
Formal Specification and Verification of
Dynamic Parametrized Architectures

Alessandro Cimatti, Ivan Stojic, and Stefano Tonetta

FBK-irst
{cimatti,stojic,tonettas}@fbk.eu

Abstract. We propose a novel approach to the formal specification and verifi-
cation of dynamic architectures that are at the core of adaptive systems such as
critical infrastructure protection. Key features include run-time reconfiguration
based on adding and removing components and connections, resulting in systems
with unbounded number of components. We provide a logic-based specification
of a Dynamic Parametrized Architecture (DPA), where parameters represent the
infinite-state space of possible configurations, and first-order formulas represent
the sets of initial configurations and reconfiguration transitions. We encode infor-
mation flow properties as reachability problems of such DPAs, define a translation
into an array-based transition system, and use a Satisfiability Modulo Theories
(SMT)-based model checker to tackle a number of case studies.

1 Introduction

In many applications, safety-critical systems are becoming more and more networked
and open. For example, many critical infrastructures such as energy distribution, air
traffic management, transport infrastructures, and industrial control nowadays employ
remote communication and control. Critical infrastructure protection is becoming of
paramount importance as witnessed for example by related European and US frame-
works [1,2] which promote actions to make critical infrastructures more resilient.

In order to be resilient, a system must be adaptive, changing its architectural config-
uration at run-time, due to new requirements, component failures or attacks. A reconfig-
uration means adding and removing components and connections, so that the resulting
system has an infinite state space where each state is an architectural configuration. In
this context, simple reachability properties such as the existence of information flow
paths become very challenging due to the interplay between communications and re-
configurations. The design, implementation, and certification of a system with such
properties are the challenges of the European project CITADEL [3].

While the literature about the formal specification of dynamic software architectures
is abundant [24,5,26,10,32,21,25,8,7,9,31,33], very few works consider their formal
verification and none of them provided a concrete evaluation showing the feasibility of
the proposed analysis.

If the number of components is bounded, formal verification can be reduced to static
verification by encoding in the state if the component is active or not with possibly an
additional component to control the (de)activation (see, for example, [9]). If, instead,



new components can be added, the encoding is less trivial. In principle, parametrized
verification, by verifying a system considering any number of replicas of components,
seems a good candidate, but we need the capability to encode in the state the activation
of an unbounded number of components.

In this paper, we propose Dynamic Parametrized Architectures (DPAs), which ex-
tend a standard architecture description of components and connections with 1) param-
eters and symbolic constraints to define a set of configurations, 2) symbolic constraints
to define the sets of initial configurations and reconfigurations. In particular, the archi-
tectural topology is represented by indexed sets of components and symbolic variables
that can enable/disable the connections, while the constraints are specified with first-
order formulas with quantifiers over the set of indices.

We propose to use Satisfiability Modulo Theories (SMT)-based model checking for
array-based transition systems [19,13], a syntactically restricted class of parametrized
transition systems with states represented as arrays indexed by an arbitrary number of
processes. We define carefully the fragment of first-order logic used in the architecture
description so that we can provide a translation into array-based transition systems.

In this paper, we focus on simple information “can-flow” properties over DPAs: we
check if information can pass from one component to another one through a sequence
of communications between connected components and reconfigurations. We automat-
ically translate the DPA and the properties into an array-based transition system and we
verify the properties with Model Checker Modulo Theories (MCMT) [19].

Summarizing, the contributions of the paper are: 1) to define a new formal specifica-
tion of dynamic architectures; 2) to translate the reachability problem of dynamic archi-
tectures into reachability problems for infinite-state array-based transition systems; 3)
to provide a prototype implementation and an experimental evaluation of the feasibility
of the approach.

The rest of the paper is structured as follows: Sec. 2 gives an account of related
work; Sec. 3 exemplifies the problem using a concrete language; Sec. 4 defines the ab-
stract syntax and semantics of DPAs; Sec. 5 describes array-based transition systems
and the translation from DPAs; Sec. 6 presents some benchmarks and experimental re-
sults; and, finally, in Sec. 7, we draw some conclusions and directions for future works.

2 Related Work

The approach closest to the one presented below is proposed in [31] as extension of the
BIP (Behavior, Interaction, Priority) framework [6]. BIP has been extended for dynamic
and parametrized connections in [7,23], and to allow spawning new components and in-
teractions in [9]. The work in [31] proposes a second-order logic to specify constraints
on the evolution of the architecture including creation/removal of components. How-
ever, no model checking procedure is provided to verify such dynamic architectures. In
this paper, we restrict the logic, for example avoiding second-order quantification, so
that the language is still suitable to describe interesting dynamics but can be translated
into array-based transition systems for model checking.

Since a system architecture can be seen as a graph of connections, graph gram-
mars [29] are a good candidate for specification of dynamic architectures. In fact, in



[26,32,21,33], the authors propose to model dynamic architectures in terms of graph
transformation systems: the initial configuration is represented by a graph (or hyper-
graph) and reconfigurations as graph production rules, which are based on subgraph
matching. In [26,32,21], there is no attempt at formal verification, while in [33] it is
limited to finite-state model checking. Moreover, compared to our language, recon-
figurations are limited to matching a finite subgraph which does not allow to express
transition guards based on negation or updates that change sets of components. These
limitations can be partly lifted considering infinite-state attributed graph grammars and
related verification techniques [22]. After a first attempt to use these techniques as back-
ends for DPAs, we concluded that in practice they do not scale very well on our bench-
marks.

π-calculus [27] is another clear candidate to represent the semantics of dynamic
architectures, since it has the ability to describe the creation of processes and their
dynamic synchronizations. As is, it does not clearly define the topology of the network,
but works such as [24,10] use it as underlying semantics for dynamic extensions of
architecture specification languages. Also in this context, no previous work provided a
concrete proposal for model checking showing the feasibility of the approach.

The analysis of how information can flow from one component to another is ad-
dressed in many contexts such as program analysis, process modeling, access control,
and flow latency analysis. The novel challenge addressed by this paper is posed by the
complexity of the adaptive systems’ architectures, for which design and verification is
an open problem. We propose a very rich system specification and we provide veri-
fication techniques for simple information flow properties formalized as reachability
problems.

In this paper, we consider information flow as reachability, which is well studied for
standard state machine models. More complex information flow properties extensively
studied in the literature on security are related to the notion of non-interference. In the
seminal work of Goguen and Meseguer [20], the simple information flow property is
extended to make sure that components at different levels of security do not interfere.
The verification of non-interference on DPAs is an open problem left for future work.

3 An Example of a Dynamic Parametrized Architecture

In this section, we describe an example of a dynamic architecture in an extended version
of the Architecture Analysis and Design Language (AADL) [16], which is an industrial
language standardized by SAE International [30]. The concrete language extension is
under definition [12] within the CITADEL project, while in this paper we focus on the
underlying formal specification and semantics of DPAs.

In AADL, the system is specified in terms of component types, defining the inter-
faces and thus the input/output ports, and component implementations, defining how
composite components are built from other components, called subcomponents, com-
posed by connecting their ports. An example of an AADL component implementation
is shown in Figure 1. The system represents a network of computers, in which one is
a database server that contains sensitive data; three are application servers that provide
services to the clients, with two of them connected to the database server; and the others



are clients. Each client is connected to one server and may be connected to other clients.
As can be seen, the number of components and that of their connections are finite and
static. The specification represents a single static architecture.

system implementation sys . impl
subcomponents

d : system databaseServer ;
s1 : system app l i ca t i onSe rve r ;
s2 : system app l i ca t i onSe rve r ;
s3 : system app l i ca t i onSe rve r ;
c1 : system C l i e n t ;
c2 : system C l i e n t ;
c3 : system C l i e n t ;
c4 : system C l i e n t ;
c5 : system C l i e n t ;

connections
con1 : port d . output −> s1 . i npu t ;
con1 : port d . output −> s2 . i npu t ;
con1 : port s1 . output −> c1 . i npu t ;
con1 : port s1 . output −> c2 . i npu t ;
con1 : port s2 . output −> c3 . i npu t ;
con1 : port s3 . output −> c4 . i npu t ;
con1 : port s3 . output −> c5 . i npu t ;
con1 : port c4 . output −> c1 . i npu t ;
con1 : port c4 . output −> c2 . i npu t ;
con1 : port c4 . output −> c3 . i npu t ;
con1 : port c4 . output −> c5 . i npu t ;
con1 : port c5 . output −> c1 . i npu t ;
con1 : port c5 . output −> c2 . i npu t ;
con1 : port c5 . output −> c3 . i npu t ;
con1 : port c5 . output −> c4 . i npu t ;

end sys . impl ;

Fig. 1: Example of a component
implementation in AADL

We now extend the example to consider an arbi-
trary number of servers and clients and to consider
changes in the configurations so that computers and
connections can be added/removed and computers
can be compromised becoming untrusted (due to a
failure or attack). We consider the system to be safe if
no information can flow from the database to the un-
trusted clients; otherwise the system is unsafe. This
dynamic version of the system is specified in Figure 2
(for the moment, ignore the highlighted parts of the
code), in an extended version of AADL. In particular,
the extension has two layers:

1. Parametrized Architecture: the subcomponents
can now be indexed sets (e.g., clients is a set in-
dexed by C) and connections are specified iter-
ating over the indices (e.g., there is a connection
from servers[s] to clients[c] for each s in S, c in
C); besides the sets of indices, the architecture
is parametrized by other parameters that can be
used in expressions that guard the connections
(e.g., there exists a connection from servers[s] to
clients[c] only if s = connectedTo[c]); notice that
also parameters may be indexed sets.

2. Dynamic Parametrized Architecture: an initial
formula defines the set of initial configurations;
a set of reconfigurations defines the possible
changes in the values of the parameters.

Analyzing the reconfigurations of the example (still ignoring the highlighted parts),
we can see that every time an untrusted client is connected to a server, the server be-
comes untrusted as well. Since the connection with the database is disabled when the
server is not trusted, one may erroneously think that no information can flow from the
database to an untrusted client. In fact, the information can flow to the server while it is
trusted, a reconfiguration may happen making the server untrusted, and the information
can then flow to an untrusted client, making the system unsafe.

The version of the example with the highlighted parts is safe because it introduces
two phases (represented by the protected parameter) and it allows connection to the
database only in the protected mode, while reconfigurations downgrading the servers
are allowed only in the unprotected mode. Proving automatically that this system is
safe is quite challenging.



system implementation sys . impl
parameters

C: set of indices ; S : set of indices ;
t r u s t e d C l i e n t s : set indexed by C of bool ; t rus tedServers : set indexed by S of bool ;
connectedTo : set indexed by C of index ; p ro tec ted : bool ;

subcomponents
d : system databaseServer ;
servers : set indexed by S of system app l i ca t i onSe rve r ;
c l i e n t s : set indexed by C of system C l i e n t ;

connections
con1 : port d . output −> servers [ s ] . i npu t i f pro tec ted and t rus tedServers [ s ] for s in S;
con2 : port servers [ s ] . ou tput −> c l i e n t s [ c ] . i npu t i f s = connectedTo [ c ] for s in S, c in C;
con3 : port c l i e n t s [ c ] . ou tput −> c l i e n t s [ r ] . i npu t i f not t r u s t e d C l i e n t s [ c ] for c in C, r in C;

i n i t i a l
not pro tec ted and
f o r a l l ( c in C, f o r a l l ( s in S, ( not t r u s t e d C l i e n t s [ c ] and s = connectedTo [ c ] ) −> ( not t rus tedServers [ s ] ) ) ) and
f o r a l l ( c in C, f o r a l l ( s not in S, s != connectedTo [ c ] ) ) ;

reconfigurations
next ( p ro tec ted ) = true ;
exists ( s not in S, next (S) = add (S , s ) and next ( t rus tedServers [ s ] ) = true ) ;
exists ( s in S, not pro tec ted and next ( t rus tedServers [ s ] ) = fa lse ) ;
exists ( s in S, exists ( c not in C, not t rus tedServers [ s ] and next (C) = add (C, c )

and next ( connectedTo [ c ] ) = s and next ( t r u s t e d C l i e n t s [ c ] ) = fa lse ) ) ;
exists ( s in S, exists ( c not in C, t rus tedServers [ s ] and next (C) = add (C, c )

and next ( connectedTo [ c ] ) = s and next ( t r u s t e d C l i e n t s [ c ] ) = true ) ) ;
exists ( s in S, exists ( c in C, not t r u s t e d C l i e n t s [ c ] and not pro tec ted

and next ( connectedTo [ c ] ) = s and next ( t rus tedServers [ s ] ) = fa lse ) ) ;
exists ( s in S, exists ( c in C, t r u s t e d C l i e n t s [ c ] and s = connectedTo [ c ] and not pro tec ted

and next ( t r u s t e d C l i e n t s [ c ] ) = fa lse and next ( t rus tedServers [ s ] ) = fa lse ) ) ;
end sys . impl ;

Fig. 2: Example of a DPA specified in an extension of AADL

4 Formal Specification of Dynamic Parametrized Architectures

4.1 Definitions

In the following, let N be a countable set of indexes (in practice, we set N = Z). An
index set is a finite subset of N . Given a set S and an index set I , S is indexed by I iff
there exists a bijective mapping from I to S. If S is indexed by I , we write S = {si}i∈I .
An index set parameter is a variable whose domain is the set of finite subsets of N .

Definition 1. An architectural configuration is a pair (C,E), where C is a set of com-
ponents and E ⊆ C × C is a set of connections between components.

We now define a more structured version of architecture, still flat but in which com-
ponents are grouped into sets. We use indexed sets of components. For example, I =
{1, 2, 3} is a set of indexes and C = {c1, c2, c3} and C ′ = {c′1, c′2, c′3} are two sets of
components indexed by I .

Definition 2. An architectural structured configuration is a pair (C, E), where:

– C is a finite set of disjoint sets of components indexed by some index sets;
– E ⊆

⋃
C∈C ×

⋃
C∈C is a set of connections between components.

If c ∈ C and C ∈ C we write simply (abusing notation) c ∈ C.

For example, consider index sets I1, I2, where I1 = {1, 2, 3}, I2 = {2}, C = {C1, C2,
C3}, C1 = {c1i}i∈I1 , C2 = {c2i}i∈I1 , C3 = {c3i}i∈I2 = {c32}, E = {〈c1i, c2i〉 | i ∈
I1}.
Definition 3. A system of parameters is a pair (I,V) where I is a finite set of symbols
for index set parameters and V is a finite set of symbols for indexed sets of parameters,
where each V ∈ V is associated with an index set parameter symbol IV ∈ I and with
a sort sortV (in practice, sortV ∈ {bool,int}).



Definition 4. An assignment to a system of parameters (I,V) is a tuple µ = (µI ,
{µV }V ∈V), where

– µI : I → {S ⊂ N : S finite};
– For V ∈ V , µV : µI(IV )→ R(sortV ) (in practice, R(bool) = B = {>,⊥} and
R(int) = Z).

The following definitions refer to formulas of the logic for systems of parameters and
the evaluation (under an assignment µ) J·Kµ of its expressions and formulas. These are
defined later in Sec. 4.2.

Definition 5. A parametrized architecture is a tuple A = (I,V,P, Ψ, Φ) where

– (I,V) is a system of parameters;
– P is a finite set of parametrized indexed sets of components; each set P ∈ P is

associated with an index set IP ∈ I;
– Ψ = {ψP (x)}P∈P is a set of formulas (component guards) over (I,V) and a free

variable x;
– Φ = {φPQ(x, y)}P,Q∈P is a set of formulas (connection guards) over (I,V) and

free variables x, y.

Given an assignment µ to the system of parameters (I,V), the instantiated (structured
architectural) configuration defined by the assignment µ is given by µ(A) := (C, E)
(we also write (Cµ, Eµ)) where

– C = {CµP : P ∈ P}. For all CµP ∈ C, for all indexes i, cPi ∈ CµP iff i ∈ µI(IP )
and JψP (i/x)Kµ = >.

– for all CµP , CµQ ∈ C, for all component instances cPi ∈ CµP , cQj ∈ CµQ,
(cPi, cQj) ∈ E iff JφPQ(i/x, j/y)Kµ = >.

Syntactic restrictions: formulas in Ψ and Φ are quantifier-free and do not contain index
set predicates =, ⊆.

Example: For I = {I1, I2}, V = {V }, V a set of Boolean variables, with IV = I1,
P = {P1, P2, P3}, IP1

= I1, IP2
= I1, IP3

= I2, ψP1
(x) = ψP2

(x) = ψP3
(x) := >,

φP1P2(x, y) := x = y∧x ∈ IV ∧V [x], φP1P3(x, y) := x ∈ IV ∧¬V [x], φP2P3(x, y) =
φP2P1(x, y) = φP3P1(x, y) = φP3P2(x, y) := ⊥. By assigning µI(I1) = {1, 2, 3},
µI(I2) = {2}, µV (1) = µV (2) = µV (3) = >, we get the configuration in the previous
example.

Definition 6. A dynamic parametrized architecture is a tuple (A, ι, κ, τ), where

– A = (I,V,P, Ψ, Φ) is a parametrized architecture;
– ι is a formula over (I,V), specifying the set of initial assignments;
– κ is a formula over (I,V), specifying the invariant;
– τ is a transition formula over (I,V), specifying the reconfiguration transitions.

The dynamic parametrized architecture defines a dynamically changing architecture as
a transition system over (structured architectural) configurations obtained by instanti-
ation from A. The set of initial configurations is given by

{µ(A) : µ is an assignment to (I,V) such that JιKµ = > and JκKµ = >}.



A configuration µ′(A) is directly reachable from a configuration µ(A) iff JτKµµ′ = >
and JκKµ′ = >.

Syntactic restrictions:

– ι is of the form ∀I1i1∀IC2 i2 α, where α is a quantifier-free formula in which index
set predicates =, ⊆ do not appear under negation.

– κ is a quantifier-free formula without index set predicates =, ⊆.
– τ is a disjunction of transition formulas of the form ∃I1i1∃IC2 i2 (α ∧ β ∧ γβ) where
I1, I2 ⊆ I, α is a quantifier-free formula, β is a conjunction of transition formulas
of the forms 1) I ′ = I ∪ {tk}k, 2) I ′ = I \ {tk}k, 3) t ∈ I ′, 4) V ′[t] = e, 5)
∀I′

V ′
j V ′[j] = e, where I ∈ I, I ′ ∈ I ′ are variables of sort is (each variable

I ′ ∈ I ′ may appear at most once), t, tk are terms over (I,V) of sort idx, V ′ ∈ V ′
is a variable of one of the sorts vsk (for each V ′, either atoms of the form 4 appear
in β, or at most a single atom of the form 5 appears: atoms of forms 4, 5 never
appear together), e are terms over (I,V) of sorts elk, and j is a variable of sort
idx; furthermore, value V ′[tk] of every introduced (by an atom of form 1,with
I ′ = I ′V ′ and I = IV ) parameter must be set in β with an atom of form 4 or 5;
finally, the frame condition γβ is a conjunction of

• transition formulas ∀I′
V ′
j
((∧

t∈tV ′
(j 6= t)

)
→ V ′[j] = V [j]

)
for all V ′ ∈ V

which do not appear in a conjunct of form 5 in β, where tV ′ is the (possibly
empty) set of all terms which appear as indexes of V ′ in β, and

• transition formulas I ′ = I for all I ′ ∈ I ′ which do not appear in conjuncts of
forms 1, 2 in β.

(In practice, when specifying the transition formulas, the frame condition γβ is
generated automatically from β, instead of being specified directly by the user.)

Example: Consider the parametrized architecture from the previous example, with ι :=
I1 = {1, 2, 3} ∧ I2 = {2} ∧ V [1] ∧ V [2] ∧ V [3]; , κ := > and τ := τ1 ∨ τ2, where
τ1 := ∃IC1 i (I

′
1 = I1 ∪ {i} ∧ V ′[i]) and τ2 := ∃I1i (¬V ′[i]). This defines the set of

initial architectures which contains only the single architecture from the previous ex-
ample and two transitions. The transition τ1 adds a new index i ∈ IC1 into the index
set I1, adding two new components C1i and C2i and a new parameter V [i] and sets
the value of the newly added parameter V [i] to >, adding a connection between the
two new components C1i and C2i. The transition τ2 changes the value of some V [i] to
⊥, removing the connection between components C1i and C2i and adding connections
between component C1i and each of the components C3j , j ∈ I2.

Definition 7. Given a dynamic parametrized architecture (A, ι, κ, τ), where A = (I,
V,P, Ψ, Φ), a configuration is an assignment to the system of parameters (I,V). For a
configuration µ(A) = (C, E), a communication event is a connection e ∈ E.

Trace of the dynamic parametrized architecture is a sequence e1, e2, . . . of configu-
rations and communication events, such that:

– e1 = µ1 is a configuration such that µ1(A) is in the set of initial configurations.
– The subsequence ek1 , ek2 , . . . of all configurations in the trace is such that for all
ki, eki+1

(A) (if it exists) is directly reachable from eki(A).



– For all communication events ek = (ck, c
′
k) in the trace, (ck, c′k) ∈ Eer(k)

, where
er(k), r(k) := max{n ∈ N : n < k, en is a configuration}, is the last configura-
tion prior to ek.

Definition 8. An instance of the dynamic information flow problem is a tuple (D,Psrc,
ρsrc, Pdst, ρdst) where

– D = (A, ι, κ, τ) is a dynamic parametrized architecture;
– Psrc ∈ PA and Pdst ∈ PA are (source and destination) parametrized indexed sets

of components;
– ρsrc(x) and ρdst(x) (source and destination guard) are formulas over (IA,VA).

The problem is to determine whether there exists a finite trace (called information
flow witness trace) e1, e2, . . . , en of D with a subtrace ek1 = (ck1 , c

′
k1
), . . . , ekm =

(ckm , c
′
km

) of communication events such that:

– ck1 = cPsrcisrc ∈ Cer(k1)Psrc for some isrc, and Jρsrc(isrc/x)Ker(k1)
= > (the

information originates in a source component);
– c′km = cPdstidst ∈ Cer(km)Pdst

for some idst, and Jρdst(idst/x)Ker(km)
= > (the

information is received by a destination component);
– for all n such that 1 ≤ n < m, c′kn = ckn+1 (the intermediate components form a

chain over which the information propagates);
– for all n, 1 ≤ n < m, for all configurations ek′ such that kn < k′ < kn+1,
ckn+1 ∈ Cek′ (after an intermediate component receives the information and before
it passes it on, it is not replaced by a fresh component with the same index).

If such a trace exists, we say that information may flow from a source component which
satisfies the source condition given by Psrc, ρsrc to a destination component which
satisfies the destination condition given by Pdst, ρdst.

Syntactic restrictions: ρsrc and ρdst are quantifier-free formulas, without index set pred-
icates =, ⊆.

4.2 Logic for Systems of Parameters

In the following, we define a many-sorted first-order logic [15]. Signatures contain no
quantifier symbols except those explicitly mentioned.

Syntax Theory TIDX = (ΣIDX , CIDX) of indexes with a single sort idx (in practice,
we are using the theory of integers with sort int and with standard operators).

A finite number K of theories TELk
= (ΣELk

, CELk
) of elements, each with a

single sort elk with a distinguished constant symbol delk
(a default value) (in practice,

we consider the theory of booleans with sort bool and the theory of integers, the same
as the theory TIDX ).

The theory SPEL1,...,ELK

IDX (or simply SPELIDX ) of systems of parameters with in-
dexes in TIDX and elements in EL1, . . . , ELK is a combination of the above theories.
Its sort symbols are idx, is, el1, . . . ,elK , vs1, . . . ,vsK , where is is a sort for
index sets and vsk is a sort for indexed sets of parameters of sort elk. The set of
variable symbols for each sort vsk contains a countable set of variables {V Ik,n}n∈N for
each variable symbol I of sort is (we omit the superscript and subscripts when they



are clear from the context). The signature is the union of the signatures of the above
theories, ΣIDX ∪

⋃K
k=1ΣELk

, with the addition of: for sort idx, quantifier symbols
∀, ∃, and ∀I , ∀IC , ∃I , ∃IC for all variables I of the sort is; predicate symbol ∈ of sort
(idx,is); predicate symbols =,⊆ of sort (is,is); function symbols ∪,∩, \ of sort
(is,is,is); for every n ∈ N, n-ary function symbol {·, . . . , ·}(n) (we write simply
{·, . . . , ·}) of sort (idx, . . . ,idx,is); function symbols ·[·]k, k = 1, . . . ,K (we write
simply ·[·]) of sorts (vsk,idx,elk).

Semantics A structure M = (idxM,isM,elM1 , . . . ,elMk ,vsM1 , . . . ,vsMk , IM)
for SPELIDX is restricted in the following manner:

– isM is the power set of idxM;
– each vsMk is the set of all (total and partial) functions from idxM to elMk ;
– ∈ is interpreted as the standard set membership predicate;
– =, ⊆ are interpreted as the standard set equality and subset predicates;
– ∪, ∩, \ are interpreted as the standard set union, intersection and difference on
isM, respectively;

– for every n ∈ N, IM({·, . . . , ·}(n)) is the function that maps the n-tuple of its
arguments to the set of indexes containing exactly the arguments, i.e. it maps every
(x1, . . . , xn) ∈ (idxM)n to {x1, . . . , xn} ∈ isM;

– ·[·]k, k = 1, . . . ,K are interpreted as function applications: (V [i])M := VM(iM).

The structureM is a model of SPELIDX iff it satisfies the above restrictions and (idxM,
IM�ΣIDX

), (elM1 , IM�ΣEL1
), . . . , (elMK , IM�ΣELK

) are models of TIDX , TEL1
,

. . . , TELK
, respectively.

Definition 9. A formula (resp. term) over a system of parameters (I,V) is a formula
(resp. term) of the logic SPELIDX in which the only occuring symbols of sort idx are
from I and the only occuring symbols of sort vsk are from the set {V ∈ V : sortV =
elk}, for k = 1, . . . ,K. Furthermore, in the formula all accesses V [·] to parameters
V ∈ V are guarded parameter accesses, i.e. each atom α(V [t]) that contains a term of
the form V [t] must occur in conjunction with a guard which ensures that index term t
is present in the corresponding index set: t ∈ IV ∧ α(V [t]).

Definition 10. A transition formula over the system of parameters (I,V) is a formula of
the logic SPELIDX in which the only occuring symbols of sort idx are from I∪I ′ and the
only occuring symbols of sort vsk are from the set {W ∈ V∪V ′ : sortW = elk}, for
k = 1, . . . ,K. Furthermore, all accesses W [·] to parameters W ∈ V ∪ V ′ are guarded
parameter accesses (as defined in Def. 9).

The subscripted quantifier symbols are a syntactic sugar for quantification over index
sets and their complements: all occurences of the quantifiers ∀I i φ, ∀IC i φ, ∃I i φ,
∃IC i φ—where I is a variable of sort is, i is a variable of sort idx, and φ is a
formula—are rewritten to ∀i (i ∈ I → φ), ∀i (i 6∈ I → φ), ∃i (i ∈ I∧φ), ∃i (i 6∈ I∧φ),
respectively, after which the formula is evaluated in the standard manner.

Definition 11. Evaluation JφKµ with respect to an assignment µ to a system of param-
eters (I,V), of a formula (or a term) φ over (I,V) is defined by interpreting I with
IM = µI(I) for every I ∈ I and interpreting V [x] as follows for every V ∈ V:



(V [x])M = µV (x
M) if xM ∈ µ(IV ), and (V [x])M = dMsortV

otherwise. The evalua-
tion JφKµµ′ of a transition formula with respect to two assignments µ, µ′ is defined by
interpreting, in the above manner, (I,V) with µ and (I ′,V ′) with µ′.

5 Analysis with SMT-Based Model Checking

5.1 Background Notions on SMT-Based Model Checking

Many-sorted first-order logic of arrays The target logic for the translation is the
many-sorted first-order logic [15] with theories for indexes, elements and arrays as de-
fined in [18]. Following that paper, we fix a theory TI = (ΣI , CI) for indexes whose
only sort symbol is index and we fix theories TEk

= (ΣEk
, CEk

), k = 1, . . . ,K

whose only sort symbols are elemk, respectively. The theory AE1,...,EK

I (or simply
AEI ) of arrays with indexes in TI and elements in E1, . . . , EK is defined as the com-
bination of theories TI , TE1

, . . . , TEK
as follows. The sort symbols of AEI are index,

elem1, . . . ,elemK , array1, . . . ,arrayK , the signature is Σ := ΣI ∪
⋃K
k=1ΣEi

∪⋃K
k=1{·[·]k} where ·[·]k are function symbols of sorts (arrayk,index,elemk). A

structure M = (indexM,elemM1 , . . . ,elemMK ,arrayM1 , . . . ,arrayMK , I) is a
model of AEI iff arrayMk are sets of all functions from indexM to elemMk , respec-
tively, the function symbols ·[·]k are interpreted as function applications, and MI =
(indexM, I�ΣI

),MEk
= (elemMk , I�ΣEk

) are models of TI , TEk
, k = 1, . . . ,K,

respectively.
Array-based transition systems In the following, i, j denote variables of the sort
index, i denotes a set of such variables, a denotes a variable of one of the array
sorts, a denotes a set of such variables, notation a[i] denotes the set of terms {a[i] : a ∈
a, i ∈ i}, and φ(x), ψ(x) denote quantifier free Σ(x) formulas.

As in [18], an array-based (transition) system (for (TI , TE1 , . . . , TEK
)) is a triple

S = (a, Init, T r) where

– a = {a1, . . . , an} is a set of state variables of the sorts array1, . . . ,arrayK .
– Init(a) is the initial Σ(a)-formula of the form

∀i.φ(i, a[i]). (1)

– Tr(a, a′) is the transition Σ(a, a′)-formula and is a disjunction of formulas of the
form

∃i

(
ψ(i, a[i]) ∧

n∧
k=1

∀j a′k[j] = tk(i, a[i], j, a[j])

)
(2)

where each tk is a Σ(a)-term which may contain nested if-then-else operators.

Given an array-based system S = (a, Init, T r) and aΣ(a)-formulaU (unsafe formula)
of the form

∃i.φ(i, a[i]) (3)

an instance of the array-based safety problem is to decide whether there exists n ∈ N
such that the formula Init(a0) ∧ Tr(a0, a1) ∧ · · · ∧ Tr(an−1, an) ∧ U(an) is AEI -
satisfiable.



Decidability of the array-based safety problem The array-based safety problem is
in general undecidable (Thm. 4.1. in [18]), but it becomes decidable under 1) the fol-
lowing assumptions on the theory TI of indexes: local finiteness, closedness under sub-
structures, decidability of SMT(TI ), 2) assumptions of local finiteness of TE and of
decidability of SMT(TE), and 3) further assumptions on the array-based transition sys-
tem under analysis (for details see Thm. 3.3. and Thm. 4.6. in [18]).

5.2 Encoding into SMT-Based Model Checking

Translation of formulas We recursively define the translation ·A of formulas and tran-
sition formulas of SPELIDX to formulas of AEI . We set the index and element sorts to
correspond, i.e. index := idx and elemk := elk, k = 1, . . . ,K. In practice, we
set TI to be the theory of integers (with sort index = int), number of element the-
ories to K = 2, and we set E1 = TI and E2 to be the theory of Booleans (with sort
elem2 = bool).

– Symbols of the sorts idx and elk, k = 1, . . . ,K are treated as symbols of the
sorts index, elemk, k = 1, . . . ,K, respectively.

– For a variable I of sort is, IA := aI , where aI is of the sort arraybool.
– For a variable V of sort vsk, V A := aV , where aV is of the sort arrayelemk

.
– For a term t of sort idx and term T of sort is, (t ∈ T )A := TAt .
– For terms T1, T2 of sort is, (T1 ∩ T2)At := TAt

1 ∧ TAt
2 ; analogously for ∪ and \.

– For a variable I of sort is, IAt := IA[tA].
– ({e1, . . . , en})At :=

∨n
k=1

(
tA = eAk

)
.

– For terms T1, T2 of sort is, (T1 = T2)
A := ∀i (TAi

1 = TAi
2 ), where i is a fresh

variable of sort idx; analogously for ⊆ which is translated using→.
– For a variable V of sort vsk and a term t of sort idx, (V [t])A := V A[tA].
– Other logical connectives, quantifiers and operators are present in both logics and

are translated directly, e.g. (e1 ≤ e2)A := eA1 ≤ eA2 and (φ1 ∧ φ2)A := φA1 ∧ φA2 .

Translation of a dynamic information flow problem to an array-based safety prob-
lem Given a dynamic parametrized architecture D = (A, ι, κ, τ) where A = (I,V,P,
Ψ, Φ), and given an information flow problem instance (D,Psrc, ρsrc, Pdst, ρdst), we
generate a safety problem (S, U) where S = (a, Init, T r), as follows.

Given a system of parameters (I,V), we set a to be the (disjoint) union:

a := {aI : I ∈ I, sort(aI) = arraybool}
∪ {aV : V ∈ V, sort(aV ) = arraysortV

}
∪ {aP : P ∈ P, sort(aP ) = arraybool},

(4)

of the set of boolean array symbols aI which model index sets, the set of array symbols
aV which model sets of parameters, and the set of boolean array symbols aP which
model information taint of the component instances.

The initial formula Init is set to

ιA ∧ κA ∧ ∀j
(
aPsrc

[j] =
(
aIPsrc

[j] ∧ ψPsrc
(j/x)A ∧ ρsrc(j/x)A

))
∧
∧
P∈P\{Psrc} ∀j aP [j] = ⊥.

(5)



Here the third conjunct models the initial taint of the source components, by specifying
that a source component with index j is tainted iff it is present in the system and satisfies
the constraint ρsrc, and the last conjunct models the fact that initially all non-source
components are not tainted.

Recall that τ =
∨
k τk, where τk are of the form ∃I1i1∃IC2 i2 (αk ∧ βk ∧ γβk

) (see
Def. 6). The transition formula Tr is set to∨

P,Q∈P
Taint(P,Q) ∨

∨
k

Reconfk. (6)

Here Taint(P,Q) is the following formula that models taint propagation between two
connected component instances of which the first one is tainted:

∃i1∃i2
(
φPQ(i1/x, i2/y)

A ∧ aIP [i1] ∧ ψP (i1/x)A ∧ aIQ [i2] ∧ ψQ(i2/x)A

∧ aP [i1] ∧ ∀j (a′Q[j] = (j = i2 ?> : aQ[j])) ∧
∧
a6=aQ ∀j (a

′[j] = a[j])
)
.

(7)

Reconfk is obtained from τk by the following steps.

Differentiation of primed parameter accesses We say that accesses to a primed pa-
rameter V ′ ∈ V ′ in τk are differentiated if for all pairs of conjuncts of form 4 in βk
as defined in Def. 6, V ′[t1] = e1 and V ′[t2] = e2, αk contains a top-level conjunct
(t1 6= t2), i.e., αk is of the form α′k ∧ (t1 6= t2). We may assume that in τk, accesses
to all primed parameters V ′ ∈ V ′ are differentiated. Note that if the accesses to some
primed parameter V ′ ∈ V ′ in τk are not differentiated, then for a pair of undifferentated
accesses V ′[t1] = e1 and V ′[t2] = e2 formula τk can be rewritten as a disjunction of
two formulas τ=k and τ 6=k which are of the same general form as τk and are defined by

– τ=k := ∃I1i1∃IC2 i2
(
α=
k ∧ β=

k ∧ γβ=
k

)
where α=

k := αk ∧ (t1 = t2) ∧ (e1 = e2),
and β=

k is obtained from βk by removing the conjunct V ′[t2] = e2;

– τ 6=k := ∃I1i1∃IC2 i2
(
α 6=k ∧ βk ∧ γβk

)
where α 6=k := αk ∧ (t1 6= t2).

It is easy to verify that the formulas τk and τ=k ∨ τ
6=
k are equivalent. By continuing the

rewriting recursively, τ can be transformed into a disjunction of formulas with differ-
entiated accesses to primed parameters.

For a symbol I ′ ∈ I ′, there is exactly one conjunct in τk in which I ′ appears in the
equality, and it is one of I ′ = I ∪ {tk}k, I ′ = I \ {tk}k, or I ′ = I . In all three cases,
value of I ′ is a function of the value of I and some terms over (I,V), and therefore
the conjunct can be rewritten as ∀j (j ∈ I ′ ↔ UpdateI(j)) where UpdateI is a term
of sort bool over (I,V) and a free variable. For example, for the first case we have
UpdateI(j) = (j ∈ I ∨

∨
k(j = tk)). The conjuncts in τk of the form t ∈ I ′ can

be rewritten as UpdateI(t). From τk we obtain τ ′k by performing the above rewriting
of conjuncts which contain I ′, for all I ′ ∈ I ′. It is easy to verify that τ ′k and τk are
equivalent formulas.

For a symbol V ′ ∈ V ′, the set of conjuncts in the τ ′k in which V ′ occurs is either
equal to {V ′[tk] = ek : k = 1, . . . , n} ∪ {∀I′

V ′
j ((
∧n
k=1(j 6= tk))→ V ′[j] = V [j])}

where tk are differentiated, or to {∀I′
V ′
j V ′[j] = ej}. In both cases, the set of con-

juncts can be rewritten as ∀j (V ′[j] = UpdateV (j)), where UpdateV is a term of sort



sortV ′ ; in the first case,

UpdateV (j) := if j = t1 then e1 else if . . . else if j = tn then en
else if UpdateIV (j) then V [j] else dsortV ′

and in the second case UpdateV (j) := if UpdateIV (j) then V [j] else dsortV ′ . For-
mula τ ′′k is obtained from τ ′k by performing the above rewrites for every V ′ ∈ V ′. It is
easy to verify that τ ′′k and τ ′k are equivalent.

From the invariant formula κ we obtain the next-state invariant κ′ by first distribut-
ing set membership operator over the set operations (e.g. transforming t ∈ I ∪ J to
t ∈ I ∨ t ∈ J), and then replacing, for all I ∈ I, each term of the form t ∈ I
with the term UpdateI(t), and replacing, for all V ∈ V , each term of the form V [t]
with the term UpdateV (t). Analogously, from the formula ρsrc and component guards
ψP , P ∈ P we obtain their next-state versions ρ′src and ψ′P , P ∈ P by performing the
same transformations. Reconfk is set to

τ ′′k
A ∧ κ′A∧

∀j
(
a′Psrc

[j] =
(
UpdateIPsrc

(j)A ∧ ψ′Psrc
(j/x)A ∧ (aPsrc

[j] ∨ ρ′src(j/x)A)
))

∧
∧
P∈P\{Psrc} ∀j

(
a′P [j] = (UpdateIP (j)

A ∧ ψ′P (j/x)A ∧ aP [j])
)
.

(8)

Here the last conjunct updates the information taint for all components, by setting it to
true iff the component is present in the next state and it is currently tainted. The third
conjunct performs the same update for source components, taking care to also taint the
source components which satisfy the next-state source condition ρ′src.

Finally, the unsafe formula U is set to

∃i
(
aIPdst

[i] ∧ ψPdst
(i/x)A ∧ ρdst(i/x)A ∧ aPdst

[i]
)
, (9)

modeling the set of states in which there exists a destination component with index i
which satisfies the destination condition ρdst and is tainted.

The following theorems state that the information flow problem can be reduced to
the array-based safety problem, using the above translation. The detailed proofs can
be found in the extended version of the paper at https://es.fbk.eu/people/
stojic/papers/fm18.

Theorem 1. Problem (S, U), S = (a, Init, T r), which is obtained by translation from
an arbitrary information flow problem, where a is given by (4), Init is given by (5), Tr
is given by (6), (7), (8), and U is given by (9), is an array-based safety problem.

The proof amounts to the inspection of the obtained formulas, to confirm that they are
indeed in the required fragment.

Theorem 2. Let DIFP = (D,Psrc, ρsrc, Pdst, ρdst) be an arbitrary instance of the
dynamic information flow problem, andASP = (S, U) the array-based safety problem
obtained by translation from DIFP . There is an information flow witness trace for
DIFP if and only if ASP is unsafe.

https://es.fbk.eu/people/stojic/papers/fm18
https://es.fbk.eu/people/stojic/papers/fm18


The proof involves constructing, for an information flow witness trace for DIFP , a
counterexample (unsafe) trace of the problem ASP , and vice-versa.
Decidability The dynamic information flow problem is undecidable in general (it is
straightforward to model Minsky 2-counter machines [28]), but it is decidable under
certain assumptions inherited from the array-based transition systems (see the remark
on decidability at the end of Sec. 5.1).

6 Experimental Evaluation

6.1 Setup

Back-end solver We use MCMT [4] version 2.5.2 to solve array-based safety problems.
MCMT is a model checker for array-based systems, based on the SMT solver Yices1.
We run MCMT with the default settings. The time-out for testing is set to 1000 seconds.
Translation implementation We have implemented in C the translation from the ex-
tended version of AADL to the input language for MCMT using the parser generator
GNU Bison. The input language of MCMT is low level and as such is not suitable for
manual modeling of anything but the simplest examples, being instead intended as a
target language for automatic generation from specifications written in a higher level
language [17]. The translation follows the same outline as its theoretical description in
Sec. 5.2, but is more complicated due to the specific features, limitations and idiosyncra-
cies of the target MCMT input language. In particular, the more constraining limitations
of MCMT, in addition to the theoretical restrictions on formulas from Sec. 5.1, are:

– The initial formula can contain at most two universally quantified variables.
– The transitions can contain at most two existentially quantified variables.
– The maximum number of transitions (the disjuncts in the transition formula) is 50.
– The unsafe formula can contain at most four existentially quantified variables.
– A term can contain at most ten index variables.

Our translator inherits the above restrictions on the formulas specified in the extended
AADL model. While these restrictions do not severely limit the expressivity of the
language, the limitation on the maximum number of transitions limits the size of the
examples that can be handled by the present version of the tool.
Hardware We have used a desktop PC based on an Intel R© CoreTM i7 CPU 870 clocked
at 2.93GHz, with 8 GB of main memory and running Ubuntu 14.04.5 LTS.
Distribution Tarball The translator, tested models, scripts which automatically per-
form the translation from extended AADL to MCMT input languge and run MCMT,
as well as setup and usage instructions can be found at https://es.fbk.eu/
people/stojic/papers/fm18/.

6.2 Benchmarks and Results

In the following diagrams, arrows between (sets of) components represent connections
from all components in the source set to all components in the destination set, unless

1 http://yices.csl.sri.com/

https://es.fbk.eu/people/stojic/papers/fm18/
https://es.fbk.eu/people/stojic/papers/fm18/
http://yices.csl.sri.com/


Fig. 3: Converging model

further restricted in the model description. All sets of components are dynamic, allow-
ing addition/removal of components.
Converging Model This model contains 2n + 1 sets of components a0, . . . , an−1, b0,
. . . , bn−1, c, with the connections shown as black arrows in Fig. 3. There are also con-
nections between all pairs of components in the same set. We test for information flow
from the set abn/2c to the set b0. The unsafe model in addition contains the connections
shown as red arrows. Results for the model are in Fig. 7. We hit the MCMT limitation
on the number of transitions (see Sec. 6.1) for n = 7 for the safe model, and for n = 5
for the unsafe model. Number of calls made by MCMT to the underlying SMT solver
ranges from 211 (safe, n = 1) to 29907 (safe, n = 6).

Fig. 4: Messenger model

Model n Time (s) SMT calls
Messenger (safe) 1 1.894 9370
Messenger (safe) 2 TO -

Messenger (unsafe) 1 0.240 1563
Messenger (unsafe) 2 24.639 82648
Messenger (unsafe) 3 TO -

Network (safe) - 0.875 3327
Network (unsafe) - 0.171 1063

Fig. 5: Messenger and Network models
results

Messenger Model In this model, for n = 1
there are two sets of components, a and b,
and a singleton component m0. m0 models
a messenger which is intended to allow com-
ponents within the same set to communicate;
m0 can connect in turn to any single compo-
nent in a or in b, but not at the same time.
We test for information flow from set a to set
b. The system as described is unsafe because
m0 can connect to some a[i], disconnect, and
then connect to some b[j], therefore establish-
ing a path for flow of information. The safe
model removes such paths by using Boolean
parameters to record whether m0 has previ-
ously connected to components in a and b.
If it has previously connected to one of these
sets, then it is not allowed to connect to the
other set before it is scrubbed (which is mod-
eled by removing and re-adding it). For n = 2
(Fig. 4), the system is extended with another
set of components c and another messenger
m1 which is shared by b and c, and we check
for information flow between a and c. Results
are shown in Fig. 5.
Network Model This is the model whose safe version is specified in Fig. 2, while the
highlighted parts are omitted in the unsafe version. Results are shown in Fig. 5.



Sequence Model This is a scalable example which models a sequence of n sets of
components a0, . . . , an−1 (see Fig. 6 ignoring the dashed loop-back arrow). There is a
connection from ax[i] to ay[j] iff (x = y−1∨x = y)∧i < j. We check for information
flow from a0[0] to an−1[n− 2] in the safe version and from a0[0] to an−1[n− 1] in the
unsafe version. The results are shown in Fig. 8. The verification of this model times out
for n = 6 (safe) and n = 7 (unsafe). Number of calls to the SMT solver ranges from
116 (unsafe, n = 1) to 60799 (unsafe, n = 6).

Fig. 6: Sequence and Ring models

Ring Model This model is the same as the
Sequence model, but with additional connec-
tions from an−1[i] to a0[j] (dashed loop-back
arrow in Fig. 6) which are present only when
i < j + n in the safe version (i < j + n + 1
in the unsafe version), and we check for in-
formation flow from a0[0] to an−1[n − 2] in
both the safe and unsafe versions. The results
are shown in Fig. 9. The verification of this
model times out for n = 6 (safe) and n = 5 (unsafe). Number of calls to the SMT
solver ranges from 188 (unsafe, n = 1) to 130068 (unsafe, n = 4).

0.01

0.1

1

10

1 2 3 4 5 6

Ti
m

e
(s

)

n

Safe
Unsafe

Fig. 7: Converging model
results

0.01

0.1

1

10

100

1000

1 2 3 4 5 6

Ti
m

e
(s

)

n

Safe
Unsafe

Fig. 8: Sequence model re-
sults

0.01

0.1

1

10

100

1000

1 2 3 4 5

Ti
m

e
(s

)

n

Safe
Unsafe

Fig. 9: Ring model results

7 Conclusions and Future Work

We propose a new logic-based specification of dynamic architectures where the archi-
tectural topology is represented by a set of parameters, while first-order formulas over
such parameters define the sets of initial configurations and reconfigurations. The Dy-
namic Parametrized Architectures so defined can be translated into array-based transi-
tion systems, which are amenable to SMT-based model checking. We provide an initial
experimental evaluation of various DPAs proving safe and unsafe cases with the MCMT
model checker. The results show that the approach is feasible and promising.

As future work, we aim at trying other SMT-based model checkers such as Cubi-
cle [13] and nuXmv [11]. We will investigate new algorithms that directly exploit the
topology of the architecture. We will extend the specification to incorporate component
behavior and more complex interactions, as well as more general properties. Finally, we
are interested in generating certifying proofs for the safe DPAs, possibly exploiting the
existing automatic generation of proofs for array-based transition systems [14].



References

1. European Programme for Critical Infrastructure Protection (EPCIP). http:
//eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2006:
0786:FIN:EN:PDF. Accessed 15 Jan 2018.

2. NIST Cybersecurity Framework. http://www.nist.gov/cyberframework. Ac-
cessed 15 Jan 2018.

3. The CITADEL Project (Critical Infrastructure Protection using Adaptive MILS). http:
//www.citadel-project.org/. Accessed 15 Jan 2018.

4. ALBERTI, F., GHILARDI, S., AND SHARYGINA, N. A Framework for the Verification of
Parameterized Infinite-state Systems. In CEUR Workshop Proceedings (2014), vol. 1195,
pp. 302–308.

5. ALLEN, R., DOUENCE, R., AND GARLAN, D. Specifying and Analyzing Dynamic Soft-
ware Architectures. In FASE (1998), pp. 21–37.

6. BASU, A., BOZGA, M., AND SIFAKIS, J. Modeling Heterogeneous Real-time Components
in BIP. In Fourth IEEE International Conference on Software Engineering and Formal
Methods (SEFM 2006), 11-15 September 2006, Pune, India (2006), pp. 3–12.

7. BOZGA, M., JABER, M., MARIS, N., AND SIFAKIS, J. Modeling Dynamic Architectures
Using Dy-BIP. In Software Composition - 11th International Conference, SC 2012, Prague,
Czech Republic, May 31 - June 1, 2012. Proceedings (2012), pp. 1–16.

8. BRADBURY, J. S., CORDY, J. R., DINGEL, J., AND WERMELINGER, M. A survey of self-
management in dynamic software architecture specifications. In Proceedings of the 1st ACM
SIGSOFT Workshop on Self-Managed Systems, WOSS 2004, Newport Beach, California,
USA, October 31 - November 1, 2004 (2004), pp. 28–33.

9. BRUNI, R., MELGRATTI, H. C., AND MONTANARI, U. Behaviour, Interaction and Dynam-
ics. In Specification, Algebra, and Software - Essays Dedicated to Kokichi Futatsugi (2014),
pp. 382–401.

10. CANAL, C., PIMENTEL, E., AND TROYA, J. M. Specification and Refinement of Dynamic
Software Architectures. In Software Architecture, TC2 First Working IFIP Conference on
Software Architecture (WICSA1), 22-24 February 1999, San Antonio, Texas, USA (1999),
pp. 107–126.

11. CAVADA, R., CIMATTI, A., DORIGATTI, M., GRIGGIO, A., MARIOTTI, A., MICHELI, A.,
MOVER, S., ROVERI, M., AND TONETTA, S. The nuXmv Symbolic Model Checker. In
Computer Aided Verification - 26th International Conference, CAV 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings (2014),
pp. 334–342.

12. CITADEL Modeling and Specification Languages. Tech. Rep. D3.1, Version 2.2, CITADEL
Project, Apr. 2018.

13. CONCHON, S., GOEL, A., KRSTIC, S., MEBSOUT, A., AND ZAÏDI, F. Cubicle: A Parallel
SMT-Based Model Checker for Parameterized Systems - Tool Paper. In Computer Aided
Verification - 24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012
Proceedings (2012), pp. 718–724.

14. CONCHON, S., MEBSOUT, A., AND ZAÏDI, F. Certificates for Parameterized Model Check-
ing. In FM 2015: Formal Methods - 20th International Symposium, Oslo, Norway, June
24-26, 2015, Proceedings (2015), pp. 126–142.

15. ENDERTON, H. B. A Mathematical Introduction to Logic, second ed. Academic Press,
Boston, Jan 2001.

16. FEILER, P. H., AND GLUCH, D. P. Model-Based Engineering with AADL - An Introduction
to the SAE Architecture Analysis and Design Language. SEI series in software engineering.
Addison-Wesley, 2012.

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2006:0786:FIN:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2006:0786:FIN:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2006:0786:FIN:EN:PDF
http://www.nist.gov/cyberframework
http://www.citadel-project.org/
http://www.citadel-project.org/


17. GHILARDI, S. MCMT v2.5 - User Manual. http://users.mat.unimi.it/users/
ghilardi/mcmt/UM_MCMT_2.5.pdf, 2014. Accessed 15 Jan 2018.

18. GHILARDI, S., AND RANISE, S. Backward Reachability of Array-based Systems by SMT
solving: Termination and Invariant Synthesis. Logical Methods in Computer Science Volume
6, Issue 4 (Dec. 2010).

19. GHILARDI, S., AND RANISE, S. MCMT: A Model Checker Modulo Theories. In Automated
Reasoning, 5th International Joint Conference, IJCAR 2010, Edinburgh, UK, July 16-19,
2010. Proceedings (2010), pp. 22–29.

20. GOGUEN, J. A., AND MESEGUER, J. Security Policies and Security Models. In 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, April 26-28 1982 (1982), pp. 11–
20.

21. HIRSCH, D., INVERARDI, P., AND MONTANARI, U. Reconfiguration of Software Architec-
ture Styles with Name Mobility. In Coordination Languages and Models, 4th International
Conference, COORDINATION 2000, Limassol, Cyprus, September 11-13, 2000, Proceed-
ings (2000), pp. 148–163.

22. KÖNIG, B., AND KOZIOURA, V. Towards the Verification of Attributed Graph Transforma-
tion Systems. In Graph Transformations, 4th International Conference, ICGT 2008, Leices-
ter, United Kingdom, September 7-13, 2008. Proceedings (2008), pp. 305–320.

23. KONNOV, I. V., KOTEK, T., WANG, Q., VEITH, H., BLIUDZE, S., AND SIFAKIS, J. Pa-
rameterized Systems in BIP: Design and Model Checking. In 27th International Conference
on Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada (2016),
pp. 30:1–30:16.

24. MAGEE, J., AND KRAMER, J. Dynamic Structure in Software Architectures. In SIGSOFT
’96, Proceedings of the Fourth ACM SIGSOFT Symposium on Foundations of Software En-
gineering, San Francisco, California, USA, October 16-18, 1996 (1996), pp. 3–14.

25. MEDVIDOVIC, N., AND TAYLOR, R. N. A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Trans. Software Eng. 26, 1 (2000),
70–93.

26. MÉTAYER, D. L. Describing Software Architecture Styles Using Graph Grammars. IEEE
Trans. Software Eng. 24, 7 (1998), 521–533.

27. MILNER, R., PARROW, J., AND WALKER, D. A Calculus of Mobile Processes, I and II. Inf.
Comput. 100, 1 (1992), 1–77.

28. MINSKY, M. L. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1967.

29. ROZENBERG, G., Ed. Handbook of Graph Grammars and Computing by Graph Transfor-
mations, Volume 1: Foundations. World Scientific, 1997.

30. Architecture Analysis & Design Language (AADL) (rev. B). SAE Standard AS5506B, In-
ternational Society of Automotive Engineers, Sept. 2012.

31. SIFAKIS, J., BENSALEM, S., BLIUDZE, S., AND BOZGA, M. A Theory Agenda for
Component-Based Design. In Software, Services, and Systems - Essays Dedicated to Martin
Wirsing on the Occasion of His Retirement from the Chair of Programming and Software
Engineering (2015), pp. 409–439.

32. WERMELINGER, M., AND FIADEIRO, J. L. Algebraic Software Architecture Reconfigura-
tion. In Software Engineering - ESEC/FSE’99, 7th European Software Engineering Confer-
ence, Toulouse, France, September 1999, Proceedings (1999), pp. 393–409.

33. XU, H., ZENG, G., AND CHEN, B. Description and Verification of Dynamic Software
Architectures for Distributed Systems. JSW 5, 7 (2010), 721–728.

http://users.mat.unimi.it/users/ghilardi/mcmt/UM_MCMT_2.5.pdf
http://users.mat.unimi.it/users/ghilardi/mcmt/UM_MCMT_2.5.pdf

	Formal Specification and Verification of Dynamic Parametrized Architectures 

