
Z3 and SMT in Industrial R&D

Nikolaj Bjørner

Microsoft Research
nbjorner@microsoft.com

Abstract. Theorem proving has a proud history of elite academic pur-
suit and select industrial use. Impact, when predicated on acquiring the
internals of a formalism or proof environment, is gated on skilled and
idealistic users. In the case of automatic theorem provers known as Sat-
isfiability Modulo Theories, SMT, solvers, the barrier of entry is shifted
to tool builders and their domains. SMT solvers typically provide conve-
nient support for domains that are prolific in software engineering and
have in the past decade found widespread use cases in both academia
and industry. We describe some of the background developing the Z3
solver, the factors that have played an important role in shaping its use,
and an outlook on further development and use.

1 Introduction

SMT has been pursued for decades by logicians and in industrial laboratories.
Decision procedures for selected logical theories have been studied by Presburger,
who gave a decision procedure for quantified formulas over linear integer arith-
metic, postulated by Hilbert in his famous 10th (unsolvable) problem on Dio-
phantine equations to give two examples. They have been integrated with the-
orem provers NQTHM, Standford Pascal Verifier, EHDM starting in the 1970’s
and promoted in the context of PVS and Simplify in the 1990s. A set of impor-
tant confluences materialized in the past 10-20 years for SMT: our understanding
of efficient SAT solving advanced with conflict directed clause learning [5] and
efficient data-structures [4], “killer” applications, such as dynamic symbolic ex-
ecution [3], emerged; and a community around SMT benchmarks and formats
formed thanks to initiatives by persistent stake-holders [1].

In the following we describe a set of driving scenarios that have shaped our
development and use of Z31, the importance of the SMT community efforts to
drive usage, the role of engineering APIs and open sourcing, and conclude by
describing some current efforts on applying Z3 in industrial contexts.

2 Driving Scenarios and Research Synergy

Z3 had the fortune to be nurtured in an environment populated with researchers
with synergistic pursuits. These initial driving scenarios and synergies with close

1 https://github.com/Z3Prover/z3



collaborators are significant enablers. Fortunately, the case for SMT and Z3 has
broadened over time. In 2005 Dynamic Symbolic Execution introduced a sweet
spot between fuzzing and model checking by applying symbolic solving to path
conditions and coped with partial modeling of system calls or other unmodeled
instructions using concrete run-time values. It facilitates an established part
of software engineering, unit tests, exemplified by Pex, and enhances security
fuzzing, exemplified by SAGE. Program verification and contract checking were
established since the 90’s using the Simplify SMT solver. Simplify had hit a
performance barrier in its techniques for quantifier instantiation and our first
advance with Z3 was to introduce efficient data-structures that would perform
simultaneous E-matching on sets of terms and quantifiers [2]. Microsoft Research
was also an incubator to the SLAM symbolic model checker, which had instigated
the previous generations of SMT solvers at Microsoft: Zapatho solved integer dif-
ference logic and uninterpreted functions, Zap2 (dropping “atho”) extended the
scope to full linear arithmetic, uninterpreted functions, arrays and quantifiers,
and Leonardo de Moura and I created a v. 3 from scratch, Z3, dropping “ap”.

Further developments in Z3 and SMT solvers generally continue to be based
on inspiration from driving scenarios, by improving their existing uses of con-
straint solving and enabling new uses through a combination of improved solvers
and more expressive functionality. In the context of Z3, Christoph Wintersteiger
added solvers for machine arithmetic with IEEE floating point theories. We
added additional theories, such as for sequences and strings, plugins for adding
custom theories, powerful quantifier instantiation engines that act as decision
procedures for several quantified decidable theories, specialized solvers for a class
of formulas characterized as constrained Horn clauses that serve as a logical layer
for symbolic model checking of procedural languages, scalable linear program-
ming by Lev Nachmanson, and optimization features for the case users need to
retrieve models that optimize objectives. I like to characterize a common thread
in these developments as one throws a new “toy” in the basket and typically
smart minds put it to creative and useful uses. As a logical toolbox Z3 enjoys
a cross-cut of application areas that go beyond initial uses. Conversely, users
constantly put a growing feature set into increased stress-test, which helps raise
the quality bar and inspire areas for further innovation.

Z3 had the benefit of an organization that invests in research tooling. While
this is not similar to how products are managed, which include service level
agreements and support, it allows for a longer term view compared to academic
environments where students expire after a few years, or industrial environments
that are driven by short term deliverables and therefore require leveraging ex-
isting tools.

3 SMT-LIB - a Research Community

The value of the academic initiative in the SMT community cannot be under-
estimated. It has produced a standard, SMT-LIB [1], which serves as a well
designed and documented basis for community efforts. It has produced a large



set of shared benchmarks from industrial and experimental use cases. The barrier
of entry of using SMT tools has been reduced, perhaps at expense of the entry
point for producing new solvers that can supersede previous solvers. A clear
indication of success for the SMT-LIB efforts is that tools that use SMT solvers
can cherry-pick solvers in a portfolio, as done in software model checking tools.

4 Tooling and Infrastructure

A fruit from the interaction with Jakob Lichtenberg from the SLAM/SDV model
checker team, was an initial API for Z3, exposed as bindings from C, and on
top of that with wrappers for OCaml and .NET. It enabled an initial direct
integration, even though maintaining a text pipeline (Z3 originally supported a
text-based front-end for the Simplify format) is easier to maintain and debug.
A very significant development was the addition of Python based bindings. This
enabled easy prototyping through high-level, intuitive, scripting. Together with
the well-designed SMT-LIB2 text format, these accessible interfaces are possibly
the most important enablers for SMT technologies. In comparison, SAT solvers
use lower level formats where formulas are already converted to CNF, and vari-
able names are replaced by numerals. Writing a parser for a SAT solver is trivial,
but the barrier of entry of using a SAT solver then includes converting formulas
to CNF, and tracking variable names as a separate process.

4.1 Development

A common question is: “who are you managing to develop Z3?”. Perhaps this
was inspired from institutions where professors are project managers, but not
developers. While Z3 is over 300KLOC most was written by relatively few con-
tributors, and development is synergistic with evaluating experimental research
questions: e.g., develop more efficient decision procedures. Check-ins into GitHub
are monitored by two services, Travis and VS-build, that compile to several tar-
get platforms and run unit tests. We use a couple of thousand Azure compute
nodes to run full SMT-LIB regressions on check-ins. A custom distributed test
infrastructure performs file-sweeping and presents SMT friendly output.

4.2 Open Sourcing

Z3 was open sourced in two stages. In the fist stage, the code was shared and open
for academics to use and modify for any research purpose. In the second stage, Z3
was open sourced under an MIT license and moved to GitHub which opened up
for significant traction, especially contributions around improved interfacing and
later on solving internals. It eradicated several barriers for commercial uses, such
as the one a researcher faced when he wanted to acquire Z3 for his company and
went through a futile email thread of 7 different parties and 20+ emails because
Z3 was only available from the Microsoft online store and not through re-sellers.
The open license terms in place today mean that Z3 is integrated in commercial



products without royalties. Open sourcing applies to a dominant number of other
tools from Microsoft Research today and overall fits well into a modern era where
code development is eased by online tools; and an environment where research
code is shared as part of advancing science, advancing usage, and resulting in
feedback and improvements.

5 Push, Pull and Confluences

Industrial uses of symbolic solving is a combination of push, pull, and conflu-
ences. Program verification has been mainly pushed as a scientific, academic pur-
suit of ideal software development, but thanks to an active community and tools
it is taking inroads with systems such as the Verifying C Compiler, VCC, the
Microsoft Research Everest project for verifying secure socket layer implemen-
tations. Z3 is part of crypto blockchain verification utilities, including Etherum.
The LLVM toolsets, and a development version of the Visual Studio compiler,
use Z3 for checking correctness of compiler transformations, and it is used for
super-optimization of code snippets. Network Verification is an active area in the
management of wide-area and corporate networks; with growth and complexity
outpacing traditional lower level network management tools, Z3 and symbolic
solving have become useful ingredients for managing networking based on in-
tents with deployments in Azure, Amazon, startup code bases and in advanced
academic prototypes. Broadly speaking, symbolic solving is being embraced as
part of systems developments and deployments, perhaps resembling deployments
of operations research optimization tools. New confluences are emerging with
the software industry’s quest for data-driven and learning-based experiences:
operations research and SMT solvers add capabilities to integrate solving and
optimization capabilities.

References

1. Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo The-
ories Library (SMT-LIB). www.SMT-LIB.org, 2016.

2. Leonardo Mendonça de Moura and Nikolaj Bjørner. Efficient e-matching for SMT
solvers. In Automated Deduction - CADE-21, 21st International Conference on
Automated Deduction, Bremen, Germany, July 17-20, 2007, Proceedings, pages 183–
198, 2007.

3. Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated
random testing. In Proceedings of the ACM SIGPLAN 2005 Conference on Pro-
gramming Language Design and Implementation, Chicago, IL, USA, June 12-15,
2005, pages 213–223, 2005.

4. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design
Automation Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, pages
530–535, 2001.

5. João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999.


