
Evidential and Continuous Integration of
Software Verification Tools

Tewodros A. Beyene and Harald Ruess

fortiss — An-Institut Technische Universität München, Germany

1 Introduction

The complexity of embedded software and increasing demands on dependability,
safety, and security has outpaced the capabilities of current verification and certi-
fication methods. In particular traditional verification and certification methods
based on manual reviews, process constraints, and testing, which are mandated
by current safety standards such as DO-178C [1] and DO-278A [2] for airborne
systems and air traffic management systems, ISO 26262 [11] in the automative
domain, and IEC 61508 for industrial domains including factory automation and
robotics are proving to be overly time- and resource-intensive. For example, costs
for developing certification evidence in safety cases according to the DO-178C
standard have been shown to range between $50 to $100 per executable line of
code, depending on the required safety level [15]. Unless mission-critical embed-
ded software can be developed and verified with less cost and effort, while still
satisfying the highest dependability requirements, new mission-critical capabili-
ties such as autonomous control may never reach the market.

In this short paper, we present an overview of our approach for automating
the process of creating certification evidence for mission-critical software. This
framework supports the integrated verification of a wide range of complementary
approaches to software verification, including automated tools and methods such
as model checking and static analysis [3, 7], and manual and consensus-driven
approaches such as code review processes [8]. A workflow pattern for a given
verification activity (e.g., analysis, review or test) specifies which methods to be
used and how the methods are integrated in the given verification activity [10].
Our framework takes a single workflow pattern as an input to perform such an
integrated verification task.

The framework is said to be evidential as verification evidence, which form
the basis for certification processes, are automatically generated from pre-defined
workflow patterns. This is done by chaining evidence from combination of the
formal software analysis methods [5] as given in the workflow patterns [12]. The
framework also supports continuous verification by executing verification and by
generating corresponding evidence during each iteration of an agile development
process. For this, the framework is technically based on the widely used Jenkins
CI [6]. Therefore, our framework supports integrated verification, where verifica-
tion evidence are automatically generated and updated continuously as software
development progresses.

Our tool integration framework is inspired and also closely related to SRI’s
evidential toolbus (ETB) [4, 14, 16], which is a distributed workflow-based tool
integration framework for constructing claims supported by evidence. A main
difference is our choice of basing our integration framework on an widely used
continuous integration framework. This design choice allows us to seamlessly
integrate our verification framework into a large number of industrial software
development infrastructures. Our prototype implementation uses Jenkins CI 1

as it provides the following crticial services for our integration framework: dis-
tributed computing capabilities, notion of analysis evidence, and Interaction
mechanism with humans.

2 Verification Activities, Workflows and Patterns

The creation of assurance cases as the basis for certification is labour-intensive
and largely manual. This process usually starts by developing a verification plan
for determining adequate verification methods and tools together with accep-
tance criteria for successful verification runs. These verification plans are exe-
cuted and verification results are, more or less manually, compiled into an as-
surance case as the basis for certification.

More generally, verification planning may be viewed as defining workflows for
the selected verification activities such as analysis, review and test. A verification
workflow is a sequence of steps applying verification methods and tools with
the aim of ensuring that a system under verification satisfies its specification.
Verification workflows, together with their verification methods and tools, are
identified and defined during the verification planning phase of a project [10].

Fig. 1: A code review workflow Fig. 2: A code review workflow pattern

An example code review workflow, which is inspired and extends Holzmann’s [8,
10] portfolio approach, is provided in Fig 1. This code review workflow takes a
program source code P as input and produces a review report R with potential

1 https://jenkins.io

2

defects. The workflow applies static analysis using Infer 2 and cppCheck 3 (Lines
1 & 2), and merges analysis results (Line 3). The merged result is further refined
(e.g., false positives from static analysis are detected and therefore excluded from
the review report) by calling the function Refine, which employs the CBMC [13]
model checker (Line 4).

These kinds of workflows are usually instantiations of given verification work-
flow patterns. An example workflow pattern for a code review verification process
is specified in Fig 2. Like the workflow in Fig 1, the workflow pattern takes a pro-
gram source code P as an input, and produces a review report R as an output.
However, the specification of specific verification tools are not required in the
definition of the workflow pattern. Instead, it is parameterised by a set of static
analysis tools T and a model cheker M . The workflow pattern applies each static
analysis tool over the source code (Lines 2-5), and collects the analysis results
(Line 4). It also refines the collected report further by tagging, for example, false
positives (Line 6).

The advantage of using verification workflow patterns is twofold: (1) choice of
specific verification tools implementing verification methods in the workflow pat-
tern can be made during the actual verification execution phase of the project,
and (2) a given workflow pattern can be flexibly instantiated with different veri-
fication tools resulting in completely different verification workflows. In this way,
our tool integration framework provides a flexible way of instantiating verifica-
tion workflow patterns according to the heterogeneous needs and requirements
of different industrial software development environments and supporting tool
infrastructures. For example, the code review workflow pattern in Fig 2 can be
instantiated in a number of different ways by assigning different values for the
parameters T and M . Consider, for example, the following three possible instan-
tiations: {(T = {infer, cppCheck}, M = CBMC), (T = {infer, coverity4}, M =
CBMC), and (T = {infer, coverity}, M = SPIN [9])}. The first instantiation is
actually equivalent to the workflow in Fig 1.

As verification methods form an integral part of verification workflow pat-
terns, each verification method must be defined in terms of inputs and outputs.
For example, the verification method Static Analysis, which is used in the ver-
ification workflow pattern of Fig 2, can be defined as taking a program source
code as an input and producing a set of errors as an output. Any verification
tool implementing a given verification method must agree on inputs and outputs
with the verification method.

3 Structure of the Integration Framework

Our tool integration framework, as shown in Figure 3, is built on top of a CI
framework. It contains three additional components, namely Patterns Database,

2 http://fbinfer.com
3 http://cppcheck.sourceforge.net
4 https://www.synopsys.com/software-integrity/security-testing/static-analysis-

sast.html

3

Tools Server and Integration Engine, for instrumenting and configuring the
framework with the specific verification needs and available resources of a given
software development project. One instrumentation deals with adding each verifi-

Fig. 3: The Integration Framework

cation tool, which implements certain verification method, to the Tools Server com-
ponent. Another instrumentation deals with adding workflow patterns, which are
created for the planned verification activities of the project, to the Patterns Database
component. These instrumentations make the framework ready for integrated
verification.

Users can perform an integrated verification by executing the framework with
the appropriate workflow pattern and tools to instantiate the verification meth-
ods specified in the given workflow pattern. The Integration Engine is responsible
for instantiating verification methods with the proper verification tools (as pro-
vided by the user), collecting outputs of each tool, and composing these outputs
into high-level verification evidence.

4 Illustration

Let us run our framework with the verification workflow pattern in Fig 2, pa-
rameter instantiations T = {infer, coverity} and M = SPIN, and with the input
program listed in Fig 4. The generated review report is listed in Fig 5. Let us
consider two of the error entries in the report:

Error E1 is initially reported during static analysis by Infer and Coverity
as a possible dereference of null pointer on line 50 of the source file. Then, the
refinement procedure of our framework (implemented as function Refine, and
whose refinement logic depends on the type of error) tries to refute the error
claim by adding the assertion ‘max 6= NULL’ on line 50 and running SPIN.
Since SPIN proves the assertion does not hold and provides a counter-example,
the process concludes that the error is a real violation. The counter-example

4

Fig. 4: An example source code fragment Fig. 5: Report generated by our framework

from SPIN further supports the initial error claim. These kinds of additional
evidence are added to the error report as the basis for further investigation, for
example, in a code review meeting.

Error E2 is initially reported during static analysis as a possible resource leak
error on line 20. The refinement procedure now encodes the eventual release of
the file resource in LTL and applies SPIN. The model checking by SPIN actually
succeeds as the resource is later released in the main function, i.e., , the potential
error does not actually materialize. Therefore, this error is marked as false alarm
in the final review report. The set of applied tools as well as verification outputs
will be kept as verification evidence for every verification decision made by the
framework.

We have applied our framework with the code review workflow pattern on
the Toyota static analysis benchmarks.5 Although the refinement procedure of
our framework is not defined for all type of possible defects addressed in this
benchmark, the framework at least is able to refine many false positives for the
type of errors it can handle (such as null dereference and division by zero errors).
We have also used the framework in a project within the Airbus Group as a front
end for a tool-based code review solution for Ada programs. In this project, the
framework is able to integrate Ada code analysis tools, such as GNATProve and
AdaCtl, with an in-house developed Ada model checker.

5 Conclusion

We have presented a tool integration framework for supporting the automated
and continous verification of mission-critical software. First, the framework sup-
ports integrated verification as it applies a workflow-based combination of com-
plementary software analysis methods. Second, the framework is evidential as
verification evidence, which form the basis for certification, are automatically
generated from pre-defined verification workflow patterns by chaining results
from the integrated software analysis tools. Third, the framework is continuous
as it is aimed at executing verification and generating corresponding evidence
during each iteration of an agile development process.

We are in the process of launching and applying this tool integration frame-
work in a number of industrial verification efforts for safety- and security-related

5 https://github.com/regehr/itc-benchmarks/

5

software in the automotive and the aerospace domain. The ultimate goal here
is to automatically generate assurance cases according to sector-specific safety
standards such as ISO 26262, DO178C, or ECSS. In the future, we also plan to
use this integrated verification framework for the on-line generation of certifi-
cation evidence during operation, for example, for adaptive and learning-based
control systems.

Benefits of using our tool integration framework include: (1) flexible and
seamless integration into agile industrial software development processes, (2) in-
tegration of a number of complementary automated software verification tools
with more process-oriented methods such as code review as mandated in indus-
trial safety standards, (3) formal and automated process from verification plan-
ning down to producing corresponding verification evidence during development
and in accordance with industrial safety standards; (4) considerable reduction of
certification effort by means of automated generation of verification evidence; (5)
instantaneous and up-to-date verification evidence and corresponding assurance
cases as the basis for guiding agile development processes.

References

1. RTCA DO-178C Software Considerations in Airborne Systems and Equipment
Certification. RTCA Standard, December 2011.

2. RTCA DO-278A Software Integrity Assurance Considerations for Communication,
Navigation and Air Traffic Management (CNS/ATM) Systems, December 2011.

3. E. Ábrahám and K. Havelund. Some recent advances in automated analysis. Int.
J. Softw. Tools Technol. Transf., 18(2):121–128, Apr. 2016.

4. S. Cruanes, G. Hamon, S. Owre, and N. Shankar. Tool integration with the evi-
dential tool bus. In VMCAI, 2013.

5. E. Denney and G. Pai. Evidence arguments for using formal methods in software
certification. In Software Reliability Engineering Workshops (ISSREW), Nov 2013.

6. P. Duvall, S. M. Matyas, and A. Glover. Continuous Integration: Improving Soft-
ware Quality and Reducing Risk. Addison-Wesley Professional, 2007.

7. A. Groce, K. Havelund, G. Holzmann, R. Joshi, and R.-G. Xu. Establishing flight
software reliability: Testing, model checking, constraint-solving, monitoring and
learning. Annals of Mathematics and Artificial Intelligence, Apr. 2014.

8. K. Havelund and G. J. Holzmann. Software certification: Coding, code, and coders.
In EMSOFT, 2011, New York, NY, USA, 2011. ACM.

9. G. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, 1st edition, 2011.

10. G. J. Holzmann. SCRUB: A Tool for Code Reviews. Dec. 2010.
11. ISO. Road vehicles – Functional safety, 2011.
12. T. P. Kelly and J. A. McDermid. Safety case construction and reuse using patterns.

In Software Reliability Engineering Workshops (ISSREW), 1997.
13. D. Kroening and M. Tautschnig. CBMC – C Bounded Model Checker. In Tools

and Algorithms for the Construction and Analysis of Systems, Berlin, Heidelberg,
2014.

14. L. D. Moura, S. Owre, H. Ruess, J. Rushby, and N. Shankar. Integrating verification
components. In In Verified Software: Theories, Tools, Experiments, 2005.

15. RTI, Real-Time Innovations. DDS for Safety-Critical Applications, 2014.
16. J. Rushby. An evidential tool bus. In In Proceedings of ICFEM, 2005.

6

