200 4 200 3 200 3 200 6 200 3
Msa35a 200 241 200 403 200 71 200 10 200 194 200 208 200 92 200 8
Msa35b 210 60 210 177 210 119 210 28 210 215 210 65 210 13 210 3
Msa35c 218 3 218 4 213 164 215 361 218 32 218 5 218 5 215 541
Msa75a 207 691 205 811 210 22 207 495 210 19 207 829 207 740 205 1315
Msa75b 205 3 205 1 205 4 205 3 205 3 205 5 205 4 205 3
Msa75c 210 362 210 0 210 215 210 458 210 995 210 1231 212 927 210 0
Msa150a 205 0 205 0 205 0 205 0 205 0 205 0 205 0 205 0
Msa150b 205 0 205 0 205 2 205 2 200 1373 205 2 205 2 205 0
Msa150c 219 589 211 45 219 1110 219 193 216 539 218 502 217 466 210 25

C11 20 99 20 0 20 134 20 153 20 0 20 0 20 114 20 0
C12 22 11 22 1 22 26 22 14 22 0 22 3 22 30 22 19
C13 21 3 20 1 20 156 20 216 21 3 21 3 21 1 20 30
C21 16 42 16 1 16 8 16 4 16 26 16 20 16 5 16 0
C22 16 32 16 9 16 17 16 26 16 0 16 29 16 8 16 9
C23 15 70 15 15 15 43 15 7 15 107 15 29 15 23 15 12
C31 31 48 31 67 31 16 31 39 31 92 31 92 31 15 31 92
C32 33 4 33 5 33 17 33 184 33 47 33 94 33 36 33 107
C33 32 105 30 42 32 277 32 248 34 5 32 421 34 6 32 2
C41 65 278 65 27 65 123 65 149 65 69 65 48 65 215 65 6
C42 66 37 66 66 66 280 66 356 66 393 66 219 66 106 66 76
C43 64 359 62 6 64 24 64 60 64 12 64 11 64 132 63 0
C51 96 11 94 13 95 1122 95 823 95 1212 95 16 95 854 94 26
C52 97 446 97 1148 98 617 97 945 98 397 97 641 98 423 96 432
C53 95 529 95 6 95 896 95 164 95 816 95 533 95 539 94 477
C61 128 124 126 8 128 164 128 24 128 39 128 182 128 65 126 5
C62 131 55 126 0 131 75 130 29 131 47 130 70 131 19 126 0
C63 128 40 126 5 130 365 129 16 129 102 129 533 131 132 126 5
C71 257 917 251 0 258 1529 258 2001 260 3224 259 2926 257 1540 250 7
C72 261 496 249 1 259 2605 259 2637 261 3360 261 1802 260 3074 247 524
C73 256 2940 250 234 258 296 258 907 257 1046 257 802 256 3758 251 6
N1 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0
N2 50 12 50 16 50 8 50 67 50 15 50 81 50 16 50 5
N3 53 13 53 0 53 46 53 34 53 43 53 33 53 12 53 0
N4 91 592 87 0 87 738 87 755 91 441 87 559 91 228 87 0
N5 106 77 106 22 106 557 106 622 106 340 106 278 106 437 105 776
N6 103 783 103 262 104 94 103 310 104 36 104 129 104 140 103 534
N7 116 18 116 4 116 0 116 7 116 5 116 16 116 7 116 5
N8 85 147 85 8 85 59 85 691 85 95 85 1124 85 165 84 91
N9 154 486 153 43 154 437 154 163 155 1286 153 1775 154 61 153 1030

N10 153 2742 152 2557 153 1818 153 509 153 941 153 757 153 738 153 1911
N11 155 824 153 61 155 741 155 990 155 3758 154 452 155 700 153 318
N12 319 104 310 232 319 287 318 493 319 292 315 1326 316 188 309 180
N13 1039 33 973 0 1052 31 1039 63 1004 0 1026 0 1022 0 973 0

Best Result 22 36 24 24 22 23 20 40
Average 315 139 337 334 471 389 353 187

For more accurate we will see the comportment of these policies in the GA, as

described above, by introducing them to the first population one by one separately,
using the Visual C++ 6.0 programming language and all our experiments were run on
a Windows computer with Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz and 15.9 GB
RAM. We ran the GA Policy on each instance 10 times and keep the best fitness and
mention the generation where this best fitness is found for the first time.

Table 3 shows the impact of the injection of the greedy policies to genetic algorithm.
The authors find that the injection of the DR policy to genetic algorithm

10

(BLF2G+GADR) gives the best result, 40 times, followed by DH policy
(BLF2G+GADH) 36 times. This mean that our new sorting Divide Rule policy
outperform the famous Decreasing Height policy, which means that the DR policy
managed successfully that characterized items appear first in the laying out process. In
other hand the DH policy lead to the best solutions in an average of 139 generations,
and the DR policy in an average of 187 generations, where the other methods need more
time to give less satisfactory results in about 3 more times.

 Table 4. Computational results on the datasets Msa, C and N

N
am

e

B
L

F2G
+

G
A

B
L

F2G
+

G
A

im
prv

B
L

F2G
+

G
A

im
prv+

Msa17a 200 200 200
Msa17b 200 200 200
Msa17c 200 200 200
Msa35a 220 215 200
Msa35b 215 210 210
Msa35c 219 213 215
Msa75a 215 205 210
Msa75b 210 205 205
Msa75c 218 210 210
Msa150a 205 205 205
Msa150b 205 205 205
Msa150c 219 212 214

C11 21 20 20
C12 22 22 22
C13 21 20 21
C21 16 16 16
C22 16 16 16
C23 16 15 15
C31 32 32 31
C32 34 33 33
C33 34 30 33
C41 67 64 65
C42 68 66 67
C43 64 62 63
C51 97 94 96
C52 102 97 97
C53 98 94 94
C61 133 126 128
C62 135 127 127
C63 133 126 127
C71 263 250 250
C72 266 248 248
C73 267 248 249
N1 40 40 40
N2 50 50 50
N3 55 53 53
N4 93 87 87
N5 106 106 107
N6 106 103 104
N7 116 116 116
N8 90 85 85
N9 158 153 153
N10 160 153 154
N11 158 153 154
N12 322 308 311
N13 1039 Out of service 1159

11

4.3. Results
In this section we propose to introduce all the sorting policies defined above to
the initial population, in order to enrich the first generation by more qualified
individuals. We generate one individual of every sorting policy, and we put all
of them randomly in the first generation. We will compare the BLF2G
guillotine placement heuristic combined with the new version of the GA,
improved by this sorting policies, which we call BLF2G+GAimprv+, to
BLF2G+GA and BLF2G+GAimprv proposed by Msabah and Baba-Ali [1].

Table 4 presents the height of the strip by applying our BLF2G+GAimprv+ algorithm
with regard to BLF2G+GA and BLF2G+GAimprv. The best results are highlighted in
bold, the black shadows mean that the result has degraded with regard to the previous
method, and when the optimum has reached the fitness are highlighted by grey shade.

The results in Table 4 show clearly that our new method, BLF2G+GAimprv+,
outperforms the BLF2G+GA method in all cases except for N5 and N13, i.e., guiding
the evolutionary process by greedy heuristics improves the result in most cases.
Compared to the BLF2G+GAimprv method, our new method gives satisfactory results in
a few cases, but it lost in most of the cases.

We can conclude that the evolutionary process was disturbed by the greedy policies.
This means that the GA exploits the search space around these greedy heuristics (local
optimum). To remedy that, we will present in the next section our improvements.

4.4. Improvements

Injecting sorted individuals into the population may improve the results but injecting
additional sorted lists without a control may cause the search to converge to a local
optimal solution, which disturbs the evolutionary process.

We propose a novel improvement to the genetic algorithm. We introduce a notion of
the stability of the evolutionary process, such that, if there is no improvement after some
number of iterations, we have obtained a local optimum solution. After stability is
detected, we produce an individual of a randomly chosen sorting policy and we inject
it randomly in the population. The chosen sorting policy is forbidden in the following
injections, till all sorting policies are used. Then we continue the evolutionary process,
while controlling the stability of the evolutionary process, until the end of the treatment.

Begin
Generate initial population
Nbr of generation :=0;
Nbr of stability := 0;
While Nbr of generation < maximum generation && optimal not reached
do
 Selection();
 Crossing();
 Mutation();
 Elitism();
 ++ Nbr of generation;
 If fitness = previous fitness
 Then ++ Nbr of stability;
 Else Nbr of stability := 0;
 End if
 If Nbr of stability = threshold
 Then
 Nbr of stability := 0;
 Inject a sorted list of pieces to the population;
 End if
End while
End

12

 The controlled stability genetic algorithm (csGA).
This algorithm benefits from the order-based heuristics cited above and guides the

genetic algorithm by introducing order-based heuristics to the population in turns, when
stability is detected, in the evolutionary process. The factor of stability is defined as 5
times the number of items. A theoretical optimal solution can be reached when the
square of the band, (ie. plate width * plate height), equal to the sum of the square of all
pieces. Shown below is the genetic algorithm with controlled stability:

 The improved results.
For our experiments, we compare the new Controlled Stability GA “csGA” method
combined with the BLF2G guillotine placement heuristic to BLF2G+GA and
BLF2G+GAimprv (Msabah et Baba-Ali, [1]), which use the guillotine constraint, and to
the Fast layer-based heuristic (FH) algorithm (Leung et Zhang, [7]), which it was used
without the guillotine constraint in the original work, with data sets found in the
literature. We ran the csGA on each instance 10 times and keep the best-found solution.

Table 5 presents the height of the strip by applying our BLF2G+csGA method with

regard to the FH and BLF2G+GAimprv methods; the FH results are given by Leung et
Zhang. N denote the number of items, W denote de width of the Bin and LB express
the Lower Bound, i.e. the theoretical optimal solution. We mention the execution time
expressed per second for our BLF2G+csGA method. We find that the GA process take
benefit from some injected individuals and improve its quality.

Fig. 8. The Controlled Stability Genetic Algorithm, csGA, process.

csGA + BLF2G

Stability
detected

Inject in turn a
sorted policy

Best Solution

Population

Sorted
Policies

GA + BLF2G

13

Table 5. Computational results on the datasets Msa, C and N
Name Instance N W LB FH BLF2G+GAimprv BLF2G+csGA Time (s)

Msa17a 17 200 200 210 200 200 0

Msa17b 17 200 200 220 200 200 9

Msa17c 17 200 200 200 200 200 9

Msa35a 35 200 200 210 215 200 25

Msa35b 35 200 200 200 210 210 60

Msa35c 35 200 200 211 213 213 64

Msa75a 75 200 200 203 205 205 362

Msa75b 75 200 200 200 205 205 356
Msa75c 75 200 200 205 210 208 361

Msa150a 150 200 200 200 205 205 2505

Msa150b 150 200 200 200 205 200 2513

Msa150c 150 200 200 204 212 210 2515

C11 16 20 20 20 20 20 4

C12 17 20 20 20 22 22 18

C13 16 20 20 21 20 20 16

C21 25 40 15 16 16 16 35

C22 25 40 15 15 16 16 37
C23 25 40 15 15 15 15 5

C31 28 60 30 31 32 31 44

C32 29 60 30 31 33 33 47

C33 28 60 30 32 30 30 43

C41 49 60 60 61 64 63 148

C42 49 60 60 61 66 63 256

C43 49 60 60 61 62 62 247

C51 73 60 90 91 94 94 503
C52 73 60 90 90 97 95 763

C53 73 60 90 91 94 94 702

C61 97 80 120 121 126 125 810

C62 97 80 120 121 127 126 564

C63 97 80 120 121 126 126 802

C71 196 160 240 241 250 249 4572

C72 197 160 240 241 248 246 4476

C73 196 160 240 241 248 248 4992

N1 10 40 40 40 40 40 0
N2 20 30 50 52 50 50 1

N3 30 30 50 51 53 53 45

N4 40 80 80 83 87 87 93

N5 50 100 100 102 106 105 144

N6 60 50 100 101 103 103 227

N7 70 80 100 102 116 103 357

N8 80 100 80 81 85 84 514

N9 100 50 150 151 153 152 722
N10 200 70 150 151 153 152 5510

N11 300 70 150 151 153 153 17438

N12 500 100 300 301 308 308 83525

N13 3152 640 960 960 Out of service 973 604800

Optimum reached:
Best results:

12
40

9
10

11
13

Best results BLF2G+GAimprvvsBLF2G+csGA / 28 46 (all time)

14

Fig. 9. Comparison of the BLF2G+csGA to FH and BLF2G+GAimprv algorithms

Test sets sorted according to the number of items

With this improvement, our BLF2G+csGA method maintains its superiority over the

BLF2G+GAimprv method in all cases (which work in the same conditions); the results
are 46 vs 28 in favor of the csGA algorithm, which mean an improvement of 139%.
Despite our method using the guillotine constraint, we reach the optimum 11 times,
especially in Msa35, C13, C33 and N2, where the FH algorithm fails to reach the
optimum despite its freedom from the guillotine constraint. In other cases, the FH
algorithm outperforms our method.

To show the comparisons more clearly, we give the percentage of loss in Figure 9,
As seen in the graph, our method gives the best results for datasets of small size, and it
is still competitive for the rest.

5. CONCLUSION

This paper demonstrated the efficiency of our contribution to the rectangular cutting-
stock problem. The authors used the new BLF2G guillotine placement heuristic
combined with a genetic algorithm guided intelligently by sorted lists of items.
Introducing several ordered lists to the evolutionary process might disturb the quality
of the treatment to a local optimal solution. To remedy this issue, we propose to guide
the genetic algorithm intelligently. In addition to the famous DH and DHOptW policies,
we developed new ordered policies. We inject these sorted lists into the population
when we observe that there is stagnation in the evolutionary process, i.e. we are in a
local optimal solution. This will help diversify the search in another area of the solution
space.

The comparisons between our csGA combined with the BLF2G heuristic and other
methods are very encouraging. Our method repeatedly reaches the optimum, especially
for Msa35a and Msa150b with 35 and 150 items. In comparison to the FH algorithm,
our method gives better results in a few cases, despite FH’s freedom from the guillotine
constraint, but it still competitive for most other cases.

0
2
4
6
8

10
12
14
16
18

N
1

C
11

C
13

M
sa

17
a

M
sa

17
b

M
sa

17
c

C
12 N
2

C
21

C
22

C
23

C
31

C
33

C
32 N
3

M
sa

35
a

M
sa

35
b

M
sa

35
c

N
4

C
41

C
42

C
43 N
5

N
6

N
7

C
51

C
52

C
53

M
sa

75
a

M
sa

75
b

M
sa

75
c

N
8

C
61

C
62

C
63 N
9

M
sa

15
0a

M
sa

15
0b

M
sa

15
0c

C
71

C
73

C
72

N
10

N
11

N
12

FH

BLF2G+GAimprv

BLF2G+csGA

%

15

The BLF2G heuristic depends completely on the GA to find the order of items that
yields the optimal solution. Future work, can intend to enhance the GA in the genetic
phase without altering the evolutionary process, by proposing new ordered based
heuristics to give an intelligent order of items especially, after the satisfactory results
of the DR heuristics to help the evolutionary process to find the best solution.

References

[1] Msabah, S. A., and A. R. Baba-Ali. 2011. A New Guillotine Placement Heuristic
Combined with an Improved Genetic Algorithm for the Orthogonal Cutting-Stock
Problem, Proceedings of The IEEE International Conference on Industrial
Engineering and Engineering Management, IEEM11, Singapore, 482-486.

[2] Lodi A., S. Martello, and D. Vigo. 1999. Heuristic and metaheuristic approaches for
a class of two-dimensional bin packing problems, INFORMS journal on computing
Vol 11, 345–357.

[3] Ben Messaoud, S., C. Chu, and M. L. Espinouse. 2004. An approach to solve cutting
stock sheets, IEEE International Conference on Systems, Man and Cybernetics,
5109–5113.

[4] Burke E. K., G. Kendall, and G. Whitwell. 2004. A New Placement Heuristic for
the Orthogonal Stock Cutting Problem, Operations Research vol. 52 no. 4, 655–
671.

[5] Hopper E., and B. Turton. 1999. A genetic algorithm for a 2D industrial packing
problem, Computers and Industrial Engineering vol. 37/1-2, 375–378.

[6] Hopper E., B. 2001. Turton. An empirical investigation of metaheuristic and
heuristic algorithms for a 2D packing problem, European Journal Operational
Research 128, 34–57.

[7] Leung S.C.H., and D. Zhang. 2011. A fast layer-based heuristic for non-guillotine
strip packing, presented at Expert Syst. Appl. 13032-13042.

[8] Goldberg, D.E. Genetic algorithms in search, optimization, and machine learning,
Reading, MA: Addison-Wesley, 1989.

[9] Michalewics, Z. 1996. Genetic Algorithms + Data Structures = Evolution Programs,
Third, Revised and Extended Edition, Springer.

[10] Baker, B. S.; Coffman, E. G.; Rivest, R. L. (1980) Orthogonal packings in two
dimensions, SIAM Journal of Computing 9, 4, pp. 846–855.

[11] Jakobs, S. (1996) On genetic algorithms for the packing of polygons, European
Journal of Operational Research n° 88, pp. 165–181.

[12] Liu, D.; Teng, H. (1999) An improved BL-algorithm for genetic algorithm of the
orthogonal packing of rectangles, European Journal of Operational Research 112,
pp. 413–420.

[13] Ramesh Babu, A.; Ramesh Babu N. (1999) Effective nesting of rectangular parts
in multiple rectangular sheets using genetic and heuristic algorithms, International
Journal of Production Research Vol. 37, n°7, pp. 1625–1643.

[14] Burke, E. K.; Kendall, G.; Whitwell, G. (2009) A Simulated Annealing
Enhancement of the Best-Fit Heuristic for the Orthogonal Stock-Cutting Problem,
INFORMS Journal on Computing Vol. 21, No. 3, pp. 505–516.

[15] Berkey, J. O.; Wang, P. Y. (1987) Two dimensional Finite bin packing algorithms,
Journal of the Operational Research Society 38, pp. 423–429.

