
From Formal Requirements to Highly Assured
Software for Unmanned Aircraft Systems

César Muñoz, Anthony Narkawicz, and Aaron Dutle

NASA Langley Research Center, Hampton, Virginia 23681-2199
{cesar.a.munoz,anthony.narkawicz,aaron.m.dutle}@nasa.gov

Abstract. Operational requirements of safety-critical systems are of-
ten written in restricted specification logics. These restricted logics are
amenable to automated analysis techniques such as model-checking, but
are not rich enough to express complex requirements of unmanned sys-
tems. This short paper advocates for the use of expressive logics, such
as higher-order logic, to specify the complex operational requirements
and safety properties of unmanned systems. These rich logics are less
amenable to automation and, hence, require the use of interactive the-
orem proving techniques. However, these logics support the formal ver-
ification of complex requirements such as those involving the physical
environment. Moreover, these logics enable validation techniques that
increase confidence in the correctness of numerically intensive software.
These features result in highly-assured software that may be easier to cer-
tify. The feasibility of this approach is illustrated with examples drawn
for NASA’s unmanned aircraft systems.

1 Introduction

Recent advances in theorem proving technology have prompted the development
of environments such as ASSERT (Analysis of Semantic Specifications and Ef-
ficient generation of Requirements-based Test) [17] and SpeAR (Specification
and Analysis of Requirements) [6] that provide English-like, but semantically
rigorous, languages to capture requirements. These requirements are formally
analyzed for consistency using automated theorem proving tools. Environments
such as ASSERT and SpeAR are examples of the state-of-the-art in formal re-
quirements design. Yet, the kinds of requirements that can be analyzed using
these environments are those supported by automated verification techniques,
which are typically limited to finite state machines and decidable theories sup-
ported by SMT solvers. These formalisms are not rich enough to allow for the
specification of complex requirements of cyber-physical systems. This short pa-
per reports work by the Formal Methods (FM) Team at NASA Langley Research
Center (LaRC) on the use of higher-order logic and interactive theorem proving
for the specification, analysis, and implementation of operational and functional
requirements of unmanned aircraft systems (UAS).



2 UAS Detect and Avoid

In 2011, the UAS Sense and Avoid Science and Research Panel (SARP) was
tasked with making a recommendation to the FAA for a quantitative definition
of a concept for UAS called well clear. The origin of this concept is the see-and-
avoid principle in manned aircraft operations that states that on-board pilots
have, in part, the responsibility for not “operating an aircraft so close to an-
other aircraft as to create a collision hazard”, “to see and avoid other aircraft”,
and when complying with the particular rules addressing right-of-way, on-board
pilots “may not pass over, under, or ahead [of the right-of-way aircraft] unless
well clear” [7]. The lack of a similar principle for UAS was identified by the FAA
as one of the main obstacles in the integration of UAS in the National Airspace
System. Hence, the final report of the Federal Aviation Administration (FAA)
Sense and Avoid (SAA) Workshop [5] defined the concept of sense and avoid,
also called detect and avoid (DAA), as “the capability of a UAS to remain well
clear from and avoid collisions with other airborne traffic.”

Consiglio et al. proposed the following guiding principles for the definition of
well clear and DAA requirements: (a) The well-clear concept should be geometri-
cally represented by a time and distance volume in the airspace, (b) DAA should
interoperate with existing collision avoidance systems, (c) DAA should avoid
undue concern for traffic aircraft, and (d) DAA should enable self-separation
capabilities [1]. Based on these guidelines, a family of well-clear volumes was
formally specified in the Program Verification System (PVS) [14]. This family
is defined by a Boolean predicate, representing a volume in the airspace, that
depends on the position and velocity of the ownship and intruder aircraft at the
current time. It was formally verified that volumes in this family satisfy several
properties such as inclusion, symmetry, extensibility, local convexity, and conver-
gence [8,10]. These properties were used by the UAS SARP to discard competing
proposals for the well-clear volume. The volume ultimately recommended by the
UAS SARP [3] is based on distance and time functions used in the detection logic
of the second generation of the Traffic Alerting and Collision Avoidance System
(TCAS II) Resolution Advisory (RA) detection logic [16]. Since this volume is a
member of the family specified in PVS, it inherits the family’s formally verified
properties. For example, it has been formally verified that for a choice of thresh-
old values, the well-clear volume is larger than the TCAS II RA volume [10]
(inclusion) and that in pairwise encounter both aircraft simultaneously compute
the same well-clear status (symmetry). The use of higher-order logic enabled the
definition of this family of volumes that is not only parametric with respect to
distance and time thresholds, but also with respect to continuous functions on
positions and velocities.

The standards organization RTCA established Special Committee 228 (SC-
228) to provide technical guidance to the FAA for defining minimum operational
performance standards for a DAA concept based on the definition of well-clear
recommended by the UAS SARP. This concept consists of three functional capa-
bilities: detection logic, alerting logic, and maneuver guidance logic. The detec-
tion logic specifies a time interval where a well-clear violation occurs, within a

2



lookhead time interval, assuming non-accelerating aircraft trajectories. A para-
metric algorithm that computes this time interval, for an arbitrary choice of
the threshold values used in the definition of the well-clear volume, has been
formally verified in PVS [9]. This parametric algorithm is key to the definition
of the alerting logic, which is specified by a series of thresholds that yield vol-
umes of decreasing size. Depending on the time to violation of these volumes,
the alerting logic returns a numerical value representing the severity of a pre-
dicted conflict. The smaller the volume and the shorter the time to violation, the
greater the severity. It has been formally verified that the alerting logic satisfies
the following operational properties (assuming non-accelerating aircraft trajec-
tories) [8,10]: (extensibility) alerts progress according to the severity level; (local
convexity) once an alert is issued, it is continuously issued until threat disap-
pears; and (convergence) once an alert is issued, it does not disappear before
time of closest point of approach. Finally, the manuever guidance logic specifies
ranges of one-dimensional maneuvers, i.e., change of horizontal direction, change
of horizontal speed, change of vertical speed, or change of altitude, that lead to
a well-clear violation within a lookahead time interval. In the case of a well-clear
violation, the maneuver guidance logic specifies ranges of maneuvers that recover
well-clear status. Assuming a kinematic model of the ownship trajectories, an al-
gorithm that computes maneuver guidance for each dimension has been formally
proved to be correct within a user specified granularity. This algorithm is para-
metric with respect to a detection algorithm for an arbitrary definition of the
well-clear volume. These algorithms are collectively called DAIDALUS (Detect
and Avoid Alerting Logic for Unmanned Systems) [11] and they are included in
RTCA DO-365 [15].

3 From DAIDALUS to ICAROUS

Software implementations of DAIDALUS are available in Java and C++ and
they are distributed under NASA’s Open Source Agreement.1 The PVS spec-
ifications and proofs are also available as part of the distribution. Except for
language idiosyncrasies both implementations are identical and they closely fol-
low the PVS algorithms. A formal verification of the software implementations
is a major endeavor that has not been attempted. In particular, DAIDALUS
algorithms are formally verified in PVS assuming real-number arithmetic, while
the software implementations of DAIDALUS use floating-point arithmetic. How-
ever, the software implementations of DAIDALUS have been validated against
the PVS algorithms using model animation [4] on a set of stressing cases. This
validation improves the assurance that the hand translation from formal models
to code is faithful and that floating point errors do not greatly affect correctness
and safety properties that are formally verified in PVS.

The approach used in the development of DAIDALUS, from formal require-
ments to highly assured software, is called MINERVA [13] (Mirrored Imple-
mentation Numerically Evaluated against Rigorously Verified Algorithms). The

1 https://github.com/nasa/wellclear.

3



MINERVA approach has been used in the development of other UAS applica-
tions. PolyCARP, a collection of algorithms for weather avoidance and geofenc-
ing has been formally developed in PVS [12]. Implementations of PolyCARP
in Java, C++, and Python have been validated using model validation. This
development, including software, specifications, and proofs, is available under
NASA’s Open Source Agreement.2 DAIDALUS and PolyCARP are two of the
algorithms included in ICAROUS (Independent Configurable Architecture for
Reliable Operations of Unmanned Systems) [2]. ICAROUS is an open software
architecture composed of mission specific software modules and highly assured
core algorithms for building autonomous unmanned aircraft applications.3

4 Conclusion

The examples presented in this paper show that the use of expressive formalisms,
such as PVS, for writing requirements and formally analyzing them is not only
feasible but effective in the development of safety-critical systems. Higher-order
logic enables, for example, the specification and formal analysis of generic models
that can be instantiated and reused in multiple ways. DAIDALUS algorithms,
for example, can be instantiated with different set of thresholds, different notions
of well-clear, and different aircraft performance characteristics. The default con-
figuration of DAIDALUS defined in DO-365 is appropriate for large fixed wing
UAS. In ICAROUS, however, DAIDALUS is instantiated with the performance
of a small rotorcraft and a smaller set of thresholds that define a cylindrical
well-clear volume. The formal models are correct for both of any instantiation
due to the parametric nature of the models.

However, rich formalisms such as higher-order logic are not the silver bullet.
These expressive logics are typically undecidable and, in the case of PVS, even
type-checking is undecidable. Interactive theorem proving is a human intensive
activity and the tools are still difficult to use by system developpers. Applications
such as DAIDALUS, PolyCARP, and ICAROUS are possible because of years of
fundamental developments in interactive theorem proving technology including
formal libraries and proof strategies. The call in this paper is for the integration
of this infrastructure, which is also available in other proofs assistants, in modern
requirement engineering tools like ASSERT and SPEAR.

References

1. Maŕıa Consiglio, James Chamberlain, César Muñoz, and Keith Hoffler. Concept of
integration for UAS operations in the NAS. In Proceedings of 28th International
Congress of the Aeronautical Sciences, ICAS 2012, Brisbane, Australia, 2012.

2. Maŕıa Consiglio, César Muñoz, George Hagen, Anthony Narkawicz, and Swee Bal-
achandran. ICAROUS: Integrated Configurable Algorithms for Reliable Opera-
tions of Unmanned Systems. In Proceedings of the 35th Digital Avionics Systems
Conference (DASC 2016), Sacramento, California, US, September 2016.

2 https://github.com/nasa/PolyCARP.
3 https://github.com/nasa/ICAROUS.

4



3. Stephen P. Cook, Dallas Brooks, Rodney Cole, Davis Hackenberg, and Vincent
Raska. Defining well clear for unmanned aircraft systems. In Proceedings of the
2015 AIAA Infotech @ Aerospace Conference, number AIAA-2015-0481, Kissim-
mee, Florida, January 2015.

4. Aaron Dutle, César Muñoz, Anthony Narkawicz, and Ricky Butler. Software vali-
dation via model animation. In Jasmin Blanchette and Nikolai Kosmatov, editors,
Proceedings of the 9th International Conference on Tests & Proofs (TAP 2015),
volume 9154 of Lecture Notes in Computer Science, pages 92–108, L’Aquila, Italy,
July 2015. Springer.

5. FAA Sponsored Sense and Avoid Workshop. Sense and avoid (SAA) for Unmanned
Aircraft Systems (UAS), October 2009.

6. Aaron W. Fifarek, Lucas G. Wagner, Jonathan A. Hoffman, Benjamin D. Rodes,
M. Anthony Aiello, and Jennifer A. Davis. SpeAR v2.0: Formalized past LTL
specification and analysis of requirements. In Clark Barrett, Misty Davies, and
Temesghen Kahsai, editors, NASA Formal Methods, pages 420–426, Cham, 2017.
Springer International Publishing.

7. International Civil Aviation Organization (ICAO). Annex 2 to the Convention on
International Civil Aviation, July 2005.

8. César Muñoz and Anthony Narkawicz. Formal analysis of extended well-clear
boundaries for unmanned aircraft. In Sanjai Rayadurgam and Oksana Tkachuk,
editors, Proceedings of the 8th NASA Formal Methods Symposium (NFM 2016),
volume 9690 of Lecture Notes in Computer Science, pages 221–226, Minneapolis,
MN, June 2016. Springer.

9. César Muñoz, Anthony Narkawicz, and James Chamberlain. A TCAS-II resolution
advisory detection algorithm. In Proceedings of the AIAA Guidance Navigation,
and Control Conference and Exhibit 2013, number AIAA-2013-4622, Boston, Mas-
sachusetts, August 2013.

10. César Muñoz, Anthony Narkawicz, James Chamberlain, Maŕıa Consiglio, and Ja-
son Upchurch. A family of well-clear boundary models for the integration of UAS
in the NAS. In Proceedings of the 14th AIAA Aviation Technology, Integration,
and Operations (ATIO) Conference, number AIAA-2014-2412, Georgia, Atlanta,
USA, June 2014.

11. César Muñoz, Anthony Narkawicz, George Hagen, Jason Upchurch, Aaron Dutle,
and Maŕıa Consiglio. DAIDALUS: Detect and Avoid Alerting Logic for Unmanned
Systems. In Proceedings of the 34th Digital Avionics Systems Conference (DASC
2015), Prague, Czech Republic, September 2015.

12. Anthony Narkawicz and George Hagen. Algorithms for collision detection between
a point and a moving polygon, with applications to aircraft weather avoidance. In
16th AIAA Aviation Technology, Integration, and Operations Conference, AIAA
AVIATION Forum, number AIAA-2016-3598, Washington, DC, USA, June 2016.

13. Anthony Narkawicz, César Muñoz, and Aaron Dutle. The MINERVA software de-
velopment process. In Proceedings of the Workshop on Automated Formal Methods
2017 (AFM 2017), Meno Park, California, USA, 2017.

14. Sam Owre, John Rushby, and Natarajan Shankar. PVS: A prototype verification
system. In Deepak Kapur, editor, Proceedings of the 11th International Conference
on Automated Deduction, volume 607 of Lecture Notes in Artificial Intelligence,
pages 748–752. Springer-Verlag, June 1992.

15. RTCA SC-1228. RTCA-DO-365, Minimum Operational Performance Standards
for Detect and Avoid (DAA) Systems, May 2017.

16. RTCA SC-147. RTCA-DO-185B, Minimum Operational Performance Standards
for Traffic alert and Collision Avoidance System II (TCAS II), July 2009.

5



17. Kit Siu, Abha Moitra, Michael Durling, Andy Crapo, Meng Li, Han Yu, Heber
Herencia-Zapana, Mauricio Castillo-Effen, Shiraj Sen, Craig McMillan, Daniel Rus-
sell, Sundeep Roy, and Panagiotis Manolios. Flight critical software and systems
development using ASSERT. In 2017 IEEE/AIAA 36th Digital Avionics Systems
Conference (DASC), number 978-1-5386-0365-9/17, pages 1–10, Sept 2017.

6


