

1

Monadic second-order model-checking
with fly-automata

Bruno Courcelle and Irène Durand

Bordeaux University, LaBRI (CNRS laboratory)

References : B.C, I. D.: Automata for the verification of monadic second-order graph
properties, J. Applied Logic 10 (2012) 368-409 and also : Computation by fly-automata
beyond monadic second-order logic, Theoretical Computer Science, 619 (2016) 32-67,
 B.C.: From tree-decompositions to clique-width terms, and also : Fly-automata for
checking MSO2 graph properties, both Discrete Applied Maths, on line on
ScienceDirect.com, to appear in 2018

2

Introduction to a demonstration of
some features of the TRAG system

by I.Durand, and M.Raskin for the online version

 Computation of graph decompositions of two kinds :
tree-decompositions and expressions by clique-width terms ;

Checking MSO (Monadic second-order) properties, possibly
expressed with edge set quantifications ;

Computing MSO-definable values (e.g. # of 3-colorings).
 Automatic construction of automata from MSO sentences.

3

 We use fly-automata (they compute their transitions) that run on
clique-width terms describing the input graphs.

 Existential properties imply nondeterminism.

Nondeterministic automata run in several ways :

 by simulating a deterministic automaton,
and possibly counting the number of runs,
or by an “enumerating” computation that stops on first

success : this is ok for a positive answer.

4

Tree-decompositions are defined from normal trees.

 Red edges are in the graph; dotted edges in the tree, not in the graph
 The tree-decomposition is (T,f T) where :

 f T (u) := {u} ∪ { v >T u / v is adjacent to some w <T u}

 Above : f T (4) := {4,8,1} : the edge 2-8 “jumps” over 4

5

Encoding the tree-decomposition by the word TreeBoxes

Tree =(1 8)(1 11)(8 4)(8 7)(4 2)(11 12)(11 10)(10 9)(4 3)
 (7 5)(7 6)
Boxes = 1:NIL 8:(1):NIL 11:(1):NIL 4:(1 8):(1 8) 7:(1 8):(8)
10:(11):NIL 12:(11):(11) 2:(4 8):(4 8) 3:(4):(4) 5:(7):(7)
6:(1 7):(1 7) 9:(10 11):(10 11)

 In Tree,(4 2) means that 2 is a son of 4; T is described
top-down.
 In Boxes, 7:(1 8):(8) means that the box of 7 is {7,1,8}
and 8 (only) is adjacent to 7.
8:(1):NIL :The box of 8 is {8,1} but 8 is not adjacent to 1.

6

Clique-width : an algebraic construction of graphs

 Vertices are labelled by a,b,c, A vertex labelled by a is an a-vertex.

Binary operation: disjoint union : ⊕

Unary operations: edge addition denoted by adda,b

adda,b (G) is G augmented
with (un)directed edges from (between)
 every a-vertex to (and) every b-vertex.

vertex relabellings :
 relaba b(G) is G with every a-vertex is made into a b-vertex

 Basic graphs : a denotes a vertex labelled by a.

 The clique-width of G, denoted by cwd(G), is the smallest k such

that G is defined by a term using k labels.

7

 Example : Cliques (a-labelled) have clique-width 2
 and unbounded tree-width.

 Kn is defined by tn where t1 := a

 t2 := relabb a (adda,b (a ⊕ b))

 t3 := relabb a (adda,b (t2 ⊕ b))

 t4 := relabb a (adda,b (t3 ⊕ b))

8

 Algorithms for decompositions

 Heuristic algorithm for tree-decomposition ;
 Translation from tree-decomposition to cwd-term ;
 Exact algorithm for cwd-term (for “small” undirected graphs, uses
 a reduction by Heule and Szeider to a SAT problem) ;
 Heuristic algorithms for cwd-terms to define directed or undirected
 graphs ;
 Heuristic algorithms for cwd-terms defining incidence graphs
 (useful for MSO formulas using edge set quantifications).

End of introduction

9

Main features of the formal setting
 Goal: Fixed-parameter tractable (FPT) graph algorithms for
monadic second-order (MSO) expressible problems,
 for graphs of bounded tree-width (twd) or clique-width (cwd),
 based on automata running on algebraic terms denoting the
(decomposed) input graphs.
 Can compute values, not only True / False answers.
Tools: (1) Fly-automata (FA): they compute their transitions, to
overcome the well-known “huge size problem”,
 (2) Tree-decompositions encoded by clique-width terms,
 (3) Linear bounds on cwd in terms of twd for sparse graphs.

10

The basic theorem: Each MSO property of graphs of cwd or twd < k

is decidable in time f(k) x #vertices.

 Also for MSO properties expressed with edge set quantifications,
but only for graphs of bounded tree-width.

 Graphs given with relevant decompositions, of “small width”.

 Optimal decompositions are difficult to construct
 (NP-complete problems). But optimality is not essential.

11

Computation of graph evaluations (among others)

P(X) is a property of tuples X of sets of vertices (usually MSO expressible).

∃ X.P(X) : the basic, “Boolean evaluation”.

X.P(X) : number of satisfying tuples X.

Sp X.P(X) : spectrum = the set of tuples of cardinalities of the
components of the tuples X that satisfy P(X).

 MinCard X.P(X) : minimum cardinality of X satisfying P(X).

 Other optimal values can be computed.

12

Informal review of basic notions

 1) Graphs G are finite, simple, loop-free, directed or not.

 Can be given by the logical structure

(VG , edgG(.,.)) = (vertices, adjacency relation)

 2) Monadic second-order (MSO) formulas can express
 p-colorability (and variants), transitive closure, properties of paths,
 connectedness, planarity (via Kuratowski), etc…

13

 Examples : 3-colorability :

∃X ,Y (X ∩ Y = ∅ ∧
 ∀u,v { edg(u,v) ⇒
 [(u ∈ X ⇒ v ∉ X) ∧ (u ∈ Y ⇒ v ∉ Y) ∧
 (u ∉ X ∪ Y ⇒ v ∈ X ∪ Y)]
 })

The graph is not connected :

∃Z (∃x ∈ Z ∧ ∃y ∉ Z ∧ (∀u,v (u ∈ Z ∧ edg(u,v) ⇒ v ∈ Z))

Planarity is MSO-expressible (no minor K5 or K3,3).

14

Alternative description of graphs :

Inc(G) := (VG U EG , incG(.,.))

 = (vertices and edges, incidence relation)
 ! the bipartite incidence graph of G.

 MSO formulas on Inc(G) can use quantifications on sets of
edges of the considered graph G.

 They are called MSO2 formulas.

Expressing Hamiltonicity of G is possible by an MSO formula
 on Inc(G) but not on G (hence, MSO2 but not MSO).

15

Tree-width (twd(G)) is well-known

 width of decomposition : 3 = 4-1
 dotted lines : equal vertices
 Normal trees : compact data structure and easy logical description

16

 Clique-width has been defined in introduction.

 Classes of bounded clique-width:
 cographs, cliques, complete bipartite graphs, trees,
 any class of bounded tree-width.
 Classes of unbounded clique-width:
 Planar graphs, chordal graphs.

Comparing tree-width and clique-width (undirected graphs)
 cwd (G) < 3. 2 twd(G) - 1
 (by Corneil & Rotics ; the exponential is not avoidable).

17

 For which classes do we have cwd(G) = O(twd(G)c) for fixed c,
and with “good values” of c and of hidden constants ?

Graph class cwd(G) where k = twd(G)

 planar 6k – 2 (32k – 24 if directed)

 degree < d k.d + d + 2

 incidence graph k + 3 (2k + 4 if directed)

 p-planar 12k.p

at most q. n edges for n vertices O(k q) where q << k

 These results hold for directed graphs.

18

Remark : About incidence graphs of graphs of bounded tree-width
 and MSO2 properties (using MSO formula with edge set
 quantifications).

Example : There exists a set of edges forming a perfect matching, or forming a
Hamiltonian path. Not possible without such quantifications.

 1) From of a tree-decomposition of G of width k, we construct a
clique-width term t for Inc(G) of “small” width k+3 (or 2k+4); no exp. !

 2) We translate an MSO2 formula ϕ for G into an MSO formula θ for

Inc(G).

 3) The corresponding automaton A(θ) takes term t as input.

19

Remark : The algorithm that transforms a normal tree T into a clique-
width term uses time :
 O(n.k.(log(k) + m.log(m))) where :
 n = # vertices = # nodes tree T,

 k = the width of the tree-decomposition (T, f T),

 m = # labels of the produced clique-width term.

20

 First conclusions

 From a “good” tree-decomposition of a sparse graph (planar,
bounded degree, etc…), we can get a “good” clique-width term, of
comparable width (we avoid the general exponential jump).

 Many algorithms construct “good” (not optimal) tree-decompositions,
but not so many construct “provably good” clique-width terms (however,
see TRAG).
 Clique-width terms yield easier constructions of fly-automata than
tree-decompositions.

21

Fly-automata for the verification of MSO graph properties

 Standard proof of the basic theorem : For each MSO formula ϕ

and integer k, one builds a finite automaton A(ϕ,k) that takes as input

a term denoting a graph G of clique-width < k and answers in time f(k).n

whether G = ϕ (where n is the number of vertices).

 The construction is by induction on the structure of ϕ.

22

 The MSO meta-theorem through finite automata:

 k ϕ (logical formula)

 Automaton Constructor
 Yes

G Graph Analyzer t A(ϕ,k’)
 No
 Error : cwd(G) > k k’ = g(k)

Steps are done “once for all”, independently of G

A(ϕ,k’): “finite” automaton, running on terms t .

23

Difficulty : The finite automaton A(ϕ,k) is too large to be imple-

mented by a (usual) transition table as soon as k > 2 :
 it may have 2^(2^(…2^k)..)) states, because of quantifier alternations.

 To overcome this difficulty, we use fly-automata whose states and
transitions are described and not tabulated. Only the (say 100) transitions
necessary for an input term (say of size 100) are computed “on the fly”.

 Sets of states can be infinite and fly-automata can compute
values, for example, the number of p-colorings of a graph.

24

The MSO meta-theorem through fly-automata

 ϕ (MSO formula)

 Fly-automaton constructor

 Yes

G Graph analyzer t A(ϕ)

 No

 A(ϕ): a single infinite fly-automaton. The time taken by A(ϕ) is f(k).n

where k depends on the operations occurring in t and bounds the tree-
width or clique-width of G.

25

Computations using fly-automata (by Irène Durand)

 Number of 3-colorings of the 3 x 100 rectangular grid (of clique-
width 5) in a few seconds. For 4 x 150, takes one minute for 3-
colorability. A few seconds for 2-colorability.

 4-acyclic-colorability of the Petersen graph (clique-width 5)
 in 1.5 minutes.

 (3-colorable but not acyclically;
 red and green vertices
 induce a cycle).

26

The McGee graph

is defined by a clique-width term

of size 99 and depth 76.

This graph is 3-acyclically colorable.

Checked in 40 minutes.

Even in 2 seconds by enumerating the accepting

runs, and stopping as soon as a successful one is found.

27

 Fly-automaton (FA)
Definition : A = < F, Q, δ, Out > (FA that computes a function).

F : finite or countable (effective) set of operations,
Q : finite or countable (effective) set of states (integers, pairs of integers,
etc. : states are encoded by finite words),
Out : Q ! D , computable (D is an effective set, coded by finite words).

δ : computable (bottom-up) transition function

Nondeterministic case : δ is finitely multi-valued which ensures that :

 determinization works

 A fly-automaton defines a computable function : T(F) ! D ,
 hence, a decidable property if D = {True, False}.

28

Computation time of a fly-automaton (FA)

 F = all clique-width operations, Fk : those using k labels.

 On term t ∈ T(Fk) defining G(t) with n vertices, if a fly-automaton

 takes time bounded by :

 (k + n)c ! it is a P-FA (a polynomial-time FA),

 f(k). nc ! it is an FPT-FA,

 a. ng(k) ! it is an XP-FA.

 The associated algorithm is polynomial-time, FPT or XP for clique-
width as parameter. (The important notion is the max. size of a state.)
 All dynamic programming algorithms based on clique-width terms
can be described by FA.

29

 We obtain FPT algorithms parameterized by clique-width for the
following problems and computations :

 Number of p-colorings,

 Minimum Cardinality of a color class X in a coloring with

 color classes X, X1, … ,Xp (for fixed p)

 Equitable p-coloring (the sizes of two color classes differ
 by at most 1); this problem is W[1] (not FPT)
 for p+tree-width as parameter.

30

 Fly-automata can be constructed :

 - either “directly”, from our understanding of the considered graph
properties,
 - or “automatically” from a logical description,
 - or by combining previously constructed automata.

 Direct constructions
 Example 1 : Checking that a “guessed” p-coloring is good: a state is a
set of pairs (a, j) where a is a label and j a color (among 1, …, p) or
Error.
 Checking the existence of a good p-coloring : a set of such states, in
practice not of maximal (exponential) size.

31

Example 2 : Connectedness.

The state at node u of term t is the set of types (sets of labels) of the

connected components of the graph G(t/u). For k labels (k = bound

on clique-width), the set of states has size < 2 ^ (2 ^ k).
 Proved lower bound : 2 ^ (2 ^ k/2).
! Impossible to “compile” the automaton (i.e., to list its transitions) .

Example of a state : q = { {a}, {a,b}, {b,c,d}, {b,d,f } }, (a,b,c,d,f : labels).
Some transitions :
 adda,c : q { {a,b,c,d}, {b,d,f } },

 relaba b: q { {b}, {b,c,d}, {b,d,f } }
 Transitions for ⊕ : union of sets of types.

Note : Also state (p,p) if G(t/u) has > 2 connected components, all of type p.

32

Fly-automata may have infinitely many states and produce
outputs : numbers, finite sets of tuples of numbers, etc.

 Example continued : For computing the number of connected
components, we use states such as :
 q = { ({a}, 4), ({a,b}, 2), ({b,c,d},2), ({b,d,f },3) },
 where 4, 2, 2, 3 are the numbers of connected components
 of respective types {a}, {a,b}, {b,c,d}, {b,d,f }.

 This “counting construction” extends in a uniform way to any FA (the
formal setting is based on semi-rings replacing the two Boolean values).

33

 Combinations and transformations of fly-automata.

 Product of A and B : states are pairs of a state of A and one of B.

 Determinization of A : states of Det(A) are finite sets of states of A
because the transition is finitely multi-valued. At each position in the
term, Det(A) gives the finitely many states that can in some
computation (the automaton A can be infinite).

 Counting determinization of A, yielding Cdet(A) :
 a state of CDet(A) is a finite multi-set of states of A (giving the
number of runs that can yield a state of A, not only the existence).

34

Atomic formula : edg(X1,X2) for directed edges

 edg(X1,X2) means : X1 = { x } ∧ X2 = { y } ∧ x y

 Vertex labels ∈ a set C of k labels.
 k2+k+3 states : 0, Ok, a(1), a(2), ab, Error, for a,b in C , a ≠ b
 Meaning of states (at node u in t : its subterm t/u defines G(t/u) ⊆ G(t)).

 0 : X1 = ∅ , X2 = ∅
 Ok Accepting state : X1 = {v} , X2 = {w} , edg(v,w) in G(t/u)
 a(1) : X1 = {v} , X2 = ∅ , v has label a in G(t/u)
 a(2) : X1 = ∅ , X2 = {w} , w has label a in G(t/u)
 ab : X1 = {v} , X2 = {w} , v has label a, w has label b (hence v ≠ w)

 and ¬edg(v,w) in G(t/u)

 Error : all other cases

35

 Transition rules

 For the constants based on a :

 (a,00) ! 0 ; (a,10) ! a(1) ; (a,01) ! a(2) ; (a,11) ! Error

 For the binary operation ⊕: r

 (p,q,r are states) p q

 If p = 0 then r := q

 If q = 0 then r := p

 If p = a(1), q = b(2) and a ≠ b then r := ab

 If p = b(2), q = a(1) and a ≠ b then r := ab

 Otherwise r : = Error

36

 For unary operations adda,b r

 p

 If p = ab then r := Ok else r : = p

 For unary operations relaba b

 If p = a(i) where i = 1 or 2 then r : = b(i)

 If p = ac where c ≠ a and c ≠ b then r : = bc

 If p = ca where c ≠ a and c ≠ b then r : = cb

 If p = Error , 0, Ok, c(i), cd or dc where c ≠ a then r : = p

37

Examples : p-acyclic colorability

 ∃ X1,…,Xp (Partition(X1,…,Xp) ∧ NoEdge(X1) ∧ ∧ NoEdge(Xp) ∧ ...

 ∧ NoCycle(Xi ∪ Xj) ∧)

Minor inclusion : H simple, loop-free. Vertices(H) = { v1,…,vp }

 ∃X1,…,Xp (Disjoint(X1,…,Xp) ∧ Conn(X1) ∧ ... ∧ Conn(Xp) ∧ ...
 ... ∧ Link(Xi , Xj) ∧ ...)

 Existence of “holes” : odd induced cycles (to check perfectness ; one

checks “anti-holes” on the edge-complement of the given graph).

Combinations of existing FA reflect the structure of MSO sentences

38

Enumeration and efficient recognition

 Recognition with Det(A) reports the answer when all states at
the root have been determined.

 An enumerating computation can list one by one:
 the states reached at the root by the different runs of A,
 the tuples X that satisfy an MSO property P(X).

 Recognition by enumeration of root states stops as soon as

 an accepting state is found. This is appropriate if ∃ X.P(X)

 holds. Not for counting accepting runs or # X.P(X)

39

Inductive construction for ∃X. ϕ(X) with ϕ(X) MSO formula

 Atomic formulas (for example X ⊆ Y, edg(X,Y)) : direct constructions

 ¬ P (negation) : as FA are run deterministically (by computing at each

position the finite set of reachable states), it suffices to exchange accepting
and non-accepting states.

 P ∧ Q, P ∨ Q : products of automata.

 How to handle free variables for queries ϕ(X) and for ∃X.ϕ(X) ?

40

 Terms are equipped with Booleans that encode assignments of
vertex sets V1,…,Vp to the free set variables X1,…,Xp of MSO
formulas (formulas are written without first-order variables):

 1) we replace in F each a by the nullary symbol

 (a, (w1,…,wp)), wi ∈ {0,1} : we get F(p) (only nullary symbols are modified);

 2) a term s in T(F(p)) encodes a term t in T(F) and an

 assignment of sets V1,…,Vp to the set variables X1,…,Xp :

 if u is an occurrence of (a, (w1,..,wp)), then

 wi = 1 if and only if u ∈ Vi .

 3) s is denoted by t * (V1,…,Vp)

41

Example

 Graph G(t)

 Term t

42

Example (continued)

 V1 = {1,3,4}, V2 = {2,3}

 Term t * (V1,V2)

43

 By an induction on ϕ, we construct, for each ϕ(X), X=(X1,…,Xp),

a fly-automaton A(ϕ(X)) that recognizes :

L(ϕ(X)) : = { t * (V1,…,Vp) ∈ T(F(p)) / (G(t), V1,…,Vp) = ϕ }

Quantifications: Formulas are written without ∀

 L(∃ Xp+1 . ϕ(X1, ..., Xp+1)) = prp+1(L (ϕ(X1, ..., Xp+1))

 A(∃ Xp+1 . ϕ(X1, ..., Xp+1)) = prp+1(A (ϕ(X1, ..., Xp+1))

where prp+1 is the projection that eliminates the last Boolean

! a non-deterministic FA denoted by prp+1(A (ϕ(X1, ..., Xp+1)),
to be run deterministically.

44

Remark : If a graph is denoted by a clique-width term t, each of its
vertices is represented in t at a single position (an occurrence of a nullary
symbol).

 If the operation // is also used (G // H is obtained from disjoint G and H

by fusing some vertices of G to some vertices of H, in a precise way fixed by
labels), then a vertex of G//H is represented by several positions of the

term. The automaton that checks a property ϕ(X1, ..., Xp) of G denoted

by a term t must also check that the Booleans that specify (X1, ..., Xp)

agree on all positions of t that specify a same vertex of G.

 We have no such difficulty if we use disjoint union instead of //. Hence,
for representing tree-decompositions, clique-width terms are more
convenient if one uses automata constructed from logical formulas.

45

 Application to MSO2 properties of graphs of

 bounded tree-width via incidence graphs.

 1) Recall : From of a tree-decomposition of G of width k, we
construct a term t for Inc(G) of “small” clique-width k+3 (or 2k+4).

 2) Recall : We translate an MSO2 formula ϕ for G into an MSO

formula θ for Inc(G).

 3) The corresponding automaton A(θ) takes term t as input. But an

atomic formula edg(X,Y) of ϕ is translated into ∃U. inc(X,U) ∧ inc(U,Y)

in θ which adds one level of quantification.

Fact : The automaton A(θ) remains manageable.

46

 For certain graph properties P, for example “connectedness”, “contains a
directed cycle” or “outdegree < p”, we have :

 P(G) ⇔ P(Inc(G)).

 The automaton for graphs G defined by clique-width terms can be used
“directly” for the clique-width terms that define the incidence graphs Inc(G).

47

 Summary : Checking properties of G of tree-width < k

MSO property MSO2 property

cwd term for G

of width O(k) or O(kq)

in “good cases” and
exponential in bad ones

cwd term for Inc(G)
of width O(k);

more complicated
automaton in some cases,

because of edg(X,Y)

48

General conclusion

1) By uniform constructions, we get dynamic programming algorithms
based on fly-automata, that can be quickly constructed from logical
descriptions ! flexibility.

 A “small” modification of the input formula is reflected easily in
the automaton.

2) It is hard to obtain tight upper-bounds to time computations.
3) The algorithms obtained from FA are not better than the specific ones
that have been developed. There obtained in uniform ways, rather quickly,
as combinations of existing “basic” automata.

49

4) Even for graphs given by tree-decompositions, clique-width terms are
appropriate because of two facts:

(a) fly-automata are simpler to construct and
(b) it is practically possible to translate tree-decompositions

of “certain” sparse graphs into clique-width terms.
5) Fly-automata are implemented. Tests have been made mainly for
colorability and Hamiltonicity problems.
6) Our constructions and their TRAG implementation concern directed
graphs as well as undirected ones.

