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Abstract. Pseudo-Boolean constraints constitute an important class of
constraints. Despite extensive studies of SAT encodings for PB con-
straints, there are no generally accepted SAT encodings for PB con-
straints. In this paper we revisit encoding PB constraints into SAT via
binary adders and BDDs. For the binary adder encoding, we present
an optimizing compiler that incorporates preprocessing, decomposition,
constant propagation, and common subexpression elimination techniques
tailored to PB constraints. For encoding via BDDs, we compare three
methods for converting BDDs into SAT, namely, path encoding, 6-clause
node encoding, and 2-clause node encoding. We experimentally compare
these encodings on three sets of benchmarks. Our experiments revealed
surprisingly good and consistent performance of the optimized adder en-
coder in comparison with other encoders.

1 Introduction

A Pseudo-Boolean (PB) constraint is a linear integer constraint where all the
variables are Boolean (0 or 1). PB constraints constitute an important class of
constraints. Many constraint models for combinatorial problems, such as model
checking and planning, contain PB constraints. PB constraints also serve as
an intermediate language for compiling higher-level constraints, such as global
constraints [6]. PB constraints have been well studied in the SAT community.
Several SAT encodings have been proposed, including BDDs [1, 5, 13], sorting
networks [13], totalizers [4], log-encoded adders [21], and order-encoded adders
[19]. There are also extensions of SAT solvers for natively supporting PB con-
straints [2, 9]. Specialized encoding algorithms have been proposed for encoding
cardinality PB constraints [3, 10, 18]

Despite the extensity of the studies of SAT encodings for PB constraints,
there are no generally accepted SAT encodings for PB constraints. Theoretical
studies may not be able to provide a correct indication on the performance, and
many empirical studies only used implementations that lack optimizations.

In this paper, we revisit the binary-adder and BDD encodings for PB con-
straints. We present a compiler that incorporates several optimizations in the
translation of PB constraints into binary adders, including preprocessing, decom-
position, constant propagation, and common subexpression elimination. We also
empirically compare several encodings of BDDs into SAT for PB constraints,



including path encoding, 6-clause node encoding, and 2-clause node encoding. All
these encodings apply the Tseitin transformation [13] on BDDs, and guarantee
the same order of code size as the BDDs.

We have implemented the adder encoder and the BDD encoders in the Pi-
catSAT compiler [22], and have compared these encoders on three sets of bench-
marks. While theoretical studies have ruled out the adder encoding as viable
due to its incapability of maintaining GAC (Generalized Arc Consistency) on
PB constraints, and past empirical studies have unanimously confirmed its poor
performance [1, 13, 16], our experiments revealed surprisingly good and consis-
tent performance of the optimized adder encoder in comparison with the BDD
and other encoders.

2 PB Constraints and GAC

A PB constraint is a linear integer constraint that takes the form ofΣn
1 (ai ×Xi) γ b,

where ai’s and b are integers, Xi’s are 0/1 integer domain variables, and γ is a
relational operator in {=, 6=, >,≥, <,≤}. The constraint becomes a cardinality
constraint when all the ai’s are the same.

A SAT encoder converts constraints into CNF clauses. An important question
to ask about an encoder is whether unit propagation enforces GAC [12] on the
generated code.

Definition 1. GAC
For an n-ary constraint p(X1, . . . , Xn), a value vi in Xi’s domain is gac-supported
if for each j ∈ {1, . . . , i− 1, i+ 1, . . . , n} there exists a value vj in Xj’s domain
such that p(v1, . . . , vi−1, vi, vi+1, . . . , vn) is true. The constraint is said to be GAC
if every value in every variable’s domain is gac-supported. This condition can be
given more formally as:

∀i∈{1..n}∀vi∈Xi∃v1∈X1,...,vi−1∈Xi−1,vi+1∈Xi+1,...,vn∈Xnp(v1, v2, . . . , vn)

where variables are used to denote their domains.

In order to maintain GAC of a constraint, constraint propagation excludes un-
supported values from the domains of the variables. A system of constraints
becomes inconsistent if any variable’s domain becomes empty.

Since it is expensive to maintain GAC for large constraints, many CP systems
only maintain a weaker consistency, called bounds-consistency, which ensures
that every bound value is supported. For a PB constraint, GAC and bounds-
consistency are equivalent because all the variables are Boolean and all the values
are bounds.

The GAC property is important because unit propagation forces values on
variables and reduces the number of backtracks during search. Nevertheless, it
can be expensive or may require prohibitively large code to enforce GAC. Modern
SAT solvers are quite complicated, and an encoder should generate code that
properly balances the code size and the propagation strength.

Consider, for example, the PB constraint:
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P + 2×Q+ 2×R+ 3× S + 3× T = 5

A GAC encoder achieves the following, amongst others:

– P = 1 entails Q = 1, R = 1, S = 0, and T = 0.
– S = 1 and T = 1 entails inconsistency.

For this constraint, the following CNF code is returned by the logic optimizer
Espresso [8]:

(1) ¬Q ∨ ¬R ∨ ¬S (2) ¬Q ∨ ¬R ∨ ¬T (3) P ∨ S ∨ T
(4) ¬P ∨R (5) ¬P ∨Q (6) Q ∨R
(7) ¬S ∨ ¬T

It is not difficult to check that, with this code, unit propagation maintains GAC
on the constraint.

3 The Adder Encoding and its Optimizations

This section presents the adder encoding for PB constraints and its optimiza-
tions. PB constraints are special arithmetic constraints, and the techniques can
be viewed as specializations of the techniques used for general arithmetic con-
straints.

3.1 Log Encoding

Our adder encoder adopts the sign-and-magnitude log encoding for domain vari-
ables. For a domain variable X, let m be the maximum absolute value in X’s
domain. A vector of Boolean variables, called bits, <Xn−1Xn−2 . . . X1X0> is uti-
lized to represent X’s magnitude, where n = dlog2(m)e. If the domain contains
both negative and positive values, then another Boolean variable is employed
to represent the sign. Each combination of values of the bits represents a val-
uation for the variable: Xn−1 × 2n−1 + Xn−2 × 2n−2 + . . . + X1 × 2 + X0. For
PB constraints, our adder encoder never introduces negative-domain auxiliary
variables.

For an integer-domain variable, some of the bits in its log encoding may
be inferred from the values in the domain. For example, consider the constraint
Y = 10×X, where X is Boolean and Y has the domain {0, 10}. Y ’s log encoding
is <Y3Y2Y1Y0>. Our adder encoder infers Y2 = 0 and Y0 = 0 from the two values
in the domain, and only uses two Boolean variables to encode Y , and uses the
following two clauses to encode the constraint: ¬Y1 ∨ Y3 and Y1 ∨ ¬Y3.

3.2 Special PB Constraints

Our adder encoder treats a PB constraint as a special one if it is either a small
PB constraint that contains no more than 6 variables or a cardinality constraint

3



of the form Σn
1Xi γ B, where n > 6, and abs(B) is 0, 1, or 2. For small PB con-

straints, our adder encoder uses Espresso to find optimal or near optimal code.
For cardinality constraints, our adder encoder employs specialized encoders, such
as the two-product algorithm [10] and the sequential counter algorithm [18], de-
pending on the cardinalities.

3.3 Primitive Arithmetic Constraints

Our adder encoder breaks down a non-special PB constraint into the following
types of primitive constraints: X + Y = Z, and X × Y = Z, and X γ Y ,
where X, Y , Z are integer variables or integers. These primitive constraints are
further converted to binary adders and comparators, using ripple carry adders
for X + Y = Z, the shift-and-add algorithm for X × Y = Z, and recursive
algorithms for XγY [22]. Our adder encoder makes use of Espresso to find codes
for basic adders and comparators. For a full adder, our encoder uses 10 clauses;
for a half adder, it uses 7 clauses.

Constants in primitive constraints are exploited, through constant propaga-
tion [22], to infer the values of bits and the equivalence relationships between
some bit pairs. For example, for the constraint X + 2 = Y , our encoder infers
Y0 = X0 and Y1 = ¬X1, and for the constraint 2×X = Y , it infers Y0 = 0 and
Yi+1 = Xi for i > 0.

3.4 Breaking Large PB Constraints

There are many different ways to break a PB constraint into primitive con-
straints, and the decision on which algorithm to use has great impact on the
quality of the generated code. Our adder encoder follows the following steps to
break PB constraints:

1. Combine power-of-2 terms: For each subexpression of the form:

2k−1 ×Xk−1 + . . .+ 20 ×X0

our adder encoder replaces it with an auxiliary variable X, which has the
domain 0..2k − 1. This transformation introduces no new Boolean variables,
because X’s log encoding only reuses existing Boolean variables.

2. Factor out terms with common coefficients: For each group of terms
that have the same non-unit coefficient {a × Y1, . . . , a × Yk} (a 6= 1 and
a 6= −1), our adder encoder introduces an auxiliary variable V for the sum
of the variables V = Y1 + . . .+Yk, and introduces another auxiliary variable
U for U = a × V . The domains of U and V are computed based on the
coefficient a, the variables Yi’s, as well as the original constraint such that
the resulting constraints are all bounds-consistent.

3. Break the constraint: After the above two steps, all the terms only have
unit coefficients. In this step, our adder encoder follows the algorithm in
Figure 1, which is similar to the Huffman coding algorithm [11], to break
the constraint until it becomes primitive.
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decompose(a1 ×X1 + a2 ×X2 + . . .+ an ×Xn γ b):
add all the terms ai ×Xi into a priority queue Q
while the constraint is not primitive:

remove two terms ai ×Xi and aj ×Xj from Q
where ai = aj , and Xi and Xj have the smallest domains

post T = Xi +Xj

add the term ai × T into Q
post the primitive constraint

Fig. 1. Breaking unit-coefficient PB constraints

When posting a primitive constraint in Step 2 and Step 3, our adder encoder
looks up the constraint store to see if an identical constraint has been posted.
If so, it reuses the auxiliary variable, rather than introducing a new one. This
technique eliminates common subexpressions in constraints, and can significantly
reduce the code size. Our adder encoder also ensures that all the constraints
posted to the constraint store are bounds-consistent. This preprocessing narrows
the domains of variables before the constraints are converted to CNF.

Consider, for example, the PB constraint:

P + 2×Q+ 2×R+ 3× S + 3× T = 5

Assume that small PB constraints are not treated by a logic optimizer, then our
adder encoder breaks the above constraint into the following triplets:

U = P + 2×Q U ∈ 0..3
V = 2×R V ∈ 0..2
W = S + T W ∈ 0..1
X = 3×W X ∈ 0..3
Y = U + V Y ∈ 0..5
X + Y = 5

Variable U combines the two terms with power-of-2 coefficients: P and 2 × Q.
Variable U is encoded as <QP>, which requires no new Boolean variables. Note
that all the constraints are made bounds-consistent, and unsupported bound
values are removed from the domains. For example, W ’s domain is narrowed
from 0..2 to 0..1 after value 2 is found to be unsupported. Also note that not all
the constraints are GAC after preprocessing. For example, value 2 in U ’s domain
and value 2 in X’s domain are not gac-supported, but they remain because they
don’t violate bounds consistency.

Constant propagation enables reuse of bits in the encodings of the variables.
Let V ’s encoding be <V1V0>, X’s encoding be <X1X0>, and Y ’s encoding be
<Y2Y1Y 0>. Our adder encoder infers the following:

V0 = 0, V1 = R from V = 2×R
X0 = W,X1 = W from X = 3×W
Y0 = ¬X0 from X + Y = 5
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In total, only three auxiliary Boolean variables are introduced for encoding the
new variables.

With the code generated by our adder encoder for PB constraints, unit prop-
agation generally is not able to guarantee GAC on the constraints. For example,
for the above PB constraint, when P = 1, unit propagation is not able to force
Q = 1, R = 1, S = 0, and T = 0. However, it is able to detect inconsistency
when S = 1 and T = 1.

4 Encoding BDDs into SAT

BDDs (Binary Decision Diagrams) have been used as an intermediate form for
translating PB constraints into SAT [1, 13, 16]. A node N in a BDD represents
a constraint. Each node has a chosen variable, denoted as N.v, and has two
children: the left child (called 0-child, denoted as N.0) represents the resulting
constraint after N.v is assigned 0, and the right child (called 1-child, denoted as
N.1) represents the resulting constraint after N.v is assigned 1. A true constraint
is represented as a terminal >, and a false constraint is represented as a terminal
⊥. We assume that BDDs are always ordered, meaning that all the nodes on the
same layer have the same chosen variable, and reduced, meaning that all the
nodes that represent the same constraint are merged into one node. We also
assume that the constraint represented by every node is GAC.

A BDD-based encoder takes two steps to translate a PB constraint into SAT:
it builds a BDD from the constraint, and then traverses the BDD to generate
CNF clauses. There are different ways to build a BDD from a constraint, based
on orderings of variables. A reasonable choice, which is adopted in our BDD
encoders, is to order terms on coefficients, from the largest absolute coefficient
to the smallest absolute coefficient [13]. Figure 2 shows the first two layers of
the BDD for the PB constraint:

3× S + 3× T + 2×Q+ 2×R+ P = 5

The right child of node 3 is ⊥, because the path to the child (S = 1 and T = 1)
causes inconsistency once the constraint is made GAC. Node 4 represents the
constraint:

2×Q+ 2×R+ P = 5

which entails Q = 1, R = 1, and P = 1 once the constraint is made GAC. Under
node 4, there is a one-way path to a > terminal. Node 5 is shared by two paths
from the root to it.

There are also different ways to encode a BDD into CNF clauses. The Tseitin
transformation given in [13] introduces an auxiliary Boolean variable for each
node, which is true if and only if there is a path from the node to a > terminal.
A unit clause is generated for the root that forces the root’s auxiliary variable
to be true.

Let the auxiliary variable for a node be r, the chosen variable of the node be
x, the auxiliary variable for the 0-child be c0, and the auxiliary variable for the
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Fig. 2. The first two layers of the BDD for 3 × S + 3 × T + 2 ×Q+ 2 ×R+ P = 5

1-child be c1. The Tseitin transformation in [13] uses the following six clauses
to connect the node r and its children:

(1) x ∧ c1 → r (2) ¬x ∧ c0 → r (3) x ∧ ¬c1 → ¬r
(4) ¬x ∧ ¬c0 → ¬r (5) c0 ∧ c1 → r (6) ¬c0 ∧ ¬c1 → ¬r

Clauses (5) and (6) are redundant, and are added to increase the propagation
strength. This encoding, called 6-clause node encoding in this paper, enforces
GAC with unit propagation [13].

The 2-clause node encoding only uses clauses (1) and (2) above. It still main-
tains GAC if the constraint of every node is GAC. It is shown in [1] that, for
monotonic constraints, clause (2) can be simplified to c0 → r.

Another encoding, called path encoding, is to generate clauses to ban no-
good paths that lead to ⊥ terminals. This is similar to direct encoding [7, 20]
of constraints. In order to guarantee the same size order of the generated code
as the BDD, this encoding introduces an auxiliary variable, denoted as N.a, for
each node N that is shared by two or more paths from the root. The following
gives an algorithm for generating clauses from a BDD:

gen(N,S):
if N = ⊥:

emit S
if N = >:

return

if N is a shared node:
emit S ∪ {N.a}
S = {¬N.a}

gen(N.0, {N.v} ∪ S)
gen(N.1, {¬N.v} ∪ S)

The algorithm gen takes a BDD node N , and a set of literals S. In the beginning,
N is the root of a BDD, and S is empty. If N = ⊥, then the algorithm emits
the literals in S as a clause, which bans the path. If N = >, the algorithm
does nothing. If N is a shared node, the algorithm emits a clause S ∪ {N.a},
which means that the path to the node entails N.a, and resets S to {¬N.a}. The
algorithm recurses on the children as follows: when going down to N.0, it adds
N.v to S; when going down to N.1, it adds ¬N.v to S.
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Table 1. A comparison on code size (PB’16 benchmarks, unit: 1000)

Benchmark Adder BDDp BDDn2 BDDn6 PBSugar PBLib
vars cls vars cls vars cls vars cls vars cls vars cls

sha1-128-21-4 8 42 15 37 23 46 23 108 51 223 34 93
sh-80-21-1 8 43 15 38 23 46 23 109 51 223 34 93
sh-80-21-2 8 43 15 38 23 46 23 109 51 223 34 93
sh-80-21-4 9 43 15 38 23 46 23 109 51 223 34 93
sh-80-21-5 8 43 15 38 23 46 23 108 51 223 34 93
sh-80-21-6 8 43 15 38 23 46 23 109 51 223 34 93
sh-80-21-7 8 43 15 38 23 46 23 109 51 223 34 93
sh-80-21-9 8 43 15 38 23 46 23 108 51 223 34 93
sh-96-21-6 8 43 15 38 23 46 23 109 51 223 34 93
sh-96-21-7 8 43 15 37 23 46 23 108 51 223 34 93
su3hP128 230 852 263 525 443 705 443 1983 836 3572 443 705
su3pyP0125 111 411 126 252 213 339 213 953 402 1717 214 340
su4hP064 58 318 127 254 189 316 189 905 353 1563 189 316
su4hP128 231 1266 508 1016 754 1262 754 3621 1411 6247 755 1263
su4pyP0064 30 162 65 129 96 160 96 460 180 795 96 161
su4pyP0125 112 610 245 489 363 607 363 1741 679 3005 364 608
su5hP032 32 146 52 105 72 124 72 359 134 604 72 124
su5hP064 127 586 209 418 287 496 287 1438 533 2415 288 497
su5pyP0032 17 76 27 54 37 64 37 186 69 313 37 64
su5pyP0064 65 299 106 213 146 252 146 731 272 1228 147 253

For example, for the partial BDD shown in Figure 2, the algorithm generates
¬S∨¬T for the path from the root to the right-most terminal ⊥, and two clauses
for the paths to node 5: S ∨ ¬T ∨ A5 and ¬S ∨ T ∨ A5, assuming the auxiliary
variable introduced for node 5 is A5.

The path encoding is correct in the sense that the generated code is satisfiable
if and only if there is a path from the root to a> terminal. The auxiliary variables
introduced for shared nodes do not affect the correctness because α → β is
equivalent to α→ N.a∧N.a→ β for any formulas α and β. The generated code
also maintains GAC via unit propagation if the constraint of every node in the
BDD is GAC.

5 Experimental Results

We implemented the binary adder encoder and the three BDD encoders for PB
constraints in the PicatSAT compiler,3 and empirically evaluated them using
three sets of benchmarks: a selection of instances from PB competition 20164,
a set of Integer Programming (IP) benchmarks taken from [15], and a set of
cumulative scheduling benchmarks used in the MiniZinc Challenge5. The bench-
marks are available at http://picat-lang.org/download/pb bench.tar.gz. We also
included PBSugar (version 1.1.1) [19] and PBLib [16],6 two cutting-edge PB en-
coders, in the comparison on the PB’16 benchmarks, and Chuffed7, a cutting-

3 http://picat-lang.org/
4 http://www.cril.univ-artois.fr/PB16/
5 http://www.minizinc.org/challenge.html
6 The default settings of PBSugar and PBLIb were used in the comparison.
7 https://github.com/chuffed/chuffed
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Table 2. A comparison on solving time (PB’16 benchmarks, seconds)

Benchmark Adder BDDp BDDn2 BDDn6 PBSugar PBLib
lgl glu lgl glu lgl glu lgl glu lgl glu lgl glu

sh-128-21-4 55.77 28.46 104.35 >1200 67.04 40.27 54.69 >1200 7.97 >1200 32.45 >1200
sh-80-21-1 17.57 5.30 8.65 5.40 9.81 5.99 10.71 13.42 5.91 2.80 15.03 16.88
sh-80-21-2 27.26 84.67 31.74 32.38 59.10 19.49 21.62 618.99 4.65 650.81 17.25 990.43
sh-80-21-4 21.50 4.81 4.57 7.15 13.60 4.76 18.83 40.51 3.50 66.56 10.75 21.78
sh-80-21-5 87.14 62.25 33.64 750.32 32.33 32.21 12.85 64.61 6.04 33.60 36.52 110.15
sh-80-21-6 21.10 9.04 10.56 5.95 9.69 5.09 18.12 15.58 3.85 5.64 20.56 21.36
sh-80-21-7 17.57 7.76 17.85 10.17 9.57 9.76 19.14 199.12 3.63 51.11 9.70 99.45
sh-80-21-9 28.21 12.35 21.85 487.37 22.01 52.84 10.32 65.10 15.51 253.62 13.85 447.79
sh-96-21-6 30.27 16.27 8.69 512.42 21.07 51.98 15.85 56.43 12.36 155.75 18.86 54.66
sh-96-21-7 17.62 8.88 20.61 574.24 23.11 7.53 16.97 273.27 5.13 689.63 18.83 130.35
su3hP128 55.17 26.19 35.69 1.23 9.80 6.92 16.00 9.49 20.86 18.40 7.89 1.59
su3pyP0125 20.12 5.23 3.59 0.57 4.20 0.85 8.25 3.58 13.46 4.67 3.70 0.71
su4hP064 3.46 1.52 5.40 2.08 5.68 3.18 9.58 5.88 29.20 5.55 4.35 0.97
su4hP128 14.82 10.03 396.68 146.55 63.64 7.40 72.68 91.22 254.33 74.41 21.80 4.15
su4pyP0064 1.84 0.26 1.93 0.40 2.52 1.47 4.33 1.82 4.00 2.26 1.96 0.45
su4pyP0125 6.08 1.65 18.26 6.51 7.22 15.99 60.46 19.95 69.13 10.40 6.50 1.95
su5hP032 10.06 3.08 3.25 1.71 5.01 2.55 5.47 2.38 11.66 2.19 3.33 0.73
su5hP064 205.66 49.01 59.94 55.98 67.85 53.23 66.43 8.01 87.66 12.39 23.59 5.61
su5pyP0032 2.38 0.82 1.47 0.64 2.23 0.61 3.43 0.45 4.20 0.85 1.45 0.32
su5pyP0064 25.23 15.30 9.56 8.35 13.30 8.61 11.23 2.96 30.38 3.56 16.05 1.95

edge solver that integrates SAT and CP solving techniques, in the comparison
on cumulative scheduling. We did the experiment on Linux Ubuntu with an Intel
i7 3.30GHz CPU and 32GB RAM, and used the SAT solvers Glucose (version
4.1)8 and Lingeling (version 587f)9 in the experiments. The time limit was 20
minutes per instance.

5.1 PB’16 Benchmarks

Most of the instances used in the DEC-SMALLINT-LIN category in PB’16 only
involve small PB constraints that have no more than 6 variables or cardinal-
ity constraints. For small PB constraints, all of our encoders, including BDD
encoders, use Espresso to find optimal or near optimal codes, and for cardinal-
ity constraints, our encoders use specialized algorithms. Only two benchmarks,
namely sha and sumineq, contain non-special PB constraints. We selected 10
instances from each of these two benchmarks.

Table 1 gives the number of variables (vars) and the number of clauses (cls),
both in thousands, of the CNF code generated by each of the encoders. The
column Adder is for the adder encoder, BDDp for path encoding, BDDn2 for 2-
clause node encoding, BDDn6 is for 6-clause node encoding. Adder has the fewest
variables, while BDDp has the fewest clauses. PBSugar generates the largest code.

Table 2 gives the solving time, in seconds, of the CNF code solved using
Lingeling (lgl) and Glucose (glu). Adder is competitive with other encoders; it
had no timeouts, and only had one instance (su5hP064) that took more than
100s. Among the BDD encoders, BDDn2 performed the best; it had no timeouts,

8 http://www.labri.fr/perso/lsimon/glucose/
9 http://fmv.jku.at/lingeling/
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Table 3. A comparison on code size (IP benchmarks, unit:1000)

Benchmark Adder BDDp BDDn2 BDDn6

vars cls vars cls vars cls vars cls
maxclosed ineq 10 100 10 3 21 77 165 104 192 104 571
maxclosed ineq 10 100 100 27 181 691 1482 934 1725 934 5116
maxclosed ineq 10 200 10 3 18 74 159 99 184 99 543
maxclosed ineq 20 100 1000 476 3404 26808 55365 31752 60308 31752 180622
maxclosed ineq 30 200 1000 753 5495 77087 157276 86182 166371 86182 498899

Table 4. A comparison on compile time (IP benchmarks, seconds)

Benchmark Adder BDDp BDDn2 BDDn6

maxclosed ineq 10 100 10 0.04 0.23 0.23 0.46
maxclosed ineq 10 100 100 0.31 4.38 4.44 6.39
maxclosed ineq 10 200 10 0.03 0.19 0.20 0.42
maxclosed ineq 20 100 1000 7.23 391.29 389.56 456.52
maxclosed ineq 30 200 1000 9.64 1811.72 1805.27 1991.46

and had no instance that took more than 100s. In terms of number of wins,
PBSugar did the best on sh with Lingeling, and PBLib did the best on sumineq
with Glucose.

For each of the PB’16 instances, the compile time is negligible in comparison
with the solving time.

5.2 IP Benchmarks

An integer-domain variable can be Booleanized using the log-encoding, and an IP
constraint can easily be converted to a PB constraint. LetX be an integer domain
variable, and <Xn−1Xn−2 . . . X1X0> be X’s log encoding. We can replace X
by X’s log-encoded value Xn−12n−1 +Xn−22n−2 + . . .+X12 +X0. In this way,
only Boolean variables remain, and linear constraints become PB constraints.

Tables 3, 4, and 5 give the results on a set IP benchmarks taken from [15].
PBSugar and PBLib failed to compile all of the instances, probably due to the
large sizes of the instances. Adder generates the most compact code. The code
size also reflects the compile time. For example, it took Adder 10s to compile
maxclosed ineq 30 200 1000, while it took BDDn6 1991s to compile the instance.
Adder is also the fastest in terms of solving time.

Table 5. A comparison on solving time (IP benchmarks, seconds)

Benchmark Adder BDDp BDDn2 BDDn6

lgl glu lgl glu lgl glu lgl glu
maxclosed ineq 10 100 10 0.32 0.08 1.18 0.50 1.07 0.47 2.83 0.59
maxclosed ineq 10 100 100 1.26 0.28 7.08 19.81 7.66 14.56 16.80 2.28
maxclosed ineq 10 200 10 0.28 0.03 1.08 0.47 1.15 0.49 2.62 0.68
maxclosed ineq 20 100 1000 29.53 15.08 617.31 35.84 498.26 30.42 >1200 100.57
maxclosed ineq 30 200 1000 61.42 21.40 >1200 125.06 >1200 94.86 >1200 >1200
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Table 6. A comparison on cumulative scheduling benchmarks

Benchmark Adder BDDp BDDn2 BDDn6 Chuffed
solved psolved solved psolved solved psolved solved psolved solved psolved

cargo challenge(5) 3 3 2 3 2 3 2 3 0 5
carpet-cutting(5) 1 5 0 5 0 5 0 5 2 5
cyclic-rcpsp(5) 3 5 4 5 4 5 4 5 3 5
mspsp(6) 6 6 6 6 6 6 6 6 6 6
rcpsp-wet(5) 3 4 3 4 3 4 3 4 4 5
rcpsp(5) 4 5 4 5 4 5 4 5 2 5
smelt(5) 4 5 4 5 4 5 4 5 4 5
total (36) 24 33 23 33 23 33 23 33 21 36

5.3 Cumulative Scheduling Benchmarks

The cumulative constraint is one of the most important global constraints [6]. It
is well used in resource-constrained real-world scheduling problems. Given a set
of tasks, each of which has a feasible starting time, a duration, and an amount
of resources needed for its running, the cumulative constraint ensures that the
total resource consumption at any time is within a given limit. The cumulative

constraint can be decomposed into occupation and resource constraints. An oc-
cupation constraint tells if a task occupies a time point P, meaning that it starts
at or before P, and ends after P. A resource constraint, which is a PB constraint,
for a time point P ensures that the total amount of resources consumed by the
running tasks at P does not exceed the limit. In this experiment, we used task
decomposition [17], which enforces the resource constraint at the starting time
of each task.

Table 6 gives the results on a set of benchmarks used in the MiniZinc Chal-
lenge. The SAT codes were solved using Lingeling. All the benchmarks are opti-
mization problems. For each benchmark, the number in the parentheses indicates
the total number of instances. The column, solved, indicates the number of com-
pletely solved instances. An instance is considered solved if an optimal solution
was given and its optimality was proven. The column, psolved, indicates the
number of partially solved instances, i.e., instances for which a non-optimal so-
lution was displayed or an optimal solution was given but its optimality was not
proven.

Once again, the experiment showed the competitiveness of Adder, which had
24 of the 36 instances solved, and 33 psolved. The BDD encoders had the same
performance, in terms of solved (23) and psolved (33). Chuffed, which outper-
formed all the official winners in the MiniZinc Challenge, returned a partial
solution for each of the instances, but only solved 21 instances completely.

6 Related Work

Our binary adder encoder mimics how basic arithmetic operations are performed
on binary numbers by the computer. The way our adder encoder breaks large
PB constraints into primitive ones is similar to the way language compilers
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break large expressions into triplets. Constant propagation is proposed in [22] to
reduce code sizes of primitive arithmetic constraints that involve constants. This
paper introduces new techniques for encoding PB constraints. The technique that
combines terms with power-of-two coefficients is especially effective for the IP
benchmarks. The Huffman coding algorithm for breaking large PB constraints
is effective for avoiding creating auxiliary variables with large domains.

Our adder encoder differs from the adder encoding proposed in [13], which
adds bits bucket by bucket. For a PB constraint Σn

1 (ai ×Xi) γ b, the bucket
adder encoder first distributes each variable Xi into buckets based on the bi-
nary representation of ai. For example, for the term 5 ×X, it puts X into the
position-0 bucket and the position-2 bucket. It then sums up the buckets from
the lowest position to the highest one, and ensures that the total satisfies the
constraint. The bucket adder encoder performs no consistency checking, constant
propagation, or subexpression elimination. The bucket adder encoding has been
evaluated in multiple experiments [1, 13, 16]; all of them confirmed compactness
but poor performance of the encoding.

PBSugar [19] decomposes PB constraints into primitive constraints of the
form Si+1 = Si + ai×Xi, and uses order-encoded adders for them. An improve-
ment implemented in PBSugar uses a counter matrix, which facilitates both
inter-constraint and intra-constraint sharing of common primitive constraints.
This improvement is closely related to the BDD encoding proposed in [4]. It also
generalizes the counter encoding for cardinality constraints [18]. Like sorting-
network encoding [13], which uses unary adders, and BDD encoding, order en-
coding also suffers from code explosion.

There are different ways to convert a PB constraint into a BDD, and there are
also different ways to encode a BDD into SAT. The ordering that favors terms
with the largest coefficients is considered reasonable [13]. The 6-clause node
encoding is used in [13], which includes two redundant clauses for increasing
propagation strength. The path encoding is not well studied. It introduces fewer
variables but generates longer clauses than node encodings. Modern SAT solvers
all incorporate a technique called, watched literals [14], which make lengths of
clauses a less important factor. All the BDD encodings achieve GAC. For mono-
tonic constraints, GAC can be achieved by an encoding that only requires a
binary clause and a ternary clause for each BDD node [1].

7 Conclusion

In this paper we have reviewed the adder and BDD encodings for PB con-
straints. For the adder encoding, we presented several optimizations, and for the
BDD encoding, we compared three methods to encode BDDs into SAT. Our
experimental results show that the optimized adder encoder not only generates
compact code but is also generally competitive in runtime.

Past theoretical and empirical studies have unanimously confirmed the poor
performance of encoding PB constraints via adder networks. Our adder encoder
is different from the bucket-adder encoder studied in the past. Our adder encoder
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uses optimized adders, and incorporates several optimizations in compilation,
including preprocessing constraints to achieve bounds consistency, propagating
constants in constraints to infer bit values and their equivalence relationships,
using specialized encoders for small and special PB constraints, decomposing
large PB constraints using the Huffman coding algorithm in order to avoid cre-
ating large-domain variables, and eliminating common subexpressions to avoid
duplicating primitive constraints. Our adder encoder is arguably more difficult
to implement than the bucket-adder encoder. However, the payoff is great.

Future work includes investigating more optimizations for the adder encoder,
and tailoring SAT solvers to the adder encoder.
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