
View abstraction for systems with component

identities

Gavin Lowe

Department of Computer Science, University of Oxford, UK
gavin.lowe@cs.ox.ac.uk

Abstract. The parameterised veri�cation problem seeks to verify all
members of some family of systems. We consider the following instance:
each system is composed of an arbitrary number of similar component
processes, together with a �xed number of server processes; processes
communicate via synchronous message passing; in particular, each com-
ponent process has an identity, which may be included in messages, and
passed to third parties. We extend Abdulla et al.'s technique of view
abstraction, together with techniques based on symmetry reduction, to
this setting. We give an algorithm and implementation that allows such
systems to be veri�ed for an arbitrary number of components. We show
how this technique can be applied to a concurrent datatype built from
reference-linked nodes, such as a linked list. Further, we show how to
capture the speci�cation of a queue or of a stack.

1 Introduction

The parameterised veri�cation problem considers a family of systems P (x) where
the parameter x ranges over a potentially in�nite set, and asks whether such
systems are correct for all values of x. In this paper we consider the following
instance of the parameterised veri�cation problem. Each system is built from
some number of similar replicated component processes, together with a �xed
number of server processes; the parameter is the number of component pro-
cesses. The components and servers communicate via (CSP-style) synchronous
message passing; we call each message an event. In particular each component
has an identity, drawn from some potentially in�nite set. These identities can
be included in events; thus a process can obtain the identity of a component
process, and possibly pass it on to a third process. This means that each process
has a potentially in�nite state space (a �nite control state combined with data
from a potentially in�nite set). We describe the setting for our work more for-
mally in the next section. The problem is undecidable in general [5, 23]; however,
veri�cation techniques prove e�ective on a number of speci�c problems.

We adapt the technique of view abstraction of Abdulla et al. [1] to this setting.
The idea of view abstraction is that we abstract each system state to its views of
some size k, recording the states of just k of the replicated component processes.
We can (with a �nite amount of work) calculate an over-estimate of all views of
size k of the system; this gives us an over-estimate of the states of the system. We

then check that all states of this over-estimate satisfy our correctness condition:
if so, we can deduce that all systems of size k or larger are correct (systems of
smaller sizes can be checked directly). We present our use of view abstraction in
Sections 3 and 4.

Our setting is made more complicated by the presence of the identities of the
components. These mean that the set of views (for some �xed k) is potentially
in�nite. However, in Section 5 we use techniques from symmetry reduction [10,
14, 19, 9, 28, 8, 17] to reduce the views that need to be considered to a �nite set.

We present the main algorithm in Section 6, and prove its correctness. We
then present our prototype implementation: this is based upon the process al-
gebra CSP [26], and builds on the model checker FDR [16], so as to support all
of machine-readable CSP. We stress, though, that the main ideas of this paper
are not CSP-speci�c: they apply to any formalism with a similar computational
model, and, we believe, could be adapted to other computational models.

A major advantage of this use of identities is that it allows us to model and
analyse reference-linked data structures, such as linked lists. Each node in the
data structure is modelled by a replicated component process; such a process can
hold the identity of another such process, modelling a reference to that node.
We illustrate this technique in Section 7 by modelling and analysing a simple
lock-based concurrent queue and stack, each based on a linked list; in particular,
we show how to capture the speci�cations of these datatypes in a �nite-state
way, using techniques from data independence [30]. Our longer-term aim is to
extend these techniques to more interesting, lock-free concurrent datatypes.

We see our main contributions as follows.

{ An adaptation of view abstraction to synchronous message passing (this is
mostly a straightforward adaptation of the techniques of [1]);

{ An extension of view abstraction to include systems where components have
identities, and these identities can be passed around, using techniques based
on symmetry reduction to produce a �nite-state abstraction;

{ The implementation of these ideas, using FDR so as to support all of
machine-readable CSP;

{ The application to reference-linked concurrent datatypes;
{ The �nite-state speci�cation of a queue and a stack.

1.1 Related work

There have been many approaches to the parameterised model checking problem.
Much recent work has been based on regular model checking, e.g. [20, 31, 7,

12]. Here, the state of each individual process is from some �nite set, and each
system state is considered as a word over this �nite set; the set of initial states is
a regular set; and the transition relation is a regular relation, normally de�ned
by a transducer. An excellent survey is in [3]. Techniques include widening [29],
acceleration [2] and abstraction [6].

The work [1] that the current paper builds on falls within this class. However,
our setting is outside this class: the presence of component identities means that
each individual process has a potentially in�nite state space.

2

Other approaches include induction [13, 15, 27], network invariants [32], and
counter abstraction [22, 11, 25, 23]. In particular, [23] applied counter abstraction
to systems, like in the current paper, where components had identities which
could be passed from one process to another: some number B of the identities
were treated faithfully, and the remainder were abstracted; the approach of the
current paper seems better able to capture relationships between components,
as required for the analysis of reference-linked data structures.

The work [4] tackles a similar problem to this paper. It captures the speci-
�cation of a queue or a stack using an automaton that, informally, guesses the
data value that will be treated incorrectly. The authors use shape analysis to
�nitely analyse data structures built on linked lists. They are able to prove lin-
earizability of concurrent datatypes assuming explicit linearization points are
given.

Most approaches to symmetry reduction in model checking [10, 14, 19, 8, 17]
work by identifying symmetric states, and, during exploration, replace each state
encountered with a representative member of its symmetry-equivalence class: if
several states map to the same representative, this reduces the work to be done.
This representative might not be unique, since �nding unique representatives is
hard, in general; however, such approaches work well in most cases. Our approach
is closer to that of [28]: we test whether a state encountered during exploration is
equivalent to a state previously encountered, and if so do not explore it further.

2 The framework

In this section, we introduce more formally the class of systems that we consider,
and our framework.

We introduce a toy example to illustrate the ideas. The replicated compo-
nents run a simple token-based mutual exclusion protocol. Component j can
receive the token from component i via a transition with event pass:i:j; it can
then enter and leave the critical section, before passing the token to another
component. In the initial state, a single component holds the token.

A watchdog server process observes components entering and leaving the
critical section, and signals with event error if mutual exclusion is violated.
Our correctness condition will be that the event error does not occur. (In larger
examples, we might have additional servers, playing some part in the protocol, in
addition to a watchdog that checks the correctness condition.) Figure 1 illustrates
state machines for these processes.

Each process's state can be thought of as the combination of a control state

and a vector of zero or more parameters, each of which is a component identity,
either its own identity or that of another component. In more interesting exam-
ples, these parameters can be passed on to a third party. Processes synchronise
on some common events, with at most two components synchronising on each
event. We want to verify such systems for an arbitrary number of replicated
components.

Formally, each process is represented by a parameterised state machine.

3

s0(me) s1(me)

s2(me)s3(me)

pass?other:me

enter:me

leave:me

pass:me?other

wd0 wd1(id) wd2

enter?id

leave:id

enter?id0

error

Fig. 1. Illustration of the state machines for the toy example. The diagrams are sym-
bolic, and parameterised by the set of component identities. For example, the latter
state diagram has a state wd1(id) for each identity id; there is a transition labelled
enter:id from wd0 to wd1(id) for each identity id.

De�nition 1. A state machine is a tuple (Q;�; �), where: Q is a set of states;
� is a set of visible events with � =2 � (� represents an internal event); and
� � Q� (� [f�g)�Q is a transition relation.

A parameterised state machine is a state machine where: (1) the states Q are
a subset of S � T �, for some �nite set S of control states and some potentially
in�nite set T of component identities; and (2) the events � are a subset of
Chan� T �, for some �nite set Chan of channels.

We sometimes write a state (s;x) as s(x): s is a control state, and x records
the values of its parameters (cf. Figure 1). Similarly, we write an event (c;y) as

c:y, and write s(x)
c:y
�! s0(z) to denote ((s;x); (c;y); (s0; z)) 2 �.

We assume that the component identities are treated polymorphically: they
can be received, stored, sent, and tested for equality; but no other operations,
such as arithmetic operations, can be performed on them. Processes de�ned
in this way are naturally symmetric. Let � be a permutation on T ; we write
Sym(T) for the set of all such permutations. We lift � to vectors from T � by
point-wise application; we then lift it to states and events by �(s(x)) = s(�(x))
and �(c:x) = c:�(x). We require each state s(�(x)) to be equivalent to s(x) but
with all events renamed by �: formally the states are �-bisimilar.

De�nition 2. Let M = (Q;�; �) be a state machine, and let � 2 Sym(T). We
say that � � Q�Q is a �-bisimulation i� whenever (q1; q2) 2 � and a 2 �[f�g:

{ If q1
a
! q01 then 9 q

0
2 2 Q � q2

�(a)
�! q02 ^ q01 � q02;

{ If q2
a
! q02 then 9 q

0
1 2 Q � q1

��1(a)
��! q01 ^ q01 � q02.

De�nition 3. A parameterised state machine (Q;�; �) is symmetric if for every
� 2 Sym(T), f(s(x); s(�(x))) j s(x) 2 Qg is a �-bisimulation.

4

This is a natural condition. In [17], we proved that under rather mild syntactic
conditions, an arbitrary process de�ned using machine-readable CSP will be
symmetric in this sense. The conditions are that the de�nition of the process
contains no constant from the type T , and that it does not use certain FDR
built-in functions over sets and maps, or certain compression functions.

2.1 Systems

Each system will contain a server and some number of replicated components.
We assume a single server here, for simplicity: a system with multiple servers
can be modelled by considering the parallel composition of the servers as a single
server.

Each system state contains a state for the server, and a �nite multiset con-
taining the state for each component.1 For example, one state of the toy example
is (wd1(T0); fs2(T0); s0(T1); s0(T2)g); where fT0; T1; T2g � T .

De�nition 4. A system is a tuple (Server; Cpts; Sync; Init) where

1. Server = (Qs; �s; �s) is a symmetric parameterised state machine represent-
ing the server;

2. Cpts = (Qc; �c; �c) is a symmetric parameterised state machine representing
each replicated component;

3. Sync � �c is a set of events that require the synchronisation of two replicated
components; we require �(Sync) = Sync for each � 2 Sym(T);

4. Init � SS is a set of initial states, where SS = Qs � M(Qc) denotes all
possible system states.

Given such a system, a system state is a pair (qs;m) 2 SS, where qs 2 Qs gives
the state of the server, and m 2M(Qc) gives the states of the components.

A system de�nes a state machine (SS; �s [�c; �), where � is de�ned by the
following �ve rules (where !s and !c correspond to �s and �c, respectively).
The rules represent, respectively: events of just the server; events of just one
component; synchronisations between the server and a single component; syn-
chronisations between two components; and synchronisations between the server
and two components.

qs
a
!s q

0
s a 2 (�s ��c) [f�g

(qs;m)
a
! (q0s;m)

qc
a
!c q

0
c a 2 (�c � Sync��s) [f�g

(qs;m] fqcg)
a
! (qs;m] fq0cg)

qs
a
!s q

0
s qc

a
!c q

0
c a 2 (�c � Sync) \�s

(qs;m] fqcg)
a
! (q0s;m] fq0cg)

qc;1
a
!c q

0
c;1 qc;2

a
!c q

0
c;2 a 2 Sync��s

(qs;m] fqc;1; qc;2g)
a
! (qs;m] fq0c;1; q

0
c;2g)

qs
a
!s q

0
s qc;1

a
!c q

0
c;1 qc;2

a
!c q

0
c;2 a 2 Sync \�s

(qs;m] fqc;1; qc;2g)
a
! (q0s;m] fq0c;1; q

0
c;2g)

1 We write M for a �nite multiset type constructor. We mostly use set notation for
multisets, but write \]" for a multiset union.

5

For example, in the toy example, we can take Cpts and Server to be the state
machines illustrated in Figure 1; Sync is the set of all events on channel pass;
Init is all states with the watchdog in state wd0, a single replicated component
in state s1, and the remaining components in state s0 (and with components
having distinct identities).

De�nition 5. We de�ne the reachable states R of a system to be those system
states reachable from an initial state by zero or more transitions.

Our normal correctness condition will be that the distinguished event error
cannot occur.

De�nition 6. A system is error-free if there are no reachable states ss and ss0

such that ss
error
��! ss0.

Our normal style will be to include a watchdog server, that observes (some)
events by other processes, and performs the event error after an erroneous trace.
In [18] it is shown that an arbitrary CSP traces re�nement can be encoded in this
way. Hence this technique can capture an arbitrary �nite-state safety property.

3 Using view abstraction

In this section we describe our application of view abstraction, adapting the
techniques from [1] to our synchronous message-passing setting. Fix a system
(Server; Cpts; Sync; Init), and let Qs and Qc be the states of Server and Cpts,
respectively. Let k 2 Z+.

A view of size k over Qc is a multiset v 2M(Qc) of size k. A system view of
size k is a pair (q; v) with q 2 Qs and v a view of size k. We write SVk for the
set of all system views of size k. Note that system states and systems views have
the same type: however, the latter record only part of the full system state.

Let SS�k be all system states with at least k replicated components. We
de�ne the following abstraction relation, for (q;m) 2 SS�k and (q; v) 2 SVk:

(q; v) vk (q;m) i� v � m:

The system view (q; v) records the states of just k of the components of (q;m).
The abstraction function �k : SS�k ! P(SVk) abstracts a system state by

its system views of size k:

�k(q;m) = f(q; v) 2 SVk j (q; v) vk (q;m)g:

We lift �k to sets of system states by pointwise application.
The concretization function k : P(SVk) ! SS�k takes a set SV of system

views, and produces those system states that are consistent with SV , i.e. such
that all views of the state of size k are in SV .

k(SV) = f(q;m) 2 SS�k j �k(q;m) � SV g:

The following lemma is proved as in [1].

6

Lemma 7. (�k; k) forms a Galois connection: if A � SS�k and B � SVk,

then �k(A) � B , A � k(B):

We de�ne an abstract transition relation. If SV � SVk and sv0 2 SVk then
de�ne

SV
a
!k sv

0 , 9 ss 2 k(SV) ; ss
0 2 SS q ss

a
! ss0 ^ sv0 vk ss

0:

For example, in the running example we have the transition

f (wd0; fs3(T0); s0(T1)g); (wd0; fs3(T0); s0(T2)g); (wd0; fs0(T1); s0(T2)g) g
pass:T0;T1
�����!2 (wd0; fs0(T0); s1(T1)g)

corresponding to the concrete transition

(wd0; fs3(T0); s0(T1); s0(T2)g)
pass:T0;T1
�����! (wd0; fs0(T0); s1(T1); s0(T2)g):

We then de�ne the abstract post-image of a set of system views SV � SVk by

aPostk(SV) = fsv0 j 9 a q SV
a
!k sv

0g = �k(post(k(SV)));

where post gives the concrete post-image of a set X � SS:

post(X) = f(s0;m0) j 9 a; (s;m) 2 X q (s;m)
a
! (s0;m0)g:

The following lemma relates abstract and concrete post-images; it is easily
proved using Lemma 7.

Lemma 8. If SV � SVk and X � k(SV), then post(X) � k(aPostk(SV)).

Let Init�k and R�k be, respectively, those initial states from Init, and those
reachable states from R, with at least k replicated components. The following
theorem shows how R�k can be over-approximated by iterating the abstract
post-image. We write f�(X) for

S1
i=0 f

i(X).

Theorem 9. If AInit � SVk is such that �k(Init�k) � AInit then

R�k � k(aPost
�
k(AInit)):

Proof: The assumption implies Init�k � k(AInit), from Lemma 7. Then
Lemma 8 implies postn(Init�k) � k(aPost

n(AInit)) via a trivial induction.
The result then follows from the fact that R�k = post�(Init�k). �

Hence, if we can show that all states in k(aPost
�
k(AInit)) are error-free,

then we will be able to deduce that all systems with k or more components are
error-free; systems with fewer than k components can be checked directly (for a
�xed set of parameters, and appealing to symmetry).

In the running example, we can take AInit to contain all system views of
size k with the watchdog in state wd0, zero or one components in state s1, and
the remaining components in state s0 (and with components having distinct
identities). Then, for k � 2, k(aPost

�
k(AInit)) contains all system views as

7

follows: (1) at most one component is in state s1, s2 or s3, and the remainder
are in s0; and (2) if component id is in s2 then the watchdog is in wd1(id); if
every component is in s0 then the watchdog is in either wd0 or wd1(id) where
component id is not in the view; and otherwise the watchdog is in wd0. This
approximates the invariant that a single component holds the token, and the
watchdog records the component in the critical region. In particular, the event
error is not available from any such state. The above theorem then shows that
all systems of size at least two are error-free.

However, the above theorem does not immediately give an algorithm. The
application of k within aPost can produce an in�nite set, for two reasons:

{ It can give system states with an arbitrary number of components;
{ The parameters of type T within system states can range over a potentially
in�nite set.

We tackle the former problem in Section 4, by showing that it is enough to build
concretizations of size at most k + 2. We tackle the latter problem in Section 5,
using symmetry.

4 Bounding the number of components

We now show that, when calculating aPostk, it is enough to consider concretiza-
tions with at most two additional component states.

For k � l and SV � SVk, de�ne

lk(SV) = f(q;mc) 2 SS j �k(q;mc) � SV ^ k � #mc � lg;

i.e., those concretizations with between k and l component states. For k � l,
SV � SVk and sv0 2 SVk, de�ne the abstract transitions involving such con-
cretizations as follows:

SV
a
�!

l

k sv
0 , 9 ss 2 lk(SV) ; ss

0 2 SS q ss
a
! ss0 ^ sv0 vk ss

0:

Lemma 10. Suppose SV � SVk, sv0 2 SVk, k � 1, and SV
a
�!k sv0. Then

SV
a
�!

k+2

k sv0.

Proof: If SV
a
�!k sv0 = (q0s; v

0) then for some (qs;m) 2 k(SV) and some

(q0s;m
0) we have (qs;m)

a
! (q0s;m

0) and sv0 vk (q0s;m
0). Let m̂0 be the smallest

subset ofm0 that includes v0 and each of the (at most two) replicated components
that change state in the transition; and let m̂ � m be the pre-transition states
of the components in m̂0. For example, suppose the transition corresponds to
the fourth rule in De�nition 4, so, for some m0, m = m0] fqc;1; qc;2g and
m0 = m0] fq

0
c;1; q

0
c;2g; and suppose v0 contains q0c;1 but not q0c;2; then m̂0 =

v0] fq0c;2g � m0; and m̂ � m is the same as m̂0 but with qc;1 and qc;2 in place
of q0c;1 and q0c;2.

In each case, it is easy to see that (qs; m̂)
a
! (q0s; m̂

0); via the same transition
rule that produced the original transition. Also sv0 = (q0s; v

0) vk (q0s; m̂
0). And

8

k � #m̂ = #m̂0 � k + 2, since we have added at most two components to v0.
Finally, m̂ � m, so �k(qs; m̂) � �k(qs;m) � SV , so (qs; m̂) 2 k+2k (SV). Hence

SV
a
�!

k+2

k sv0. �

Abdulla et al. [1] prove a similar result in their setting, although using con-
cretizations of size at most k + 1. We require concretizations of size k + 2,
essentially because of the possibility of a three-way synchronisation between the
server and two component states (corresponding to the �fth transition rule in
De�nition 4). The following lemma shows that when we remove the possibility
of such synchronisations, we also obtain a limit of k + 1. However, the result is
weakened to include the possibility that the system view produced was in the
initial set of system views.

Lemma 11. Suppose Sync \ �s = fg. Suppose further that SV � SVk, sv0 2

SVk, k � 1, and SV
a
!k sv

0. Then either sv0 2 SV or SV
a
!

k+1

k sv0.

Proof: The only cases in the proof of Lemma 10 where concretizations of size
k + 2 were required were transitions involving two replicated components |so
via the fourth and �fth transition rules| where neither component state was
included in sv0. The case of the �fth rule is prevented by the assumption of
this lemma. In the remaining case, we have (using identi�ers as in the proof of
Lemma 10): a 2 Sync, qs = q0s, m = m0] fqc;1; qc;2g, m

0 = m0] fq
0
c;1; q

0
c;2g,

v0 � m0, qc;1
a
!c q

0
c;1, and qc;2

a
!c q

0
c;2. But then sv0 = (qs; v

0) vk (qs;m) so
sv0 2 SV . �

The above lemmas show that, in order to calculate aPostk (as required for
Theorem 9) it is enough to calculate either aPostk+2k or (if Sync \ �s = fg)

aPostIdk+1k where

aPostlk(SV) = �k(post(
l
k(SV)));

aPostIdlk(SV) = �k(post(
l
k(SV))) [SV:

The result below follows easily from Lemmas 10 and 11.

Corollary 12. Let SV � SVk and k � 1. Then

1. aPost�k(SV) = (aPostk+2k)�(SV);

2. If Sync \�s = fg then aPost�k(SV) � (aPostIdk+1k)�(SV).

5 Using symmetry

The abstract transition relation from the previous section still produces a poten-
tially in�nite state space, because of the potentially unbounded set of component
identities. In this section, we use techniques based on symmetry reduction to re-
duce this to a �nite state space. We �x a system, as in De�nition 4.

Recall (De�nitions 3 and 4) that we assume that the server and each repli-
cated component is symmetric. We show that this implies that the system as a
whole is symmetric. We lift permutations to system states by point-wise appli-
cation: �(q;m) = (�(q); f�(qc) j qc 2 mg).

9

Lemma 13. The state machine de�ned by a system is symmetric: if (q;m) 2 SS
and � 2 Sym(T), then (q;m) �� �(q;m).

Proof: We show that the relation f((q;m); �(q;m)) j (q;m) 2 SSg is a �-bisim-

ulation. Suppose (q;m)
a
! (q0;m0). We show that �(q;m)

�(a)
! �(q0;m0) by a case

analysis on the rule used to produce the former transition. For example, suppose
the transition is produced by the third rule, so is of the form

(q;m1] fqcg)
a
! (q0;m1] fq

0
cg);

such that q
a
!s q0, qc

a
!c q0c and a 2 (�c � Sync) \ �s. Then since Server

and Cpts are symmetric, and �(Sync) = Sync, we have �(q)
�(a)
�!s �(q0),

�(qc)
�(a)
�!c �(q

0
c) and �(a) 2 (�c � Sync) \�s. But then

�(q;m1] fqcg)
�(a)
�! �(q0;m1] fq

0
cg);

using the same rule. The cases for other rules are similar. And conversely, we
can check that each transition of �(q;m) is matched by a transition of (q;m).

�

We now show a similar result for the abstract transition relation. We lift � to
system views and sets of system views by point-wise application. The following
lemma shows that abstract transitions from �-related sets are related in the
obvious way; it is proven using Lemma 13 and straightforward properties of
permutations.

Lemma 14. If SV
a
�!

l

k sv
0 then �(SV)

�(a)
��!

l

k �(sv
0).

Our approach will be to treat symmetric system views as equivalent, requiring
the exploration of only one system view in each equivalence class. We will need
the following de�nition and lemma.

De�nition 15. Let sv1; sv2 2 SVk. We write sv1 � sv2 if sv1 = �(sv2) for some
� 2 Sym(T). Note that this is an equivalence relation. We say that sv1 and sv2
are equivalent in this case.

Let SV1; SV2 � SVk. We write SV1 �� SV2 if

8 sv1 2 SV1 q 9 sv2 2 SV2 q sv1 � sv2:

We write SV1 � SV2, and say that SV1 and SV2 are equivalent, if SV1 �� SV2
and SV2 �� SV1. This is again an equivalence relation.

Lemma 16. Suppose SV1; SV2 � SVk with SV1 � SV2. Then aPostlk(SV1) �
aPostlk(SV2).

Proof: This follows directly from Lemma 14. �

10

6 The algorithm and implementation

We now present our algorithm, and prove its correctness. The algorithm takes
as inputs a system, a positive integer k, and a set AInit of initial system views
such that �k(Init�k) �� AInit. If Sync \�s = fg then let l = k + 1; otherwise
let l = k+2. The algorithm iterates aPostlk, maintaining a set SV � SVk, which
stores the system views encountered so far, up to equivalence.

SV := AInit
while(true)f

if SV
error
��!

l

k then return failure
for(sv0 2 aPostlk(SV)) if 6 9 sv 2 SV q sv � sv0 then SV := SV [fsv0g
if no new view was added to SV then return success

g

When this algorithm is run on the toy example with k = 2, it encounters just
�ve system views:

(wd0; fs1(T0); s0(T1)g); (wd0; fs0(T0); s0(T1)g);
(wd1(T0); fs2(T0); s0(T1)g); (wd1(T0); fs0(T1); s0(T2)g); (wd0; fs3(T0); s0(T2)g)

(or equivalent system views), the former two being the initial system views.

Lemma 17. If the algorithm does not return failure then the �nal value of SV
is such that R�k

�
� k(SV).

Proof:We show that after n iterations, SV � (aPostIdlk)
n(AInit), by induction

on n. The base case is trivial. For the inductive case, suppose, at the start of
an iteration, SV � (aPostIdlk)

n(AInit). Each element sv0 of aPostlk(SV) is
added to SV , unless SV already contains an equivalent system view. Hence the
subsequent value of SV is equivalent to the value of SV [aPostlk(SV) at the
beginning of the iteration. But

SV [aPostlk(SV) � (aPostIdlk)
n(AInit) [aPostlk((aPostId

l
k)

n(AInit))
= (aPostIdlk)

n+1(AInit);

using the inductive hypothesis and Lemma 16, as required.
SVk contains a �nite number of equivalence classes. Hence the iteration

must reach a �xed point such that SV is equivalent to (aPostIdlk)
�(AInit) =S1

n=0(aPostId
l
k)

n(AInit). By Corollary 12, this contains aPost�k(AInit). And
by Theorem 9, R�k � k(aPost

�
k(AInit)). �

Theorem 18. If the algorithm returns success, then the system is error-free for

systems of size at least k.

Proof: We prove the contra-positive: suppose there is some system state
ss 2 R�k such that ss

error
��!; we show that the algorithm returns failure.

From Lemma 17, for the �xed point of SV , we have ss 2 k(SV), and so

SV
error
��!k. Then by Lemmas 10 and 11, SV

error
��!

l

k. Hence the algorithm re-
turns failure. �

11

Of course, the algorithm may sometimes return failure when, in fact, all
systems are error-free: a spurious counterexample. This might just mean that it
is necessary to re-run the algorithm with a larger value of k: the current value
of k is not large enough to capture relevant properties of the system. Or it might
be that the algorithm would fail for all values of k. This should not be surprising,
since the problem is undecidable in general.

6.1 Prototype implementation

We have created a prototype implementation, in Scala, following the above algo-
rithm2. Unlike the model in earlier sections, the implementation allows multiple
servers: the parallel composition of these can be considered as a single server,
for compatibility with the model. The current implementation supports only
the conditions of Lemma 11, corresponding to l = k + 1; in practice, nearly all
examples �t within this setting.

The implementation takes as input a value for k, and a description of the
system modelled in machine-readable CSP (CSPM): more precisely, it takes a
standard CSPM script, suitable for model checking using FDR [16], augmented
with annotations to identify the processes representing the replicated compo-
nents and the servers (with their initial states), their alphabets, and the type T
of components' identities. CSPM is a very expressive language, which makes it
convenient for de�ning systems. The script must contain a concrete de�nition
for T that is big enough, in a sense that we make clear below.

The initial state aInit of the components and servers should be such that
�k(Init�k) �� faInitg. A common case is that each initial state in Init�k con-
tains some small number n of components in distinguished states (in the toy
example, a single component in state s1, holding the token), and all other com-
ponents in some default state (in the toy example, state s0, not holding the to-
ken), possibly with servers holding the identities of components in distinguished
states. In this case, it is enough for the initial state to include the n components
in distinguished states (with servers holding their identities, if appropriate), plus
k components in the default state.

The program interrogates FDR to obtain state machines for the servers and
components (based upon the concrete de�nition for T), and to check that they
are symmetric in T . Using the implementation of symmetry reduction from [17],
each state is represented by a control state (an integer) and a list of parame-
ters (each an integer). From these, the program can calculate transitions from
concrete system states.

The program then follows the algorithm from Section 6 quite closely. When a
concretization of size l is produced, it is possible that the concretization contains
more identities than were included in the concrete de�nition of T ; in this case,
the program gives an error, and the user must provide a larger type.

2 The implementation and the scripts for the examples in the next section are available
from www.cs.ox.ac.uk/people/gavin.lowe/ViewAbstraction/index.html.

12

Internally, a view (a multiset of states) is represented by a list; a system
view is then represented by a list of the states of the servers (in some standard
order) and this view. Hence testing whether two system views are equivalent
corresponds to testing whether there is some way of permuting the view list and
uniformly replacing component identities so as to make the system views equal.
To make this e�cient, each system view is replaced by an equivalent system view
where the control states of components are in non-decreasing order, the identities
are an initial segment of the natural numbers, and their �rst occurrences in the
representation are in increasing order. The set of system views (the set SV of
Section 6) is then stored as a mapping, with each system view keyed against
its control states; to test whether a particular system view is equivalent to an
existing one, it is enough to compare against those with the same key.

7 Analysing reference-linked data structures

We now show how our technique can be used to analyse a reference-linked data
structure, such as a linked list. We illustrate our technique be verifying a lock-
based concurrent queue, that uses an unbounded linked list, and that is used by
two threads. We outline possible extensions to this setting in the conclusions.
The queue contains data taken from the set fA;B;Cg; we justify this choice
below.

Each node in the linked list is modelled by a component process, and can be
de�ned using CSP notation as follows.

FreeNode(me) = initNode?t!me?d! Noded(me; null);

Noded(me; next) = getDatum?t!me!d! Noded(me; next)
� getNext?t!me!next! Noded(me; next)
� setNext?t!me?newNext! Noded(me; newNext)
� freeNode?t!me! FreeNode(me):

The state FreeNode(me) represents a free node with identity me: it can be
initialised by any thread t to store datum d and to have next reference to a
distinguished value null. The state Noded(me; next) represents a node with
identity me holding datum d and with next reference next (we write d as a
subscript, since this is not from the type of node identities, so not a parameter
in the sense of the model). In this state, a thread t may: get the datum d; get
the next reference next; set the next reference to a new value newNext; or free
the node. Thus, nodes may be joined together to form a linked list.

In the initial state, a single node is initialised as a dummy header node in the
state NodeA(N0; null), and the remaining nodes are initialised in the FreeNode
state.

The system contains three server processes representing part of the datatype:
a lock process, that allows a thread to lock the queue; and two processes repre-
senting shared variables referencing the dummy header node, and the last node
in the list, respectively, each initially holding N0. Further, the system contains

13

two server processes representing threads operating on the queue, enqueueing
and dequeueing values (a dequeue on an empty queue returns a special value).
These processes are de�ned as expected.

In order to verify that the system forms a queue, we adapt ideas from
Wolper [30]. A process is data independent in a particular type D if the only
operations it can perform on values of that type are to input them, store them,
and output them. This means that for each trace tr of the process, uniformly
replacing values from D within tr will give another trace of the process.

Lemma 19. Suppose a process is data independent in a type D. Suppose further

that whenever a sequence of data values from the language A�BC� is enqueued,

then a sequence from A�BC� +A� is dequeued, and no dequeue operation �nds

the queue empty between the enqueue and dequeue of B. Then it is a queue.

Proof: (sketch). Consider a behaviour of such a process that violates the prop-
erty of being a queue, by either losing, duplicating or reordering a particular
piece of data. Then, by data independence, a similar behaviour would occur
on an input from A�BC�, losing, duplicating or reordering B. But this would
produce an output not from this language, or a dequeue would �nd the queue
empty between the enqueue and dequeue of B. �

We add two servers so as to exploit this idea:

{ A regulator process, that synchronises with the threads, to force them to
enqueue a sequence from A�BC�;

{ A watchdog process, that observes the values dequeued, and performs error
if the sequence is not from A�BC� + A�, or if a dequeue �nds the queue
empty between the enqueue and dequeue of B.

The prototype implementation can be used to explore this system: the test
succeeds in the case k = 2, and completes in about 12 seconds. Hence, by Theo-
rem 18, all systems with at least two nodes implement a queue (for two threads).
It is necessary to include at least nine values in the type of node identities: when
considering transitions from states of size k + 1 = 3 (cf. Lemma 11), system
states are encountered with three nodes, each holding their own identity and
one other; the Header and Tail processes can each hold one other identity; and
the thread holding the lock can hold one of these and one other identity.

We have used similar ideas to analyse a lock-based stack that uses a linked
list. The modelling is very similar to as for the queue. For veri�cation, we ensure
that the values pushed onto the stack form a sequence from A�BC�; we then
check (using a watchdog) that (1) before B is pushed, only A can be popped;
(2) after B is pushed, the sequence of values popped is from C�B(A + C)�;
and (3) a pop does not �nd the stack empty between the B being pushed and
popped. An argument similar to Lemma 19 justi�es the correctness of this test.
The analysis, with k = 2, takes about 10 seconds in this case.

14

8 Conclusions

In this paper we have tackled a particular instance of the parameterised model
checking problem, where replicated component processes have identities that
may be passed between processes. We have adapted the technique of view ab-
straction, which records, for each system state, the states of just some small
number k of replicated components. We have used techniques from symmetry
reduction, to bound the number of identities of components that are stored. We
have provided an implementation based on systems de�ned in CSP (although
the underlying ideas are not CSP-speci�c). We have shown that the framework
allows us to analyse unbounded reference-linked datatypes.

Roughly speaking, our technique, with a particular value of k, succeeds for
systems whose invariant can be described in terms of the states of servers and at
most k replicated components. For example, with the queue of Section 7, when
a sequence from A�BC� is enqueued, each pair of adjacent nodes in the linked
list hold data values (A;A), (A;B), (B;C) or (C;C), which implies that the
sequence held is from A�+A�BC�+C�: this invariant talks about the states of
just two components, so taking k = 2 succeeds.

Wolper [30] uses a technique similar to ours for characterising queues, but
based on enqueueing a sequence from A�BA�CA�. Curiously, our approach will
not work with such a sequence, and gives a spurious error. This is because the
corresponding invariant cannot be described in terms of the states of a bounded
number of components, because a node holding A can be followed by a node
holding any datum. This suggests that when trying to characterise a particular
datatype based on chosen input sequences, those sequences should not contain
the same data value in two di�erent \chunks".

In this paper we have assumed a single family of replicated components. We
intend to extend this to multiple such families. For example, in Section 7, we
could have considered a family of processes representing the threads that interact
with the queue, to allow us to verify that the datatype is correct when used by
an arbitrary number of threads.

Our main motiviating domain for this work is the study of concurrent
datatypes, particularly lock-free datatypes. In [21] we used CSP and FDR to
analyse a lock-free queue based on a linked list [24] for a �xed number of nodes
and threads. We would like to use the techniques from this paper to consider an
arbitrary number of nodes and threads. The main challenge here is capturing
the correctness condition of linearizability: we believe this will be straightforward
when explicit linearization points are given, but harder otherwise.

We have assumed a fully connected topology, where each replicated compo-
nent can communicate with each other. We intend to also consider more restric-
tive topologies, such as a ring, following [1, Section 3.4].

In this paper we have considered only safety properties, corresponding to
traces of the system. We would like to be able to consider also liveness properties,
such as deadlock-freedom. One can adapt the algorithm from Section 6 to test
whether any concretization of the set of system views deadlocks; one can then
prove a variant of Theorem 18 that shows that if no such deadlock is found, then

15

no system of size at least k deadlocks. However, this does not work in practice,
since the abstraction introduces too many spurious deadlocks that do not occur
in the unabstracted system. We intend to investigate whether other abstractions
work better for this purpose.

Acknowledgements I would like to thank Tom Gibson-Robinson for useful discus-
sions concerning this work, and for extending the FDR4 API to support various
functions necessary for the implementation from Section 6.1.

References

1. P. Abdulla, F. Haziza, and L. Hol��k. Parameterized veri�cation through view
abstraction. International Journal on Software Tools for Technology Transfer,
18:495{516, 2016.

2. P. Abdulla, B. Jonsson, M. Nilsson, and J. d'Orso. Regular model checking made
simple and e�cient. In Proceedings of CONCUR'02, 13th International Conference
on Concurrency Theory, volume 2421 of LNCS, pages 116{130, 2002.

3. P. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A survey of regular model
checking. In Proceedings of Concur, volume 3170 of LNCS, pages 35{48, 2004.

4. P. Abdullah, F. Haziza, L. Hol��k, B. Jonsson, and A. Rezine. An integrated speci-
�cation and veri�cation technique for highly concurrent data structures. Interna-
tional Journal on Software Tools for Technology Transfer, 19:549{563, 2017.

5. K. R. Apt and D. C. Kozen. Limits for automatic veri�cation of �nite-state con-
current systems. Information Processing Letters, 22(6):307{309, 1986.

6. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model checking. In
Proceedings of International Conference on Computer Aided Veri�cation, volume
3114 of LNCS, pages 372{386, 2004.

7. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In
Proceedings of the 12th International Conference on Computer Aided Veri�cation,
volume 1855 of LNCS, pages 403{418, 2000.

8. D. Bo�sna�cki, D. Dams, and L. Holenderski. Symmetric Spin. International Journal
on Software Tools for Technology Transfer, 4:92{106, 2002.

9. E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla. Symmetry reductions in
model checking. In Proceedings of the 10th International Conference on Computer-
Aided Veri�cation (CAV '98), pages 147{158, 1998.

10. E. M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting symmetry in temporal
logic model checking. Formal Methods in System Design, 9:77{104, 1996.

11. E. M. Clarke and O. Grumberg. Avoiding the state explosion problem in temporal
logic model checking. In Proceedings of the 6th Annual Association for Computing
Machinery Symposium on Principles of Distributed Computing, pages 294{303,
1987.

12. D. Dams, Y. Lakhnech, and M. Ste�en. Iterating transducers. The Journal of
Logic and Algebraic Programming, 52{53:109{127, 2002.

13. E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In Proceedings of the
Symposium on Principles of Programming Languages (POPL '95), 1995.

14. E. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal Methods
in System Design, 9:105{131, 1996.

15. S. M. German and A. P. Sistla. Reasoning about systems with many processes.
Journal of the ACM, 39(3):675{735, 1992.

16

16. T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. W. Roscoe. FDR3: a
parallel re�nement checker for CSP. International Journal on Software Tools for
Technology Transfer, 2015.

17. T. Gibson-Robinson and G. Lowe. Symmetry reduction in CSP model checking.
Submitted for publication. Extended version at http://www.cs.ox.ac.uk/people/
gavin.lowe/SymmetryReduction/, 2017.

18. M. Goldsmith, N. Mo�at, B. Roscoe, T. Whitworth, and I. Zakiuddin. Watchdog
transformations for property-oriented model checking. In Proceedings of Formal
Methods Europe (FME 2003), volume 2805 of LNCS, pages 600{616, 2003.

19. C. N. Ip and D. L. Dill. Better veri�cation through symmetry. Formal Methods in
System Design, 9:41{75, 1996.

20. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model
checking with rich assertional languages. Theoretical Computer Science, pages
93{112, 2001.

21. G. Lowe. Analysing lock-free linearizable datatypes using CSP. In Concurrency,
Security and Puzzles: Essays Dedicated to Andrew William Roscoe on the Occasion
of His 60th Birthday, volume 10160 of Lecture Notes in Computer Science, pages
162{184. Springer, 2017.

22. B. Lubachevsky. An approach to automating the veri�cation of compact parallel
coordination programs. Acta Informatica, 21(2):125{169, 1984.

23. T. Mazur and G. Lowe. CSP-based counter abstraction for systems with node
identi�ers. Science of Computer Programming, 81:3{52, 2014.

24. M. Michael and M. Scott. Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In Proc. of the Fifteenth Annual ACM Symposium
on Principles of Distributed Computing, pages 267{275, 1996.

25. A. Pnueli, J. Xu, and L. D. Zuck. Liveness with (0, 1, 1)-counter abstraction.
In CAV'02: Proceedings of the 14th International Conference on Computer Aided
Veri�cation, pages 107{122, 2002.

26. A. W. Roscoe. Understanding Concurrent Systems. Springer, 2010.
27. A. W. Roscoe and S. Creese. Data independent induction over structured networks.

In Proceedings of PDPTA2000, 2000.
28. A. P. Sistla, V. Gyuris, and E. A. Emerson. SMC: A symmetry-based model checker

for veri�cation of safety and linveness properties. ACM Transactions on Software
Engineering and Methodology, 9(2):133{166, 2000.

29. T. Touili. Regular model checking using widening techniques. In Electronic Notes
in Theoretical Computer Science, 50(4), Proceedings of VEPAS'01, 2001.

30. P. Wolper. Expressing interesting properties of programs in propositional tempo-
ral logic. In Thirteenth Annual ACM Symposium on Principles of Programming
Languages, pages 184{193, 1986.

31. P. Wolper and B. Boigelot. Verifying systems with in�nite but regular state spaces.
In Proceedings of 10th International Conference on Computer Aided Veri�cation,
volume 1427 of LNCS, 1998.

32. P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with
network invariants. In Automatic Veri�cation Methods for Finite State Systems,
volume 407 of LNCS, pages 68{80, 1989.

17

