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Introduction  to  a  demonstration  of 
some  features  of  the  TRAG  system 

 
by I.Durand,  and  M.Raskin for the online version  

 

 Computation of  graph decompositions of two kinds :  
tree-decompositions and expressions by clique-width terms ; 
  

Checking MSO (Monadic second-order) properties, possibly 
expressed with edge set quantifications ; 
  

Computing  MSO-definable values (e.g.  # of  3-colorings). 
 Automatic construction  of  automata  from  MSO  sentences. 
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 We use fly-automata  (they compute their transitions) that run on 
clique-width terms  describing  the input graphs.  
 

 Existential  properties  imply nondeterminism. 
 

Nondeterministic  automata run in several ways :  
 

  by simulating a deterministic automaton,  
and possibly counting the number of runs,  
or by an “enumerating” computation that stops on first 

success  : this is ok  for a  positive answer. 
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Tree-decompositions are defined from normal trees. 

  Red edges are in the graph; dotted edges in the tree, not in the graph 
  The  tree-decomposition is  (T,f T)  where : 

 f T (u) := {u}  ∪ { v >T u  /  v  is  adjacent  to  some  w <T u}   
 
 

 Above  :   f T (4) := {4,8,1}  :  the edge  2-8    “jumps”  over  4 
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Encoding the tree-decomposition by the word   TreeBoxes 

 

Tree =(1 8)(1 11)(8 4)(8 7)(4 2)(11 12)(11 10)(10 9)(4 3) 
  (7 5)(7 6) 
Boxes = 1:NIL 8:(1):NIL 11:(1):NIL 4:(1 8):(1 8) 7:(1 8):(8)  
10:(11):NIL  12:(11):(11) 2:(4 8):(4 8) 3:(4):(4) 5:(7):(7) 
6:(1 7):(1 7) 9:(10 11):(10 11)   

 In Tree,(4 2) means that 2 is a son of 4; T is described 
top-down. 
 In Boxes, 7:(1 8):(8) means that the box of 7 is {7,1,8} 
and 8 (only) is adjacent to 7. 
8:(1):NIL :The box of 8 is {8,1} but 8 is not adjacent to 1. 
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Clique-width  :  an algebraic  construction of graphs  

 

 Vertices are labelled  by  a,b,c, ... .  A  vertex  labelled by a  is an  a-vertex. 

 

Binary  operation:   disjoint  union  :   ⊕ 

Unary  operations:  edge  addition  denoted  by  adda,b 

adda,b (G)  is  G  augmented   
with  (un)directed edges  from (between) 
 every   a-vertex  to (and)  every  b-vertex. 

vertex  relabellings : 
 relaba       b(G)  is  G  with  every  a-vertex   is  made  into  a  b-vertex 

 Basic graphs  :  a    denotes  a  vertex  labelled  by   a. 

 The clique-width  of    G, denoted by cwd(G), is the smallest  k  such 

that   G is  defined  by a  term  using  k   labels.  
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 Example : Cliques  (a-labelled)  have  clique-width  2 
 and  unbounded  tree-width. 

 
 
 
 
 
 
 

  Kn   is   defined   by   tn   where    t1   :=   a 

   t2   :=   relabb      a ( adda,b (a ⊕ b) ) 

   t3   :=   relabb      a ( adda,b (t2 ⊕ b) ) 

   t4   :=   relabb      a ( adda,b (t3 ⊕ b) ) 
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 Algorithms for decompositions 

 

  Heuristic algorithm for tree-decomposition ; 
  Translation from tree-decomposition to cwd-term ; 
  Exact algorithm for cwd-term (for “small” undirected graphs, uses   
   a reduction by Heule and Szeider to a SAT problem ) ; 
  Heuristic algorithms for cwd-terms to define directed or undirected 
   graphs ; 
  Heuristic algorithms for cwd-terms defining incidence graphs  
   (useful  for  MSO  formulas  using   edge   set  quantifications). 
 

End of introduction 
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Main  features  of  the formal setting 
 Goal: Fixed-parameter tractable (FPT) graph algorithms for 
monadic second-order (MSO) expressible problems, 
 for graphs of bounded tree-width (twd) or clique-width (cwd), 
 based on automata running on algebraic terms denoting the 
(decomposed)  input graphs. 
 Can compute values, not  only  True / False  answers. 
Tools: (1) Fly-automata (FA): they compute their transitions, to 
overcome  the  well-known  “huge  size  problem”, 
  (2) Tree-decompositions  encoded  by clique-width  terms, 
  (3) Linear bounds on cwd in terms of twd for sparse graphs.  
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The basic theorem: Each MSO property of graphs of cwd or twd < k  

is  decidable  in  time  f(k) x  #vertices.  

 Also for MSO properties expressed with edge set quantifications, 
but only for graphs of bounded tree-width. 
   
  Graphs given with relevant decompositions, of “small  width”. 
   
  Optimal  decompositions are difficult to construct   
  (NP-complete problems). But  optimality is  not  essential. 
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Computation  of  graph  evaluations    (among others) 

 
P(X) is a property of tuples X of sets of vertices (usually MSO expressible). 

∃ X.P(X)  : the basic, “Boolean evaluation”. 

 

# X.P(X) : number  of satisfying  tuples  X. 

 

Sp X.P(X)  : spectrum = the  set  of tuples of  cardinalities of  the 
components of the tuples  X  that   satisfy  P(X). 

 

 MinCard X.P(X) : minimum cardinality of  X satisfying   P(X). 

 

 Other  optimal values can be computed. 
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Informal   review  of   basic   notions 

  
  1)  Graphs G are finite, simple, loop-free, directed or not. 

    Can  be  given  by  the logical  structure   

( VG , edgG(.,.) ) = (vertices, adjacency relation) 

 
  2)  Monadic second-order (MSO)  formulas   can express  
 p-colorability (and  variants),  transitive closure,  properties  of paths, 
 connectedness,  planarity  (via Kuratowski), etc… 
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 Examples : 3-colorability :  

 

∃X ,Y ( X ∩ Y = ∅  ∧   
  ∀u,v { edg(u,v) ⇒    
    [(u ∈ X  ⇒  v ∉ X) ∧ (u ∈ Y ⇒  v ∉ Y) ∧  
    (u ∉ X ∪ Y  ⇒  v ∈ X ∪ Y)  ] 
      } )  
 
 
The graph  is  not  connected : 

∃Z ( ∃x ∈ Z  ∧  ∃y ∉ Z  ∧  (∀u,v (u ∈ Z  ∧  edg(u,v) ⇒ v ∈ Z)  ) 

 

  
Planarity  is  MSO-expressible  (no minor  K5  or  K3,3). 
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Alternative  description  of  graphs : 

Inc(G) :=  ( VG U  EG ,  incG(.,.) )  

   = (vertices   and   edges,  incidence   relation) 
  !     the  bipartite  incidence  graph  of  G. 
 
  MSO  formulas  on  Inc(G)  can use quantifications  on  sets of 
edges  of  the  considered  graph  G.  

  They are called MSO2 formulas. 

 
Expressing  Hamiltonicity of G  is possible by an  MSO formula  
   on Inc(G)  but not  on  G     (hence, MSO2   but not MSO).  
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Tree-width ( twd(G) )   is well-known 

 
 
 
         
 
 
 
 
  width of  decomposition : 3 = 4-1 
  dotted  lines : equal  vertices 
   Normal trees : compact data structure and easy logical description 

 

16 

 Clique-width  has  been  defined in introduction. 
 
 Classes  of   bounded   clique-width:  
  cographs,  cliques,  complete bipartite graphs,  trees,  
  any  class  of  bounded   tree-width. 
 Classes  of  unbounded  clique-width: 
  Planar  graphs, chordal graphs. 
 

Comparing  tree-width  and  clique-width  (undirected  graphs) 
   cwd (G)  < 3. 2 twd(G) - 1   
   (by Corneil & Rotics ;  the exponential is not avoidable). 
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 For which classes do we have cwd(G) = O(twd(G)c )  for fixed c, 
and  with “good values” of  c  and of hidden constants ? 

    
Graph class cwd(G)  where  k = twd(G) 

  planar 6k – 2     ( 32k – 24  if directed) 

  degree   <  d  k.d  + d + 2 

  incidence  graph k + 3       ( 2k + 4  if  directed) 

  p-planar 12k.p  

at most   q. n   edges  for  n vertices O(k q )               where  q  << k 

 

          These  results  hold  for  directed  graphs.  
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Remark :  About  incidence  graphs  of graphs  of  bounded  tree-width  
       and  MSO2  properties (using MSO formula with edge  set  
   quantifications). 
  
Example : There exists a set of edges forming a perfect matching, or forming a  
Hamiltonian path. Not possible without such quantifications. 

 
 

 1) From  of  a  tree-decomposition of  G  of  width k, we  construct  a  
clique-width  term  t  for  Inc(G)  of  “small” width k+3 (or 2k+4 ); no exp. !  

 2) We translate an MSO2  formula  ϕ  for  G into an MSO formula θ for 

Inc(G).   

 3) The  corresponding  automaton  A(θ)  takes  term  t  as  input.   
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Remark :  The  algorithm  that transforms a normal tree T  into a clique-
width term uses  time : 
    O(n.k.(log(k) + m.log(m)) )    where : 
  n =  # vertices =  # nodes tree T, 

  k =  the  width  of the tree-decomposition  (T, f T ), 

  m = # labels of the produced  clique-width term. 
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 First  conclusions  
 
 From  a  “good”  tree-decomposition  of  a  sparse graph  (planar, 
bounded degree, etc…),  we can  get  a  “good”  clique-width  term, of  
comparable  width  (we avoid  the  general  exponential   jump). 

 

 Many algorithms construct  “good” (not optimal)  tree-decompositions, 
but  not  so  many  construct “provably good” clique-width  terms (however, 
see TRAG).   
 Clique-width  terms  yield  easier  constructions  of  fly-automata  than 
tree-decompositions. 



 

21 

 

Fly-automata for the verification of  MSO graph properties 

 

 Standard proof  of  the basic  theorem : For each  MSO  formula  ϕ  

and  integer k, one builds  a  finite  automaton A(ϕ,k) that  takes  as  input 

a term denoting a graph G of clique-width < k and answers  in  time  f(k).n    

whether   G   =  ϕ    (where   n  is the number of vertices). 

 The   construction  is  by  induction  on  the  structure  of  ϕ. 
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 The  MSO  meta-theorem  through  finite  automata: 

       k            ϕ    (logical  formula)   
      

             Automaton Constructor  
                   Yes  

G                   Graph Analyzer                t              A(ϕ,k’)           
                    No  
       Error : cwd(G) > k               k’ = g(k) 
 
Steps       are  done  “once  for  all”, independently   of   G   

A(ϕ,k’):  “finite”  automaton,  running  on  terms  t . 
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Difficulty : The  finite  automaton  A(ϕ,k)  is  too large  to  be  imple-

mented  by  a (usual) transition table as  soon  as  k > 2 :  
 it may have 2^(2^(…2^k)..))  states,  because of quantifier alternations. 
  
 

  To overcome this difficulty, we use fly-automata whose states and 
transitions are described and not tabulated. Only the (say 100) transitions 
necessary  for  an  input  term (say of size 100) are  computed “on the fly”.   
 

  Sets of states can be infinite and  fly-automata can compute 
values, for example,  the  number of  p-colorings  of a graph.  
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The  MSO  meta-theorem  through  fly-automata 

                ϕ    (MSO  formula)

                             
      

             Fly-automaton constructor  

                  Yes  

G                   Graph analyzer                 t                 A(ϕ)           

                  No   

 A(ϕ): a single infinite fly-automaton. The time taken by A(ϕ) is f(k).n 

where k depends on the operations occurring in t and bounds the tree-
width  or  clique-width of  G.  
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Computations  using  fly-automata    (by  Irène  Durand) 
 

 Number of   3-colorings  of  the  3 x 100  rectangular grid  (of clique-
width  5)  in  a few seconds.  For  4 x 150, takes one minute for 3-
colorability. A  few  seconds  for  2-colorability. 
 
 4-acyclic-colorability  of  the  Petersen  graph  (clique-width 5)   
 in  1.5   minutes. 
 
 (3-colorable but not acyclically;  
 red  and  green  vertices  
 induce  a  cycle). 
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The  McGee  graph    

is  defined  by a clique-width term  

of  size  99  and depth 76. 

 

This graph  is 3-acyclically  colorable. 

Checked in 40 minutes. 

 

Even in  2 seconds by enumerating the accepting  

runs,  and  stopping  as soon as  a  successful one  is found. 
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 Fly-automaton  (FA)   
Definition :  A = < F, Q, δ, Out >    (FA   that   computes  a   function). 

F :   finite  or  countable (effective)  set of operations, 
Q :  finite or countable (effective)  set of states   (integers, pairs of integers, 
etc. : states are  encoded by finite words), 
Out : Q ! D , computable  (D  is an effective set, coded  by  finite  words). 

δ : computable  (bottom-up)  transition  function 

Nondeterministic  case :  δ   is  finitely  multi-valued  which ensures that :  

       determinization  works  

 

 A  fly-automaton  defines  a  computable  function : T(F) ! D ,  
 hence,  a  decidable  property  if  D  =  {True, False}. 
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Computation  time  of  a  fly-automaton (FA)  
   

 F  =  all  clique-width  operations,   Fk : those  using k  labels. 

 On  term  t ∈ T(Fk)  defining  G(t)  with  n  vertices,  if  a  fly-automaton  

  takes  time  bounded by : 

  (k + n)c  !  it is a P-FA   (a   polynomial-time  FA), 

  f(k). nc  !    it is an FPT-FA, 

  a. ng(k)  !    it is an XP-FA. 

 The  associated  algorithm  is  polynomial-time, FPT  or XP  for clique-
width  as  parameter.        (The important notion is the max.  size of a state.)  
 All  dynamic programming algorithms  based on clique-width  terms 
can  be described by FA.  
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 We  obtain  FPT  algorithms parameterized by clique-width for the 
following  problems and computations : 

 

   Number of p-colorings, 

 

   Minimum Cardinality of a color class X in a coloring with  

      color classes X, X1, … ,Xp              (for fixed p) 

   Equitable p-coloring (the sizes of two color classes differ  
      by at most 1); this problem is W[1] (not FPT)  
      for p+tree-width as parameter. 
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  Fly-automata  can  be constructed : 

 

 - either  “directly”, from  our  understanding  of  the considered  graph 
properties, 
 - or  “automatically”  from a  logical description, 
 - or by combining  previously  constructed  automata. 
 

 Direct constructions   
 Example 1 : Checking that a “guessed”  p-coloring  is good: a state is a 
set of pairs (a, j) where a is a label  and  j  a color (among 1, …, p)  or   
Error. 
 Checking the existence of a good  p-coloring  : a set of such states, in 
practice not of maximal (exponential) size. 
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Example 2  : Connectedness. 

 

The state at node u of term t is the set of  types (sets  of  labels)  of  the 

connected  components of  the  graph G(t/u).  For  k  labels (k = bound 

on clique-width),  the set  of  states  has  size  <  2 ^ (2 ^ k).   
  Proved  lower  bound  :  2 ^ (2 ^ k/2).   
!  Impossible  to  “compile”  the   automaton (i.e., to list its transitions) . 

Example  of  a  state   :  q = { {a}, {a,b}, {b,c,d}, {b,d,f } },  (a,b,c,d,f :  labels).  
Some  transitions :               
  adda,c :    q             { {a,b,c,d}, {b,d,f } },                    

  relaba       b: q            { {b}, {b,c,d}, {b,d,f } }   
  Transitions   for   ⊕ :  union  of  sets  of  types. 

Note : Also  state (p,p)  if  G(t/u) has   >  2 connected components,  all  of  type p. 
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Fly-automata  may have  infinitely  many  states  and  produce   
outputs  :   numbers, finite sets of tuples of numbers,  etc.  

 

 Example continued : For  computing  the  number  of  connected  
components,  we  use  states  such  as  : 
   q = { ({a}, 4 ), ({a,b}, 2), ( {b,c,d},2), ( {b,d,f },3) },   
   where 4, 2, 2, 3  are  the  numbers  of  connected  components  
   of  respective   types  {a}, {a,b}, {b,c,d}, {b,d,f }.  
 
 This  “counting  construction”  extends  in a uniform way to any FA (the 
formal setting is based on semi-rings replacing the two Boolean values). 
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 Combinations  and  transformations  of  fly-automata. 
 
 Product  of  A  and  B :  states are pairs of a state of A  and one of B. 
 
 Determinization  of  A :  states  of  Det(A)  are  finite sets of states of A  
because the transition is finitely  multi-valued.  At  each  position  in the 
term, Det(A)  gives the finitely  many  states  that can  in some 
computation (the automaton A  can be infinite). 
 
 Counting  determinization of A, yielding Cdet(A) :   
 a state of CDet(A)  is a finite multi-set  of  states of A (giving the 
number of runs  that  can  yield  a  state of A, not only the existence). 
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Atomic  formula  :   edg(X1,X2)   for  directed  edges    
 

 edg(X1,X2)  means :   X1  = { x }  ∧  X2 = { y }    ∧   x                y 

 Vertex   labels   ∈  a   set    C   of   k   labels.  
 k2+k+3   states  :  0, Ok, a(1), a(2), ab, Error,      for a,b  in   C , a  ≠  b 
 Meaning  of  states (at node u in  t : its subterm  t/u  defines G(t/u)  ⊆  G(t) ).  

 0   : X1 = ∅  , X2 = ∅   
 Ok        Accepting   state :    X1 = {v}  , X2 = {w}  ,  edg(v,w)  in  G(t/u)   
 a(1) : X1 = {v}  , X2 = ∅ ,  v  has  label  a  in  G(t/u)   
 a(2)  : X1 = ∅  , X2 = {w}  ,  w  has  label  a  in  G(t/u)   
 ab  : X1 = {v}  , X2 = {w}  , v  has  label  a, w  has  label  b  (hence v ≠  w) 

             and  ¬edg(v,w)   in  G(t/u)    

 Error  : all  other  cases 
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 Transition  rules  

 For  the  constants  based on    a : 

 (a,00)  ! 0  ;  (a,10) !  a(1)  ;  (a,01)  !  a(2)  ;    (a,11)  !  Error 

 

 For  the  binary  operation  ⊕:      r 

 (p,q,r  are  states)        p             q  

  If  p = 0  then  r := q  

  If  q = 0  then  r := p 

  If  p = a(1),  q =  b(2)  and  a  ≠  b   then   r  := ab 

  If  p = b(2),  q =  a(1)  and  a  ≠  b   then   r  := ab 

  Otherwise  r  : =  Error 
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 For  unary  operations   adda,b            r      
 

                 p     

  If  p = ab   then  r  :=  Ok   else  r  : =  p 

 

 For  unary  operations    relaba       b  

  If   p = a(i)   where   i = 1 or 2       then     r : = b(i)  

  If   p =  ac   where  c ≠ a  and  c  ≠  b    then     r : =  bc      

  If   p =  ca   where  c ≠ a  and  c  ≠  b        then     r : =  cb       

  If   p =  Error ,  0,  Ok,  c(i),  cd  or  dc  where    c ≠ a   then     r : = p  
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Examples :  p-acyclic  colorability   
 

 ∃ X1,…,Xp (Partition(X1,…,Xp)  ∧  NoEdge(X1)  ∧ ..... ∧  NoEdge(Xp)  ∧ ... 

   ........... ∧  NoCycle(Xi ∪ Xj)  ∧ ......  ) 
 

  

Minor  inclusion : H  simple, loop-free.  Vertices(H)  =  { v1,…,vp }  
 

 ∃X1,…,Xp (Disjoint(X1,…,Xp)  ∧  Conn(X1)  ∧ ... ∧  Conn(Xp)  ∧ ... 
   ...  ∧  Link(Xi , Xj)  ∧ ...  ) 
 

     
 Existence   of  “holes”   :  odd  induced  cycles  (to  check  perfectness ; one 

checks  “anti-holes”  on  the  edge-complement  of  the  given  graph). 
 
# Combinations  of existing  FA  reflect  the structure  of  MSO sentences 
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Enumeration  and efficient recognition 

        
 Recognition  with  Det(A)  reports the answer when all  states at 
the root have been determined. 

 

 An enumerating computation  can list one by one: 
   the states reached at  the root by the different runs of A, 
   the tuples  X  that  satisfy an  MSO  property  P(X). 

 

 Recognition by enumeration of root states stops as soon as  

   an accepting state is found. This is appropriate if ∃ X.P(X)  

   holds.  Not  for counting accepting runs or  # X.P(X) 
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Inductive  construction  for  ∃X. ϕ(X)  with  ϕ(X)  MSO  formula 

 

 Atomic formulas  (for  example X ⊆ Y, edg(X,Y) ) :  direct  constructions 

 ¬ P (negation) :  as FA  are  run deterministically (by computing at each 

position the finite set of reachable states), it suffices  to  exchange  accepting  
and  non-accepting  states. 

 P ∧ Q, P ∨ Q :  products  of  automata. 

 

 How  to  handle  free  variables  for  queries  ϕ(X) and for  ∃X.ϕ(X) ? 
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 Terms  are  equipped  with  Booleans  that  encode  assignments  of  
vertex  sets  V1,…,Vp  to  the  free  set  variables  X1,…,Xp  of   MSO 
formulas   (formulas   are   written   without   first-order  variables): 

  1)  we   replace  in  F  each  a   by  the  nullary  symbol  

  (a, (w1,…,wp)), wi ∈ {0,1} :  we  get  F(p) (only  nullary symbols are  modified); 

  2)  a  term   s   in  T(F(p) )  encodes  a   term  t   in  T(F)  and  an  

 assignment  of  sets  V1,…,Vp   to  the  set  variables  X1,…,Xp :   

   if   u  is  an  occurrence  of  (a, (w1,..,wp)),  then    

     wi  =  1  if  and  only  if    u  ∈  Vi . 

  3)  s   is  denoted  by  t * (V1,…,Vp)    
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Example  

 

 

 

 

 

 

             

                         Graph  G(t)    

 

 

 

 

 

     

     

     Term   t      
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Example   (continued)  

 

 

 

 

 

               V1  =  {1,3,4},  V2  =  {2,3}   

 

 

 

   Term   t * (V1,V2)        
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 By  an  induction  on  ϕ,  we  construct,  for  each  ϕ(X),  X=(X1,…,Xp),    

a fly-automaton    A(ϕ(X))  that  recognizes : 

L(ϕ(X)) : =  { t * (V1,…,Vp) ∈ T(F(p) )  /  ( G( t ), V1,…,Vp )   =  ϕ } 

Quantifications:  Formulas   are   written   without   ∀  

  L(  ∃ Xp+1 . ϕ(X1, ..., Xp+1) )   = prp+1( L ( ϕ(X1, ..., Xp+1)  ) 

  A(  ∃ Xp+1 . ϕ(X1, ..., Xp+1) )   = prp+1( A ( ϕ(X1, ..., Xp+1)  ) 

 

where   prp+1  is  the  projection   that  eliminates   the  last  Boolean          

!    a   non-deterministic  FA  denoted  by  prp+1( A ( ϕ(X1, ..., Xp+1)  ), 
to   be  run deterministically. 
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Remark :  If a graph is denoted by a clique-width term t,   each of its 
vertices is represented in t  at a single position (an occurrence of a nullary 
symbol). 

 If the operation // is also used   ( G // H  is obtained from disjoint G and H 

by fusing some vertices of G  to some vertices of  H, in a precise way  fixed by 
labels), then a vertex  of  G//H  is represented by several positions of the 

term. The automaton that checks a property  ϕ(X1, ..., Xp) of  G  denoted 

by  a term t  must also check that the Booleans that specify  (X1, ..., Xp)  

agree on all positions of t  that specify a same vertex of G. 

 We have no such difficulty if we use disjoint union instead of  //. Hence, 
for representing  tree-decompositions, clique-width  terms  are more 
convenient  if one uses automata constructed from logical  formulas. 
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 Application  to  MSO2  properties of graphs  of   

 bounded tree-width  via   incidence   graphs. 

 
 

 1) Recall : From  of  a  tree-decomposition   of  G  of  width k, we  
construct  a  term  t  for  Inc(G) of “small” clique-width  k+3  (or 2k+4).   

 2) Recall :  We translate an MSO2  formula  ϕ  for G  into  an  MSO 

formula  θ  for Inc(G).   

 3) The corresponding  automaton A(θ) takes  term  t  as  input. But  an 

atomic formula  edg(X,Y) of  ϕ  is  translated  into  ∃U. inc(X,U) ∧ inc(U,Y) 

in  θ  which  adds  one  level  of  quantification.    

Fact  :  The  automaton  A(θ) remains  manageable.  
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 For  certain graph  properties  P, for example  “connectedness”, “contains a 
directed cycle”  or   “outdegree  <  p”, we  have : 
 

      P(G) ⇔  P(Inc(G)). 

 
 The  automaton  for  graphs G  defined by clique-width terms  can be used  
“directly”  for  the clique-width  terms  that  define  the incidence  graphs Inc(G). 
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 Summary  :  Checking  properties  of  G  of  tree-width  < k 
 

MSO  property MSO2  property 

cwd  term  for  G 

of width O(k) or O(kq)  

in  “good cases”  and  
exponential  in bad ones 

cwd  term  for  Inc(G) 
of  width  O(k);  

more complicated  
automaton in some cases, 

because  of  edg(X,Y) 
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General  conclusion 

 

1) By uniform constructions, we get  dynamic programming  algorithms 
based on fly-automata, that can be quickly constructed  from  logical  
descriptions  !  flexibility.   

  A  “small” modification of the input formula  is reflected  easily in 
the automaton.  

2)  It is hard to obtain tight upper-bounds to time computations.  
3)  The algorithms obtained from FA are not better than the specific ones 
that have been developed. There obtained in uniform ways, rather quickly, 
as  combinations  of existing  “basic”  automata. 
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4)  Even for graphs given by tree-decompositions, clique-width terms are 
appropriate because of  two facts:  

(a) fly-automata are  simpler  to  construct  and  
(b) it is practically possible  to  translate tree-decompositions   

of  “certain”  sparse graphs into clique-width terms. 
5) Fly-automata are implemented. Tests have been made mainly for 
colorability and  Hamiltonicity  problems.  
6) Our constructions and their TRAG implementation concern directed 
graphs as well as undirected ones. 

 

 


