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Abstract. With the rapid development of software and distributed com-
puting, Cyber-Physical Systems (CPS) are widely adopted in many ap-
plication areas, e.g., smart grid, autonomous automobile. It is difficult
to detect defects in CPS models due to the complexities involved in the
software and physical systems. To find defects in CPS models efficiently,
robustness guided falsification of CPS is introduced. Existing methods
use several optimization techniques to generate counterexamples, which
falsify the given properties of a CPS. However those methods may require
a large number of simulation runs to find the counterexample and are far
from practical. In this work, we explore state-of-the-art Deep Reinforce-
ment Learning (DRL) techniques to reduce the number of simulation
runs required to find such counterexamples. We report our method and
the preliminary evaluation results.

1 Introduction

Cyber-Physical Systems (CPS) are more and more widely adopted in safety-
critical domains, which makes it extremely important to guarantee the correct-
ness of CPS systems. Testing and verification on models of CPS are common
methods to guarantee the correctness. However, it is hard for testing to achieve
a high coverage; verification techniques are usually expensive and undecidable [4]
due to the infinite state space of CPS models. Therefore, robustness guided fal-
sification [3, 7] method is introduced to detect defects efficiently. In robustness
guided falsification, Signal Temporal Logic (STL) [11] formulas are usually used
to specify properties which must be satisfied by a CPS model. Robustness of an
STL formula, which is a numeric measure of how “robust” a property holds in the
given CPS model, is defined. The state space of the CPS model is explored and a
trajectory which minimizes the robustness value is identified as a good candidate
for testing. In this way, robustness guided falsification aids to generate defect-
leading inputs (counterexamples), which enables more efficient, yet automatic
detection of defects. Although non-termination of robustness guided falsification
does not mean the absence of counterexamples, it suggests the correctness of the
CPS model to some extent.



Existing approaches adopt various kinds of stochastic global optimization
algorithms e.g., simulated annealing [4] and cross-entropy [29], to minimize ro-
bustness. These methods take a full trajectory (a sequence of actions) as in-
put, and adjusting input during the simulation is not supported. As a result, a
large number of simulation runs are required in the falsification process. Existing
methods cannot guarantee finding a counterexample of practical CPS models in
a limited time window because the simulation would then be tremendous.

In this paper, we adopt deep reinforcement learning (DRL) [27] algorithms
to solve the problem of falsification of STL properties for CPS models. Rein-
forcement learning techniques can observe feedbacks from the environment, and
adjust the input action immediately. In this way, we are able to converge faster
towards minimum robustness value. In particular, we adopt two state-of-the-art
DRL techniques, i.e., Asynchronous Advanced Actor Critic (A3C) and Double
Deep-Q Network (DDQN). Our contributions are two folds: (1) we show how to
transform the problem of falsifying CPS models into a reinforcement learning
problem; and (2) we implement our method and conduct preliminary evaluations
to show DRL technology can help reduce the number of simulation runs required
to find a falsifying input for CPS models. Reducing the number of simulation
runs is important because during falsification, the majority of execution time is
spent for simulation runs if CPS models are complex.

Related Work There are two kinds of works, i.e., robustness guided falsification
and controller synthesis, which are most related to our approach.

In robustness guided falsification methods, quantitative semantics over Met-
ric Interval Temporal Logic (MITL) and its variants STL [25, 18] are employed.
Then the fault detection problem is translated into the numerical minimization
problem. Several tools e.g., S-TaLiRo [7, 21] and Breach [17] are developed to re-
alize this approach. Moreover, various kind of numerical optimization techniques,
e.g., simulated annealing [4], cross-entropy [29], and Gaussian process optimiza-
tion [9, 10, 5, 30], are studied to solve the falsification problem efficiently. All
these methods optimize the whole output trajectory of a CPS by changing the
whole input trajectory. As stated above, we use reinforcement learning which
can observe feedbacks from a CPS and adjust the input immediately. Thus, our
method can be expected to arrive the falsifying input faster.

In contrast to robustness guided falsification, controller synthesis techniques
enable choosing the input signal at a certain step based on observations of output
signals. There are works that synthesize the controller to enforce the Markov
decision process to satisfy a given LTL formula [28, 24, 16, 31, 15]. The most
closely related works [23, 22] apply reinforcement learning techniques to enforce
the small robotic system to satisfy the given LTL formula. Our work is different
from those works in two aspects: (1) we falsify the properties while the control
synthesis methods try to satisfy the properties; and (2) with DRL, we could
employ complex non-linear functions to learn and model the environment, which
is suitable to analyze the complex dynamics of CPS.



2 Preliminary

Robustness guided falsification In this paper, we employ a variant of Signal
Temporal Logic (STL) defined in [11]. The syntax is defined in the equation (1),

ϕ ::= v ∼ c | p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 UI ϕ2 | ϕ1 SI ϕ2 (1)

where v is real variable, c is a rational number, p is atomic formula, ∼∈ {<,≤}
and I is an interval over non-negative real numbers. If I is [0,∞], I is omitted.
We also use other common abbreviations, e.g., �Iϕ ≡ TrueUI ϕ and �Iϕ ≡
TrueSI ϕ.

For a given formula ϕ, an output signal x and time t, we adopt the notation
of work [11] and denote the robustness degree of output signal x satisfying ϕ
at time t by ρ(ϕ,x, t). It takes a real value such that 1) its sign stands for the
formula ϕ is satisfied or not by x at t (positive is true), and 2) its absolute value
stands for how “robustly” the formula is satisfied or not.

We also adopt the notion of future-reach fr(ϕ) and past-reach pr(ϕ) fol-
lowing [20]. Intuitively, fr(ϕ) is the time in future which is required to deter-
mine the truth value of formula ϕ, and pr(ϕ) is the time in past. For example,
fr(p) = 0, fr(�[0,3]p) = 3 and fr(�[0,3]p) = 0. Similarly, for past-reach, pr(p) = 0,
pr(�[0,3]p) = 0, pr(�[0,3]p) = 3.

In this paper, we focus on a specific class of the formula called life-long
property.

Definition 1 (life-long property). A life-long property is an STL formula
ψ ≡ �ϕ where fr(ϕ), pr(ϕ) are finite. If fr(ϕ) = 0, we call ψ past-dependent
life-long property.

Let us consider the life-long property ψ ≡ �ϕ. Intuitive meaning of this
formula is that whenever the property ϕ must hold. In falsification scenario, to
observe the violation of ϕ, output signals obtained by simulations should be long
enough with respect to both pr(ϕ) and fr(ϕ). If the output signal is infinitely long
to past and future directions, ψ is logically equivalent to a past-dependent life-
long property ��[fr(ϕ),fr(ϕ)] ϕ. In general, the output signal is not infinitely long
but using this conversion we convert all life-long properties to past-dependent
life-long properties. Our evaluation in Section 4 suggests that this approximation
does not adversely affect the performance.

Reinforcement Learning Reinforcement learning is one of machine learn-
ing techniques in which an agent learns the structure of the environment based
on observations, and maximizes the rewards by acting according to the learnt
knowledge. The standard setting of a reinforcement learning problem consists of
an agent and an environment. The agent observes the current state and reward
from the environment, and returns the next action to the environment. The goal
of reinforcement learning is for each step n, given the sequence of previous states
x0, . . . , xn−1, rewards r1, . . . , rn and actions a0, . . . , an−1, generate an action an,



which maximizes expected value of the sum of rewards: r =
∑∞
k=n γ

krk+1 , where
0 < γ ≤ 1 is a discount factor. Deep reinforcement learning is a reinforcement
learning technique which uses a deep neural network for learning. In this work,
we particularly adopted two state-of-the-art deep reinforcement learning algo-
rithms, i.e., Asynchronous Advantage Actor-Critic (A3C) [26] and Double Deep
Q Network (DDQN) [19].

3 Our Approach

3.1 Overview of our algorithm

Let us consider the falsification problem to find a counterexample of the life-long
property ψ ≡ �ϕ. As we mentioned in Section2, we can assume that ψ is past-
dependent. Our mission is to generate an input signal u for systemM, such that
the corresponding output signal M(u) does not satisfy ψ.

In our algorithm, we fix the simulation time to be Tend and call one simulation
until time Tend an episode in conformance with the reinforcement learning termi-
nology. We fix the discretization of time to a positive real number ∆T . The agent
A generates the piecewise-constant input signal u =

[
(0, u0), (∆T , u1), (2∆T , u2), . . .

]
by iterating the following steps:

(1) At time i∆T (i = 0, 1, . . . ), the agent A chooses the next input value ui.
The generated input signal is extended to u =

[
(0, u0), . . . , (i∆T , ui)

]
.

(2) Our algorithm obtains the corresponding output signal x = M(u) by
stepping forward one simulation on the model M from time i∆T to (i + 1)∆T

with input ui.
(3) Let xi+1 = x((i+ 1)∆T ) be the new state (i.e., output) of the system.
(4) We compute reward ri+1 by reward(ϕ,x) (defined in Section 3.2).
(5) The agent A updates its action based on the new state xi+1 and reward

ri+1.

At the end of each episode, we obtain the output signal trajectory x, and
check whether it satisfies the property ψ = �ϕ or not. If it is falsified, return the
current input signal u as a counterexample. Otherwise, we discard the current
generated signal input and restart the episode from the beginning.

The complete algorithm of our approach is shown in Algorithm 1. The
method call A.step(x, r) represents the agent A push the current state reward
pair (x, r) into its memory and returns the next action u (the input signal in
the next step). The method call A.reset(x, r) notifies the agent that the cur-
rent episode is completed, and returns the current state and reward. Function
reward(x, ψ) calculates the reward based on Definition 2.

3.2 Reward definition for life-long property falsification

Our goal is to find the input signal u to the systemM which minimizes ρ(ψ,M(u), 0)
where ψ = �ϕ and ρ is a robustness. We determine u0, u1, . . . in a greedy way.



Algorithm 1 Falsification for ψ = �ϕ by reinforcement learning
input: A past-dependent life-long property ψ = �ϕ, a systemM, an agent A
output: A counterexample input signal u if exists
parameters: A step time ∆T , the end time Tend, the maximum number of the episode N
1: for numEpisode← 1 to N do
2: i← 0, r ← 0, x be the initial (output) state ofM
3: u be the empty input signal sequence
4: while i∆T < Tend do
5: u← A.step(x, r), u← append(u, (i∆T , u)) . choose the next input by the agent
6: x←M(u), x← x((i+ 1)∆T ) . simulate, observe the new output state
7: r ← reward(x, ψ)
8: i← i+ 1 . calculate the reward by following eq. (2)
9: end while
10: if x 6|= ψ then return u as a falsifying input
11: end if
12: A.reset(x, r)
13: end for

Assume that u0, . . . , ui are determined. ui+1 can be determined by

ui+1 = arg min
ui+1

min
ui+2,...

ρ(�ϕ,M([(0, u0), (∆T , u1), . . .]), 0) (2)

= arg min
ui+1

min
ui+2,...

min
t∈R

ρ(ϕ,M([(0, u0), (∆T , u1), . . .]), t) (3)

∼ arg min
ui+1

min
ui+2,...

min
k=i+1,i+2,...

ρ(ϕ,M([(0, u0), . . . , (k∆T , uk)]), k∆T ) (4)

∼ arg min
ui+1

min
ui+2,...

[
− log

{
1 +

∞∑
k=i+1

{e− ρ(ϕ,M([(0,u0),...,(k∆T ,uk)]),k∆T ) − 1}

}]
(5)

= arg max
ui+1

max
ui+2,...

∞∑
k=i+1

{e− ρ(ϕ,M([(0,u0),...,(k∆T ,uk)]),k∆T ) − 1} . (6)

Here the equation (4) uses the fact ϕ is past-dependent and (5) uses an approx-
imation of minimum by the log-sum-exp function [13].

In our reinforcement learning base approach, we use discounting factor γ = 1
and reward ri = e− ρ(ϕ,M([(0,u0),...,(i∆T ,ui)]),i∆T ) − 1 to approximately compute
action ui+1, from u0, . . . , ui, M([(0, u0), . . . , (i∆T , ui)]) and r1, . . . , ri.

Definition 2 (reward). Let ψ ≡ �ϕ be a past-dependent formula and x =
M(u) be a finite length signal until the time t. We define the reward reward(ψ,x)
as

reward(ψ,x) = exp(− ρ(ϕ,x, t))− 1 (7)

4 Preliminary Results

Implementation
The overall architecture of our system is shown in Fig. 1. Our implementa-

tion consists of three components, i.e., input generation, output handling and



Environment [OpenAI Gym]

Simulate CPS Model [Matlab/Simulink] Output handling [dp-taliro]
AutoTran PTC ... Reward Calculation 

Agent (A3C,DDQN)
 Input Generation [ChainerRL]

System outputs

 State

Action (System Inputs) Reward

Fig. 1. Architecture of our system

simulation. The input generation component adopts reinforcement learning tech-
niques and is implemented based on the ChainerRL library [1]. We use default
hyper-parameters in the library or sample programs without change. The out-
put handling component conducts reward calculation using dp-TaliRo [6]. The
simulation is conducted with Matlab/Simulink models, which are encapsulated
by the openAI gym library [12].

Evaluation Settings We use a widely adopted CPS model, automatic trans-
mission control system (AT) [8], to evaluate our method. AT has throttle and
brake as input ports, and the output ports are the vehicle velocity v, the en-
gine rotation speed ω and the current gear state g. We conduct our evaluation
with the formulas in Table 1. Formulas ϕ1–ϕ6 are rewriting of ϕAT1 –ϕAT6 in
benchmark [8] into life-long properties in our approach. In addition, we propose
three new formulas ϕ7–ϕ9. For each formula ϕ1–ϕ9, we compare the performance
of our approaches (A3C, DDQN), with the baseline algorithms, i.e., simulated
annealing (SA) and cross entropy (CE). For each property, we run the falsifica-
tion procedure 20 times. For each falsification procedure, we execute simulation
episodes up to 200 times and measure the number of simulation episodes required
to falsify the property. If the property cannot be falsified within 200 episodes,
the procedure fails. We observe that ∆T may strongly affect the performance of
each algorithm. Therefore, we vary ∆T (among {1, 5, 10} except for the cases of
A3C and DDQN for ϕ7–ϕ9 among we use {5, 10} 5) and report the setting (of
∆T ) which leads to the best performance (the least episode number and highest
success rate) for each algorithm.

Evaluation Results The preliminary results are presented in Table. 2. The
∆T columns indicate the best performing ∆T for each algorithm. The “Success
rate” columns indicate the percentage that the falsification procedure could find
a counterexample within the maximum allowed simulation episodes (200). The
“numEpisode” columns show the median (among the 20 procedures) of the num-
ber of simulation episodes required to falsify the formula. We use median since
the distribution of the number of simulation episodes tends to be skewed.

The best results (success rate and numEpisode) of each formula are high-
lighted in bold. If the difference between the best entry of our methods and the
best entry of the baseline methods is statistically significant by Fisher’s exact

5 These methods with ∆T = 1 for ϕ7–ϕ9 shows bad performance and did not terminate
in 5 days.



id Formula

ϕ1 �ω ≤ ω
ϕ2 �(v ≤ v ∧ ω ≤ ω)
ϕ3 �((g2 ∧ �[0,0.1]g1)→ �[0.1,1.0]¬g2)
ϕ4 �((¬g1 ∧ �[0,0.1]g1)→ �[0.1,1.0]g1)

ϕ5 �
∧4

i=1((¬gi ∧ �[0,0.1]gi )→ �[0.1,1.0]gi)

id Formula

ϕ6 �(�[0,t1]ω ≤ ω → �[t1,t2]v ≤ v)
ϕ7 �v ≤ v
ϕ8 � �[0,25] ¬(v ≤ v ≤ v)
ϕ9 �¬�[0,20](¬g4 ∧ ω ≥ ω)

Table 1. The list of the evaluated properties on AT.
id ∆T Success rate numEpisode

A3C DDQN SA CE A3C DDQN SA CE A3C DDQN SA CE

ϕ1 5 1 10 5 100%∗ 100%∗ 65.0% 10.0% 16.5∗∗ 24.5 118.5 200.0
ϕ2 5 1 10 5 100%∗ 100%∗ 65.0% 10.0% 11.5∗∗ 27.5 118.5 200.0
ϕ3 1 1 1 1 75.0 5.0% 20.0% 85.0% 44.0 200.0 200.0 26.5
ϕ4 1 1 1 1 75.0 10.0% 20.0% 85.0% 67.5 200.0 200.0 26.5∗

ϕ5 1 1 1 1 100% 100% 100% 100% 1.0 2.0 1.0 1.0
ϕ6 10 10 10 10 100%∗ 100%∗ 70.0% 50.0% 3.5∗∗ 3.5∗∗ 160.5 119.0
ϕ7 5 5 1 1 65.0% 100%∗∗ 0.0% 0.0% 125.0 63.0∗∗ 200.0 200.0
ϕ8 10 10 10 1 80.0% 95.0% 90.0% 75.0% 72.0 52.0 83.0 21.0
ϕ9 10 10 10 10 95.0% 100%∗∗ 15.0% 5.0% 46.0 12.0∗∗ 200.0 200.0

Table 2. The experimental result on AT.

test and the Mann Whitney U-test [14], we mark the best entry with ∗ (p < 0.05)
or ∗∗ (p < 0.001), respectively.

As shown in Table 2, RL based methods almost always outperforms baseline
methods on success rate, which means RL based methods are more likely to
find the falsified inputs with a limited number of episodes. This is because RL
based methods learn knowledge from the environment and generate input signals
adaptively during the simulations. Among the statistically significant results of
numEpisode, our methods are best for five cases (ϕ1, ϕ2, ϕ6, ϕ7, ϕ9), while the
baseline methods are best for one case (ϕ4). For the case of ϕ4, it is likely because
that all variables in this formula take discrete values, thus, reinforcement learning
is less effective. Further, DDQN tends to return extreme values as actions, which
are not solutions to falsify ϕ3 and ϕ4. This explains poor performance of DDQN
for the case of ϕ3 and ϕ4.

Unfortunately, our current implementation has a disadvantage of large com-
putational time due to the overhead caused by wrapping a simulation in openAI
gym API. We believe that the performance for time would be much better with
proper implementation.

5 Conclusion and Future Work

In this paper, we report an approach which adopts reinforcement learning algo-
rithms to solve the problem of robustness-guided falsification of CPS systems.
We implement our approach in a prototype tool and conduct preliminary eval-
uations with a widely adopted CPS system. The evaluation results show that
our method can reduce the number of episodes to find the falsifying input. As a
future work, we plan to extend the current work to explore more reinforcement
learning algorithms and evaluate our methods on more CPS benchmarks.
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