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Abstract. We present the new tool Lodin for statistical model checking
of LLVM-bitcode. Lodin implements a simulation engine for LLVM-
bitcode and implements classic statistical model checking algorithms on
top of it. The simulation engine implements only the core of LLVM but
supports extending this core through a plugin-architecture. Besides the
statistical model checking algorithms Lodin also provides an interactive
simulation front-end. The simulator front-end was integral for our second
contribution - an integration of Lodin into Plasma-Lab. The integration
with Plasma-Lab is integral to allow reasoning about rare properties of
programs.

1 Introduction

Statistical Model Checking (SMC) [17] is an approximate verification technique
that has attained a high interest from the formal methods community in recent
years - evidenced by statistical model checking tools being developed [1, 2, 13, 15,
16] and by classical model checking tools implementing statistical methods [6, 11].
The reason for this interest is two-fold: firstly SMC is simulation-based and
can therefore be applied to models for which the model checking problem [7] is
undecidable, secondly SMC scales better with increased state spaces. Another
interest of the formal verification community is applying formal methods to the
analysis of real-life code [3, 4, 18]. These works are mainly focused on applying
an exhaustive state space exploration of the source language. In this paper we
present a tool, Lodin, that permits applying SMC-based techniques to programs.
Lodin relies on a pre-compilation of the program with clang to produce a LLVM-
bitcode [12] file used as the input model of Lodin. Functions defined externally
of the program itself (e.g. system calls) are given semantics in Lodin through
platform plugins. In this way Lodin is configurable to analyse embedded programs
for various execution environments. Simulation-based techniques have the major
downfall of rare properties requiring an infeasible number of samples to locate
one with the property. To manage this, we seamlessly integrate Lodin with
Plasma-Lab and get access to their implementation of importance splitting.
Importance splitting is an efficient rare event simulation technique where a
property is decomposed into several sub-properties that must be satisfied before
the main property is satisfied.
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2 Lodin

Lodin3 is a fairly new software analysis tool with the goal of analysing programs
without modelling the program in an analysis-specific modelling language. Lodin
achieves this ability by using LLVM bitcode [12] as its model language - thereby
making Lodin available to any source language translatable to LLVM. The
analysis techniques available in Lodin is currently explicit-state model checking
and statistical model checking [17]. In this paper we focus on the latter.
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Fig. 1: Architecture of
Lodin

Architecture Lodin consists of a user interface, algo-
rithms or a simulator, state generators and a system
model (Figure 1). The system model is a state and
transition representation of the program under analysis.
The system exposes a successor generation interface
for higher architectural levels. During the generation of
successor states, the system calls an interpreter module
responsible for implementing the semantics of LLVM
instructions. In between the algorithms and system
level is a state generator level. This is mostly relevant
for the explicit-state model checking part of Lodin. It
allows for selecting various techniques to reduce the
searched state space. For statistical model checking there is only a probabilistic
state generator that selects what transition to perform according to probabilities
obtained from the system. Real-life programs are developed to run under some
execution environment providing core functionality to the program. To make
Lodin as oblivious to the specific execution environment as possible, the core
interpreter of Lodin has no built-in semantics for these. Instead it is possible
to extend Lodin with platform plugins providing support for an execution envi-
ronment. A platform plugin registers all the functions implemented by it when
loaded by Lodin and the interpreter lets the plugin handle calls to one of these
functions. In addition to implementing these external functions, platform plugins
also have an interface to do their own transitions. This is useful for mimicking
an interrupt system / signalling system.

Preparing files Lodin requires input in LLVM bitcode. We achieve this by com-
piling the program with clang -emit-llvm -S -c file.c -o file.ll. This is sufficient for
programs without external dependencies. Properties are specified as expressions
over LLVM registers thus we run opt -instnamer file.ll -S -o fileN.ll to generate
the file fileN.ll in which registers have been given names. When a program has
external dependencies and verification therefore requires the use of a platform
plugin, the program must be compiled with headers specific for that plugin. If
the header files are located in/path/to/includes then programs should be compiled
with the command
3 available at https://spark.informatik.uni-kiel.de/data/lodin/FM18/Lodin-FM.
zip
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1 clang -nodefaultlibs -ffreestanding -fno -builtin -emit -llvm -S -c -I/path/
to/includes file.c -o file.ll

ensuring clang compiles the program without using any of its built-in libraries
and only rely on the header files included on the command line.

How to use Lodin is a command line tool and is invoked by
1 ./Lodin [options] file.ll query.q

where [options] includes options for selecting a platform plugin, setting a random
seed and so on. The query.q file contains a one line query. The possible statistical
model checking-based queries are generated by the below EBNF:
〈Query〉 ::= ‘Pr’ ‘[’ ‘<=’ 〈integer〉 ‘]’ ‘(’ ‘<>’ 〈bool〉 ‘)’

| ‘Estimate’ ‘[’ ‘<=’ 〈integer〉 ‘,’ 〈integer〉 ‘]’ ‘{’ ‘max’ 〈arith〉 ‘}’
| ‘EnumStatesSMC’ ‘<=’ 〈integer〉 〈integer〉

〈bool〉 :== ‘DataRace’
| ‘[’ 〈processid〉‘.’〈string〉 ‘]’
| 〈arith〉 〈comp〉 〈arith〉
| ‘(’〈bool〉 ‘&&’ 〈bool〉 ‘&&’ ... ‘&&’ 〈bool〉 ‘)’
| ‘(’ 〈bool〉 ‘||’ 〈bool〉 ... ‘||’ 〈bool〉 ‘)’
| ’Exists’ ’(’〈char〉 ’)’ ’(〈bool〉’)’
| ’Forall’ ’(’〈char〉 ’)’ ’(〈bool〉’)’
|

〈comp〉 ::= ‘<’ | ‘<=’ | ‘==’ | ‘>=’ | ‘>’ | ‘!=’

where <arith> is an arithmetic expression over LLVM registers. Lodin also
has limited support for using source variables in arithmetic expressions - this
is however dependent on the debugging symbols contained in the input file. An
expression [0.func] is true if the zeroth process can call the function func. The ex-
pression Exists (p)(<bool>) is true if for some process the Boolean expression is true.
Any occurrence of p is replaced by an actual process during the evaluation. On the
query side, Pr[<=500] (<> <bool>) estimates the probability of the Boolean expression
being true within 500 steps. The number of samples needed is automatically
adjusted using the Clopper-Pearson interval[8]. A query Estimate [<=500,5000] {max <

arith>} generates 5000 runs each of 500 steps and estimates the expected maximal
value of the expression. Finally, EnumStatesSMC <=500 5000 generates 5000 runs each
of 500 steps and counts the number of different states encountered during those
simulations.

Listing 1.1: Calculating the Fibonacci
Numbers. A main function initialising t1
and t2 is omitted.
1 #include <pthread.h >
2
3 int i=1, j=1;
4
5 #define NUM 16
6 #define NULL 0
7
8
9 void *

10 t1(void* arg)
11 {
12 int k = 0;
13

14 for (k = 0; k < NUM; k++)
15 i+=j;
16
17 pthread_exit(NULL);
18 }
19
20 void *
21 t2(void* arg)
22 {
23 int k = 0;
24
25 for (k = 0; k < NUM; k++)
26 j+=i;
27
28 pthread_exit(NULL);
29 }



Program Runs Satisfying CI Time (s)
fib/fib_4.ll 19 242 2789 [ 0.14 , 0.15] 3.80
fib/fib_8.ll 7453 370 [ 0.04 , 0.05] 2.26
fib/fib_16.ll 299 0 [ 0.00 , 0.01] 0.16
fib/fib_32.ll 299 0 [ 0.00 , 0.01] 0.28
ptrace/ptrace.ll 33 249 10 412 [ 0.31 , 0.32] 22.82
gossip/gossip_2.ll 34 470 11 575 [ 0.33 , 0.34] 219.68
gossip/gossip_3.ll 13 187 1229 [ 0.09 , 0.10] 94.41
gossip/gossip_4.ll 8450 481 [ 0.05 , 0.06] 66.30
petersons/petersonsBug.ll 10 870 816 [ 0.07 , 0.08] 1.64
petersons/petersons.ll 299 0 [ 0.00 , 0.01] 0.05
robot/robot.ll 2507 38 [ 0.01 , 0.02] 109.65
stack/stack.ll 299 0 [ 0.00 , 0.01] 7.16

Table 1: Lodin results. The Runs columns is total number of generated runs, Satisfying
is the number of satisfying runs while the CI column is a 95% confidence interval.

Example 1. Consider the program in Listing 1.1 where two threads cooperatively
attempt to calculate the 32nd Fibonacci number. With Lodin we estimate the
expected number of i at termination of the program with Estimate [<=5000,5000] {max

@0.main.%tmp11} , where main.%tmp11 is a register in the compiled LLVM containing
the value of the i variable. The result of this query is 438037. In addition to
estimating the value, the query also outputs the values of the runs to a file. That
file can the be be used to generate a histogram.

Example 2. The Fibonacci program considered in Example 1 is only correct if it
at termination has found the 32nd Fibonacci number (2178309). Using Lodin
we estimate the probability of having either i = 2178309 or j = 2178309 using
Pr[<=5000] (<> [0.VERIFIERError]) which asks for the probability that a state is reached
where the 0th process can call VERIFIERError - a call the main function does if either
i = 2178309 or j = 2178309. Verifying the query with Lodin results in the
probability being in the range [0, 0.01] with confidence 0.95 and no satisfying
traces found.

In Table 1 we show results for a range of programs we have applied Lodin
to. For space limitations we omit descriptions of the programs and instead refer
the reader to [14] which contains both the source code and descriptions of the
programs. We will note though, that the verification queries are all of the form
Pr[<=N] (<> ... ).

3 Plasma-Lab

In Example 2 we saw that simulation-based techniques may fail to find traces
satisfying rare events - in the particular example the event is rare because it
requires a very specific interleaving of the two threads. In the following we
integrate Lodin with Plasma-Lab and see how importance splitting can help
guiding the simulation to one of these rare interleavings.

Plasma-Lab [5] is a modular platform for statistical model-checking4. The
tool offers a series of SMC algorithms, including advanced techniques for rare
4 Available for download at https://project.inria.fr/plasma-lab/
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event simulation, distributed SMC, non-determinism, and optimization. They
are used with several modeling formalisms and simulators. The main difference
between Plasma-Lab and other SMC tools is that Plasma-Lab proposes an
API abstraction of the concepts of stochastic model simulator, property checker
(monitoring) and SMC algorithm. In other words, the tool has been designed to
use external simulators, input languages, or SMC algorithms. This also allows us
to create direct plug-in interfaces with external specification tools, without using
extra compilers.
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Application-specific
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Fig. 2: Plasma-Lab architecture.

Plasma-Lab architecture is il-
lustrated in Figure 2. The core of
Plasma-Lab is a light-weight con-
troller managing the experiments and
the distribution mechanism. It imple-
ments an API that allows controlling
the experiments either through user
interfaces or through external tools. It
loads three types of plugins: 1. algo-
rithms, 2. checkers, and 3. simulators. These plugins communicate with each other
and with the controller through the API.

In Plasma-Lab rare properties are decomposed into intermediate properties
using a notion of score function over the model-property product automaton.
Intuitively, a score function discriminates good paths from bad, assigning higher
scores to paths that are “closer” to satisfy the overall property. The model-property
product automaton is usually hidden in the implementation of the checker plugin.
Therefore Plasma Lab includes a specific checker plugin for importance splitting
that facilitates the construction of score functions. The plugin allows writing
small observer automata checking properties over traces and compute the score
function. These observers implement a subset of the Bounded Linear Temporal
Logic presented in [10].

Plasma-Lab implements two rare event algorithms based on the importance
splitting technique, a fixed level algorithm and an adaptive level algorithm [9].
The fixed level algorithm requires the user to define a monotonically increasing
sequence of score values whose last value corresponds to satisfying the property.
The adaptive algorithm finds optimal levels automatically and requires only the
maximum score to be specified. Both algorithms estimate the probability of
passing from one level to the next by the proportion of a constant number of
simulations reaching the upper level from the lower. New simulations to replace
those that failed to reach the upper level are started from states chosen uniformly
from the terminal states of successful simulations. The overall estimate is the
product of the estimates of going from one level to the next.

LLVM Simulator plugin We have developed a simulator plugin for Plasma-
Lab that interfaces with Lodin. This plugin is a pure wrapper around the
simulator interface of Lodin. It communicates with the Lodin simulator via
standard input and standard output. Lodin exposes the registers of all functions
of the program to Plasma-Lab, and exposes Boolean variables corresponding



to the [0.func] style propositions of Lodin. The registers are named in the style
Pn_funcname_registerName where Pn designates a variable belonging to the nth process.
If the program has been compiled with debug symbols and without optimisations,
Lodin also exposes the original C-source primitive type variables to Plasma-
Lab. For supporting the importance splitting algorithm of Plasma-Lab, Lodin
provides a State-Tag that Plasma-Lab uses to restart a simulation from that
given state. In Table 2 we have applied the Lodin Plasma-Lab integration to
the models for which Lodin previously failed in finding a satisfying trace for.

Program Levels Probability Time (s)
fib/fib_16.ll 7 1.5e−3 18.20
fib/fib_32.ll 14 4.0e−6 51.66
stack/stack.ll 13 3.86e−15 530.58

Table 2: Plasma-Lab Importance Splitting Results.
The algorithm was run with a budget of 1000 runs
per level.

Example 3. Consider again Ex-
ample 2 and recall we want to
reach a state where the 0th
process can call VERIFIERError.
In order to reach a state where
the 32nd Fibonacci number is
found, all previous Fibonacci numbers must be found first. In Listing 1.2 we show
an excerpt of the observer we use. First the score variable is defined as required
by Plasma-Lab. Plasma-Lab also requires a decided variable. The observer
should set this to true if it is no longer possible to satisfy a trace. An auxilliary
variable, steps, is used by the observer to count the steps in the trace. After these
variable declarations follows a series of update transitions in the style of reactive
modules. Basically these transitions state that, if the sum of i and j is equal
to a given Fibonacci number, and t1 and t2 are in the same iteration of their
loop then update the score variable to a given value ( t1_tmp9, t1_tmp9 and ti_tmp4

correspond to i,j and k respectively). The last two rules update the steps variable
and terminate the trace when exceeding 5000 steps.

Listing 1.2: The observer used by Plasma-Lab for Fibonacci example.
1 observer rareObserver
2 score : int init 0;
3 decided : bool init false;
4 steps : int init 0;
5 [] (P1_t1_tmp9 + P2_t2_tmp9 = 5)& (P1_t1_tmp4=P2_t2_tmp4)-> (score

’= 1);
6 [] P1_t1_tmp9 + P2_t2_tmp9 = 13 & (P1_t1_tmp4=P2_t2_tmp4) -> (

score ’= 2);
7 ...
8 [] P0_Call_VERIFIERError =1 -> (score ’=14);
9 [] steps <5000 ->(steps ’=steps +1);

10 [] steps >=5000 ->(decided ’=true);
11 endobserver

4 Conclusion

In this paper we presented Lodin a tool implementing SMC of LLVM code.
The tool provides a plugin-architecture making it extendable to many execution
environments. The tool also includes a simulation-component that is used to
connect Lodin to Plasma-Lab and thereby provide the first importance splitting
implementation for LLVM.
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