
Interlocking Design Automation using Prover Trident

Arne Borälv1

1 Prover Technology, Krukmakargatan 21, SE-118 51, Stockholm, Sweden
arne.boralv@prover.com

Abstract. This article presents the industrial-strength Prover Trident approach to

develop and check safety-critical interlocking software for railway signaling sys-

tems. Prover Trident is developed by Prover Technology to meet industry needs

for reduced cost and time-to-market, by capitalizing on the inherent repetitive

nature of interlocking systems, in the sense that specific systems can be created

and verified efficiently as specific instances of generic principles. This enables a

high degree of automation in an industrial-strength toolkit for creation of design

and code, with seamless integration of push-button tools for simulation and for-

mal verification. Safety assessment relies on formal verification, performed on

the design, the revenue service software code as well as the binary code, using an

independent toolset for formal verification developed to meet the applicable cer-

tification requirements. Basic ideas of this approach have been around for some

time [1,2], while methodology and tools have matured over many industrial ap-

plication projects. The presentation highlights the main ingredients in this suc-

cessful application of formal methods, as well as challenges in establishing this

approach for production use in a conservative industry domain.

Keywords: Formal verification, Sign-off, Interlocking, Prover Trident.

1 Background

In railway signaling, interlocking systems control the signals, switches and other way-

side objects to ensure railway operations are always safe. Interlocking systems used to

be based on electro-mechanical relays, with most new systems being computerized.

The interlocking principles vary considerably, in different countries and for different

railway infrastructure managers, with high life-cycle cost (one of the costliest railway

signaling components). The plethora of different signaling principles contributes to that

development and checking is time-consuming and costly. The adoption of new tech-

nology such as automation tools is slow, due to the conservative nature of the industry,

and the stringent safety integrity levels that pose a challenge of trust in automation

tools. There is also resistance in terms of minds to change and win over.

This article presents Prover Trident, an industrial-strength approach based on formal

methods to develop and check safety-critical interlocking software for railway signal-

ing systems that is used in production.

2

2 The Prover Trident Process

The Prover Trident process automates development and checking of interlocking soft-

ware, leading to reduced effort and cost, and predictable schedules. This section out-

lines the main steps in configuring and using Prover Trident. Compared to “traditional”

processes, more effort is spent on requirement specification, and a greater level of re-

quirements precision is required. This extra effort is worthwhile, due to savings

achieved from automated development of many systems, and the reduced long-term

maintenance costs. Prover Trident is based on the following three main components:

• PiSPEC IP: A formal specification library of generic interlocking system require-

ments defined in PiSPEC, an object-oriented language supporting many-sorted

first order logic and Boolean equations.

• Prover iLock: An Integrated Development Environment (IDE) that generates the

design, test cases and safety requirements based on the PiSPEC IP and a system

configuration, with push-button tools to automate simulation, formal verification

and code generation.

• Prover Certifier: An independent sign-off verification tool that formally verifies

that the revenue service code satisfies all safety requirements, using a process and

tool chain designed to meet safety certification standards thanks to the use of di-

versified translation of input models, and proof logging and checking.

2.1 PiSPEC IP

The generic principles for a family of interlocking systems are determined by analyzing

applicable standards, requirement specifications, interfaces, rules and regulations. To

ensure good quality of results, with predictable development and maintenance, the prin-

ciples are defined based on an object model (see Fig. 1). The object model defines the

underlying ideas and objects, including both physical objects (e.g. signals, switches)

and virtual objects (e.g. routes, protection areas), along with their properties and rela-

tions. The object model provides a common interface to ensure coherence and con-

sistency in defining all interlocking software requirements, with clear separation of de-

sign, test and safety requirements. Configuration of individual interlocking systems

populates the object model.

 The object model and the generic design, test and safety requirements are defined in

PiSPEC, using many-sorted first order logic. This enables to express requirements that

are generic, using quantifiers over different sorts, corresponding to different types of

objects in the object model. For example, to express a generic safety requirement that

a signal must display the stop aspect if it does not have control line safety can be ex-

pressed as follows, where cl_safety() and stop() are predicates defined for signals:

 ALL si:SIGNAL (not cl_safety(si) -> stop(si)) (1)

A non-trivial task is to verify completeness of the safety requirements. This task is

usually managed based on manual review by domain experts, and/or diversification.

3

Fig. 1. Structure of generic principles (PiSPEC IP)

2.2 Prover iLock

Prover iLock is an Integrated Development Environment (IDE) for development of in-

terlocking software. An individual system is created based on a high-level configura-

tion of its track and signal arrangement that is created graphically (and other tabular

data that can be imported). Prover iLock generates the design, test cases and safety

requirements based on the PiSPEC IP and the system’s configuration. Push-button tools

can then be applied directly, for formal verification of design safety (Verifier), auto-

mated simulation of the design with its environment models using time-compression

optimization techniques (Simulator), and generation of software code for revenue ser-

vice (Coder).

Prover iLock supports animation in the graphical railyard configuration, providing

visualization of state from interactive simulation or from counterexamples to safety

requirements. This is useful for education purposes and during development of the Pi-

SPEC IP. (In production use, simulation and verification are run in batch mode, nor-

mally not failing).

2.3 Prover Certifier

Using Prover Trident, safety verification of the revenue service code (target code) gen-

erated from Prover iLock is done using an independent sign-off verification tool. This

step proves that the target code satisfies the same safety requirements that were verified

against the design. This step also proves the equivalence of the design and the target

code, or alternatively the equivalence of the target code and the resulting binary code.

A sign-off verification tool is based on Prover Certifier, which has been designed

and developed as a reusable component that meets strict certification requirements.

Prover Certifier uses techniques to reduce risks that errors go undetected, including

diversified processing of input data using multiple implementation languages and using

proof logging and proof checking. A sign-off verification tool extends Prover Certifier

with diversified translators for the target code and the binary code.

4

The configuration data that needs manual review per interlocking system should be

kept small. A dedicated format called LCF is used for this purpose. This format pro-

vides easy-to-review, compact representation of configuration data, supported by di-

versified translation to Prover Certifier input.

3 Results and conclusions

The Prover Trident approach is the result of many years of experience from formal

verification of interlocking systems, and from development of high-integrity tools for

formal verification. This has made it possible to automate repetitive and time-consum-

ing tasks in development and checking of railway interlocking software, with manual

tasks mainly for creating the system configuration, the use of push-button tools and

running the sign-off verification. With new systems developed with much less effort,

efficiency is increased, and time-to-market and cost are reduced. It also ensures that

each system is developed and verified based on same (reusable) principles.

The Prover Trident approach is used for creating revenue service interlocking soft-

ware for application in urban metro, mainline railway, light-rail and, in its core parts,

even in freight railways. The process and tools used are essentially the same – the

differences imposed for different target platforms and railway infrastructure managers

are minor, with a variety of target platforms being supported. Generic tools can be ex-

tended by adding code generators and customizing the sign-off verification tool. This

enables the support of any interlocking system type and any target, at least in principle.

The big difference lies in input data, in the form of different PiSPEC IP. Using the

Prover Trident approach, the truly creative aspects lie in the specification work required

for defining the generic interlocking software principles.

There are no real technical obstacles for using Prover Trident for interlocking soft-

ware development. Rather, the main challenge lies in conversion from old habits and

the many hearts and minds to win over in the conservative railway signaling domain.

In addition, commercial aspects and job security are also real concerns.

References

1. Borälv, A. Case Study: Formal Verification of a Computerized Railway Interlocking. In

Formal Aspects of Computing (1998) 10: 338. https://doi.org/10.1007/s001650050021.

2. Borälv A., Stålmarck G. (1999) Formal Verification in Railways. In: Hinchey M.G., Bowen

J.P. (eds) Industrial-Strength Formal Methods in Practice. Formal Approaches to Computing

and Information Technology (FACIT). Springer, London.

3. Duggan, P. (Siemens) and Borälv, A. Mathematical Proof in an Automated Environment for

Railway Interlockings, Technical Paper in IRSE Presidential Programme, 2015. IRSE

NEWS 217.

4. Layout Configuration Format (LCF) v1.1, Format Specification. PCERT-LCF-FMT, ver-

sion 1.0, Prover Technology, 2018.

