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Abstract. Robot applications are increasingly based on teams of robots
that collaborate to perform a desired mission. Such applications ask for
decentralized techniques that allow for tractable automated planning.
Another aspect that current robot applications must consider is partial
knowledge about the environment in which the robots are operating and
the uncertainty associated with the outcome of the robots’ actions.

Current planning techniques used for teams of robots that perform com-
plex missions do not systematically address these challenges: (1) they
are either based on centralized solutions and hence not scalable, (2) they
consider rather simple missions, such as A-to-B travel, (3) they do not
work in partially known environments. We present a planning solution
that decomposes the team of robots into subclasses, considers missions
given in temporal logic, and at the same time works when only partial
knowledge of the environment is available. We prove the correctness of
the solution and evaluate its effectiveness on a set of realistic examples.

1 Introduction

A planner is a software component that receives as input a model of the robotic
application and computes a plan that, if performed, allows the achievement of
a desired mission [26]. As done in some recent works in robotics (e.g., [4],[3]),
we assume that a robot application is defined using finite transition systems
and each robot has to achieve a mission, indicated as local mission, specified as
an LTL property. As opposed to more traditional specification means, such as
consensus or trajectory tracking in robot control, A-to-B travel in robot motion
planning, or STRIPS or PDDL in robot task planning, LTL allows the speci-
fication of a rich class of temporal goals that include surveillance, sequencing,
safety, or reachability [8]. LTL has also been recently considered as a reference
logic for the specification of patterns for robotic mission, in which LTL template
solutions are provided to recurrent specification problems [33].

Several works studied centralized planners that are able to manage teams of
robots that collaborate to achieve a global mission (e.g., [20],[28],[34]), and how
to decompose a global mission into a set of local missions (e.g., [36],[16],[16],[38]).



Local missions have been recently exploited by decentralized planners [38], which
avoid the expensive centralized planning by analyzing the satisfaction of local
missions inside subsets of the robots.

Another aspect that current planners must consider is partial knowledge
about the environment in which the robots operate. Partial knowledge has been
strongly studied by the software engineering and formal methods communi-
ties. Partial models have been used to support requirement analysis and elic-
itation [32],[31],[27], to help designers in producing a model of the system that
satisfies a set of desired properties [29],[40],[39], and to verify whether already
designed models possess some properties of interest [2],[30],[5],[7]. However, most
of the existing planners assume that the environment in which the robots are
deployed is known [9]. Literature considering planners that work in partially
specified environments is more limited and usually rely on techniques based on
probabilistic models (e.g., [35],[12],[10]). Furthermore, decentralized planners are
rarely applied when partial knowledge about the robot application is present [16].

Contribution. This work presents MAPmAKER (Multi-robot plAnner for
PArtially Known EnviRonments), a novel decentralized planner for partially
known robotic applications. Given a team of robots and a local mission for each
robot, MAPmAKER partitions the set of robots into classes based on depen-
dencies dictated by the local missions of each robot. For each of these classes, it
explores the state space of the environment and the models of the robot searching
for definitive and possible plans. Definitive plans ensure the satisfaction of the
local mission for each robot. Possible plans may satisfy the local mission due to
some unknown information in the robotic application. MAPmAKER chooses the
plan to be executed among definitive and possible plans that allow the achieve-
ment of the mission.

Specific novel contributions. The specific contributions are:

(1) We define the concept of partial robot model. This definition customizes par-
tial models (e.g., PKS [5] and MTS [24]) in a robotic domain context [38]
allowing the description of the robots and their environments when partial
information is available. A partial robot model allows considering three types
of partial information: partial knowledge about the execution of transitions
(possibility of changing the robot location), the service provision (whether
the execution of an action succeed in providing a service) and the meeting
capabilities (whether a robot can meet with another).

(2) We define the concept of local mission satisfaction for partial robot mod-
els and the thorough LTL word semantics. This semantics extends the well
known thorough LTL semantics [6] for partial models and allows the thor-
ough evaluation of an LTL formula over words. This definition is needed to
define when an LTL formula is satified or possibly satisfied on a given plan.

(3) We define the distributed planning problem for partially specified robots.

(4) We prove that under certain assumptions the planning problem can be solved
by relying on two calls of a “classical” planner.

(5) We propose a distributed planning algorithm and we prove its correctness.
The distributed algorithm enables a tractable planning.



(6) We evaluate the proposed algorithm on a robot application obtained from
the RoboCup Logistics League competition [18] and on a robotic application
working in an apartment which is part of a large residential facility for senior
citizens [1]. The results show the effectiveness of MAPmAKER.

Organization. Section 2 presents our running example. Section 3 describes
the problem and Sect. 4 describes how MAPmAKER supports partial models.
Section 5 presents the proposed planning algorithm. Section 6 evaluates the
approach. Section 7 presents related work. Section 8 concludes with final remarks
and future research directions.

2 Running Example

Robots r1, r2, and r3 are deployed in the environment graphically described in
Fig. 1. This environment represents a building made up of rooms l1, l2, l3, and
l4. The environment is partitioned in cells, each labeled with an identifier in c1,
c2, . . . , c30. Robots r1, r2, and r3 are placed in their initial locations. Each robot
is able to move from one cell to another, by performing action mov. The robots
are also able to perform the following actions. Robot r1 is able to load debris of
the building by performing action ld. Given a robot r and a generic action α, in
Fig. 1 the cells in which r can perform α are marked with the label r(α). Robot
r2 can wait until another robot loads debris on it by performing action rd and
can unload debris by performing one of the two actions ud1 and ud2. Actions
ud1 and ud2 use different actuators. Specifically, action ud1 uses a gripper while
action ud2 exploits a dump mechanism. Robot r3 is able to take pictures by
performing action tp and send them using a communication network through
the execution of action sp. Symbols r1(ld), r2(rd), r2(ud1), r2(ud2), r3(tp), and
r3(sp) mark the regions where actions can be executed by the robots, while
movement actions are not reported for graphical reasons. Actions ld, rd, tp,
and sp are associated with the services load carrier , detect load , take snapshot ,
and send info, respectively, which are high-level functionalities provided by the
robot when actions are performed. Actions ud1 and ud2 are associated with
service unload. The labels L(π, α) = > below Fig. 1 are used to indicate that
a service π is associated with action α. Robots must meet and synchronously
execute actions. Robots r1 and r2 must meet in cell c7 and synchronously execute
actions ld and rd, respectively. Rotating arrows marked with robots identifiers,
are used to indicate where robots must meet.

The global mission the team of robots has to achieve is to check whether toxic
chemicals have been released by the container located in l4. We assume that the
mission is specified through a set of local missions assigned to each robot of the
team and described in LTL as in Fig. 2. Informally, while r3 continuously takes
pictures and sends them using the communication network, r1 and r2 remove
debris to allow r3 having a better view on the container. The pictures allow
verifying whether toxic chemicals have been released.

Partial knowledge about the actions execution. The robots can move
between cells separated by grey lines, while they cannot cross black bold lines.
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Fig. 1. An example showing the model of the
robots and their environment. Plans are repre-
sented by trajectories marked with arrows.

φ1 = G(F(load carrier)): pe-
riodically robot r1 loads de-
bris on r2 (by providing service
load carrier).

φ2 = G(F(detect load∧F(un-
load))): robot r2 receives de-
bris (service detect load) and
brings them to an appropriate
unload area (service unload).

φ3 = G(F(take snapshot∧F(
send info))): robot r3 repeat-
edly takes pictures (service
take snapshot) and sends them
using the communication net-
work (service send info).

Fig. 2. The local missions assigned
to each robot.

It is unknown whether it is possible to move between cells c14 and c20 since the
structure may have been affected by collapses. This is indicated using a dashed
black bold line. It is also unknown whether robot r3 can send pictures using a
communication network, performing action sp in location l3 and specifically in
cell c18. Locations of the environment where it is unknown if an action can be
executed are marked with the name of the action preceded by symbol ?.

Unknown service provisioning. There are cases in which actions can be
executed but there is uncertainty about service provisions. For example, actions
ud1 and ud2 of robot r2 unload the robot. Action ud1 will always be able to
provide the unload service, while it is unknown whether ud2 provides this service
since its effectiveness depends on the size of the collected debris. In Fig. 1, the
label L(ud2, unload) =? indicates that there is partial knowledge about the
provision of the unload service when action ud2 is performed.

Unknown meeting capabilities. It is unknown whether robots r1 and r2
can meet in one cell of the environment. For example, a collapse in the roof of the
building may forbid the two robots to concurrently execute actions ld and rd,
e.g., there is not enough space for r1 to load r2. Unknown meeting capabilities
are indicated with rotating arrows labeled with the symbol ?. For example, in
Fig. 1, it is unknown whether robots r1 and r2 are able to meet in cell c9.

3 Modeling partial knowledge in a robotic application

We extend the model of a robotic application [38] with partial knowledge.



Definition 1. Consider a set of robots R. A partial robot model of a single
robot r ∈ R is a tuple r = (S, init, A, Π, T, Tp, Meet, Meetp, L ), where S
is a finite set of states; init ∈ S is the initial state; A is a finite set of actions;
Π is a set of services; T, Tp : S × A → S are partial deterministic transition
functions such that for all s, s′ ∈ S and α ∈ A, if T (s, α) = s′ then Tp(s, α) = s′;
L : A×Π → {>,⊥, ?} is the service labeling; Meet,Meetp : S → (℘(R) ∪ {#})
are functions ensuring:

(1) for all s ∈ S either Meet(s) ⊆ ℘(R) or Meet(s) = {#};
(2) for all s ∈ S such that Meet(s) 6= ∅, Meetp(s) = Meet(s).

A partial robot model has three sources of partial knowledge:
Partial knowledge about the action execution. A transition Tp(s, α) = s′ is called

possible transition and is indicated as s
α
99K s′. Given two states s and s′ and

an action α, if Tp(s, α) = s′ and T (s, α) 6= s′ (i.e., it is undefined) it is uncertain
whether the robot moves from s to s′ by performing α. A transition Tp(s, α) = s′,
such that T (s, α) 6= s′ is called maybe transition. A transition Tp(s, α) = s′, such

that T (s, α) = s′, is a definitive transition and is indicated as s
α−→ s′.

Partial knowledge about the service provisioning. The service labeling specifies
whether a service π ∈ Π is provided when an action α ∈ A is performed. If
L(α, π) = >, then the service π is provided by the action α, if L(α, π) = ⊥, then
the service π is not provided by the action α, and, finally, if L(α, π) =?, then it
is uncertain whether service π is provided when the action α is executed.
Partial knowledge about robot meeting capabilities. Function Meetp labels a

state s with a set of robots that must meet with r in s. If Meet(s) = ∅ and
Meetp(s) 6= ∅, it is uncertain whether the robots in Meetp(s) can meet. Oth-
erwise Meet(s) = Meetp(s), i.e, the meeting capabilities are definitive. When
Meet(s) = {#} = Meetp(s) the meeting is not possible.

A definitive robot model is a partial robot model that does not contain
partial information about the action execution, the service provisioning, and the
meeting capabilities.

Variations of finite state machines are strongly used by planning algorithms
in the robotic community (e.g. [17],[16],[38]). They can be directly computed by
abstracting maps of real environments (e.g. [21]) or generated for other types
of specifications such as Ambient Calculus (e.g., [37]). Within the context of
this work we assume the model of the robotic application is given. Note that
the notion of partial robot model does not extends PKS [5] and MTS [24] in
terms of expressive power, but allows handling explicitly partial knowledge about
the execution of transitions, the service provision, and the meeting capabilities,
which are key aspects to be considered in robotic applications [38].

A plan describes the states and actions a robot has to traverse and perform.

Definition 2. Given a partial robot model r = (S, init, A, Π, T, Tp, Meet,
Meetp, L ), a definitive plan of r is an infinite alternating sequence of states
and actions β = s1, α1, s2, α2, . . ., such that s1 = init, for all i ≥ 1 and π ∈ Π,
si

αi−→ si+1, Meet(si) = Meetp(si), Meet(si) 6= {#} 6= Meetp(si) and L(αi,
π) 6=?. A possible plan of r is infinite alternating sequence of states and actions



β = s1, α1, s2, α2, . . ., such that s1 = init, and for all i ≥ 1, si
αi
99K si+1 and

Meet(si) 6= {#} 6= Meetp(si).

The plan c17,mov, c23,mov, c29,mov, c30, (sp, c30)ω is a definitive plan for
robot r3 since all the transitions, service provisioning and meeting capabilities are
definitive. The plan c26,mov, c20,mov, c14, (mov, c14)ω for robot r1 is a possible
plan since the transition from cell c20 to c14 executed by performing action mov
is a maybe transition.

Definition 3. A partial robot application H is a set of partial robot models
{r1, r2, . . ., rN} such that for every couple of partial robot models rn, rm ∈ H,
where rn=(Sn, initn, An, Πn, Tn, Tp,n, Meetn, Meetp,n, Ln) and rm=(Sm,
initm, Am, Πm, Tm, Tp,m, Meetm, Meetp,m, Lm), the following is satisfied
Πn ∩Πm = ∅ and An ∩Am = ∅.

In Definition 3 and in the rest of the paper we will assume that the sets of services
and actions of different robots are disjoint. This is not a strong limitation for
usage in real applications, where an action α (resp. service π) shared among two
robots r1 and r2 can be mapped in two actions α1 and α2 (resp. π1 and π2) to be
used in robots r1 and r2. The local mission should then be changed accordingly,
i.e., occurrences of service π must be replaced with the formula π1 ∨ π2.

Let us consider a partial robot application H. We use Bd to indicate a set
{βd1 , βd2 , . . . , βdN} of definitive plans, where βdn is a definitive plan for the partial
robot rn in H. We use Bp to indicate a set {βp1 , β

p
2 , . . . , β

p
N} of possible plans,

where βpn is the possible plan for the partial robot rn in H.
The notion of plan should reflect the meeting scheme, meaning that robots

should enter and leave locations of the environment depending on the functions
Meet and Meetp. Consider a partial robot application H and a set B = {β1, β2,
. . . , βN} of definitive or possible plans, where βn is the plan for the robot rn in
H. We indicate as compatible plans the plans in B that ensure a meeting scheme.

Definition 4. Given a set of definitive (possible) plans Bd (Bp), the set Bd (Bp)
is compatible if the following holds for all rn ∈ H, and j ≥ 1. For each plan
βn = sn,1, αn,1, sn,2, αn,2, . . . of each robot rn if sn,j−1 6= sn,j and Meet(sn,j) 6= ∅
then
(1) sn,j = sn,j+1;
(2) for all rm ∈Meetn(sn,j), it holds that sm,j = sn,j and sn,j = sm,j+1.

The condition enforces the constraint dictated by the Meet function when
state sn,j is entered. Specifically, (1) ensures that after a robot rn meets another
in a state sn,j , it proceeds with the execution of a transition that has state sn,j
as a source and destination and (2) ensures that each robot rm that belongs to
Meetn(sn,j) reaches state sn,j at step j and remains in sn,j at step j + 1. Note
that, compatible plans force the robots rn and rm to synchronously perform and
action among steps j and j + 1.

A plan is executed by a robot, by perfoming the actions and transitions
specified in the plan. Executing plans allows discovering information about action



execution, service provisioning, and meeting capabilities. Every time a transition
that is associated with partial information about its action is executed, an action
associated with uncertainty in the service provisioning is performed and a state
with unknown meeting capabilities is reached, new information is detected. If a
transition is detected to be executable, a service to be provided, or a meeting to
be possible, we say that a true evidence about the partial information is detected.
In the opposite case, we say that false evidence is detected.

Given a robot application H= {r1, r2, . . ., rN}, such that rn=(Sn, initn, An,
Πn, Tn, Tp,n, Meetn, Meetp,n, Ln) we define Π = Π1∪Π2∪. . .∪ΠN . We assume
that the mission assigned to the team of robots is made by a set Φ = {φ1, φ2,
. . . , φN} of local missions such that each mission φn ∈ Φ is assigned to the robot
rn of H. Each local mission φn is specified as an LTL formula defined over the
set of atomic propositions Πφ,n ⊆ Π, i.e., the mission can also involve services
that are not provided by robot rn, but are provided by other robots of H.

A dependency class dpn = r1, r2, . . . , rn is a subset of robots that depends
on each other for achieving their missions. Two robots rn=(Sn, initn, An, Πn,
Tn, Tp,n, Meetn, Meetp,n, Ln) and rm=(Sm, initm, Am, Πm, Tm, Tp,m, Meetm,
Meetp,m, Lm) with missions defined over Πφ,n and Πφ,m, are in dpn if Πφ,n ∩
Πm 6= ∅, or there exists a state s of rn such that rm ∈ Meetn(s) ∪Meetp,n(s).
In the first case, one of the services of the mission of robot rn is provided by
robot rm; in the second, robot rm must meet robot rn.

The definitions of a definitive robot model, refinement and completion of par-
tial robot models and execution of possible and definitive plans are in Appendix
A1, available at goo.gl/Hp33j2.

4 Planning with partial knowledge

Solving the planning problem requires defining what it means that a plan satisfies
a mission. This section provides two different definitions of this concept through
the three-valued and the thorough LTL semantics.The first allows implementing
an efficient procedure to check whether a plan satisfies a mission. However, the
obtained result does not always reflect the natural intuition. The second allows
returning a precise result but requires implementing a checking procedure that
is more computationally expensive.

Consider for a moment a definitive (possible) plan β = s1α1s2α2 . . .. The
definitive (possible) word associated with β is wτ = $1$2 . . ., such that for
each i > 1 and π ∈ Π, $i(π) = Ln(αi, π). Intuitively, each element $i of wτ
maps a service π with the value of function Ln(αi, π). Note that definitive words
associate services with values in the set {>,⊥}, while possible words wτ associate
services with values in the set {>, ?,⊥}.

The three-valued LTL semantics
3
= allows efficiently checking a property φ

and a word wτ . This can be done at the same computational cost as regular
two-valued semantics [5]. While a formula is evaluated as > and ⊥ reflecting the
natural intuition, it has been shown [6] that the three-valued semantics returns
a ? value more often than expected. Specifically, it is desirable that a property φ

goo.gl/Hp33j2


is evaluated to ? when there are two words w′τ and w′′τ that can be obtained by
replacing ? values of wτ with > and ⊥, such that w′τ satisfies φ and w′′τ does not
satisfy φ. For this reason, the thorough LTL semantics has been proposed [6].

The thorough LTL semantics is usually defined considering partial models [6].
Given a partial model M and a formula φ, the thorough LTL semantics assigns
the value ? if there exist two completions M ′ and M ′′ of M , obtained by assigning
> and ⊥ to proposition with value ?, such that M ′ satisfies φ and M ′′ violates
φ. However, since our goal is to evaluate the satisfaction of a formula on plans
we define a notion of thorough LTL semantics based on words. Given a word
wτ a completion w′τ of wτ is obtained from wτ by assigning > and ⊥ values to
$i(π) for each i > 1 and π such that $i(π) =?

Definition 5. Given a word wτ and a property φ, the thorough LTL semantics
T
= associates the word wτ with a value in the set {>, ?,⊥} as follows

(1) [wτ |= φ]
T
= > iff all the completions w′τ of wτ are such that [w′τ |= φ] = >;

(2) [wτ |= φ]
T
= ⊥ iff all the completions w′τ of wτ are such that [w′τ |= φ] = ⊥;

(3) [wτ |= φ]
T
=? otherwise.

Since a word is a simple linear model (a sequence of states connected by
transitions), the properties that hold for the thorough LTL semantics for partial
models also hold for the thorough LTL word semantics.

Lemma 1. Given two words wτ and w′τ , such that wτ � w′τ , and an LTL

formula φ the following are satisfied: (1) [wτ |= φ]
3
= > ⇒ [w′τ |= φ]

T
= >;

(2) [wτ |= φ]
3
= ⊥ ⇒ [w′τ |= φ]

T
= ⊥.

Checking whether a word wτ and a property φ in the sense of the thorough
LTL word semantics levies performance penalties: it can be done in polynomial
time in the length of wτ and double exponential time in the size of φ [15].

There exists a subset of LTL formulae, known in literature as self-minimizing
formulae, such that the three valued and the thorough semantics coincide [14].
This result can also be applied on words. Given a word wτ and a self-minimizing

LTL property φ, then [wτ |= φ]
T
= x

3
= [wτ |= φ] where x ∈ {⊥,>, ?}. It has been

observed that most practically useful LTL formulae, such as absence, univer-
sality, existence, response and response chain, are self-minimizing [14]. Further-
more, since for this set the two semantics coincide, the more efficient procedure
for checking a property w.r.t. the three-valued semantics can be used [6].

Local definitive and possible LTL satisfaction can be then defined as follows.

Definition 6. Let
X
= be a semantics in { 3

=,
T
=}. Let rn and D be a robot and

a set of robots, such that {rn} ⊆ D ⊆ H. Let us consider a set of compat-
ible plans B such that each word wm of robot rm is infinite and defined as
wm = $m,1$m,2 . . .. The word produced by a set of definitive (resp. possible)
compatible plans B = {βm | rm ∈ D} is wB = ω1ω2 . . ., where for all j ≥ 1 and



for all π ∈ Π, ωj(π) = max{$m,j(π) | rm ∈ D}. The set of definitive (resp.
possible) compatible plans B locally definitively (resp. possibly) satisfies φn for

the agent n, i.e., B |= φn, iff B is valid and [wB |= φn]
X
= > ([wB |= φn]

X
=?).

The thorough semantics ensures that when the word associated with the plan
possibly satisfies a mission φ, there exists a way to assign > and ⊥ to ? such
that it is possible to obtain a word that satisfies φ and another that does not
satisfy φ. Thus, there is a chance that, if executed, the plan satisfies a mission
φ. This is not true for the three-valued semantics since it can be the case that
a plan possibly satisfies a mission φ, but the mission is trivially unsatisfiable.
Note that since a plan wB is such that wB |= φn, it can be rewritten using
an ω-word notation as wB = ω1ω2 . . . ωn−1(ωnωn+1 . . . ωm)ω [41], where m is
the length of the plan. We use the notation L(wB) to indicate length m of the
ω-word associated with plan wB with minimum length.

In this work we assume local missions are given.We also assume that all the
local missions must be satisfied for achieving the global mission. Formally, given
a global mission φ, the corresponding set of the local missions {φ1, φ2, . . . , φN}
(one for each robot in H) and the word B produced by a set of definitive (resp.

possible) compatible plans, [B |= φ]
X
= > if for all 1 ≤ n ≤ N , [B |= φn]

X
= >;

[B |= φ]
X
=? if for all 1 ≤ n ≤ N , [B |= φn]

X
> ⊥, where ≥ is defined such as

> >? > ⊥; [B |= φ]
X
= ⊥ otherwise.

Based on these definitions, the planning problem is formulated as follows:

Problem 1 (Planning). Consider a partial robot application H defined over the

set of partial robot models {r′1, r′2, . . ., r′N} and a semantics
X
= in { 3

=,
T
=}. Given

a set of local missions {φ1, φ2, . . . , φn}, one for each robot rn ∈ H find a set of
plans B = {β1, β2, . . . , βN} that

(1) are compatible and
(2) B locally definitively (resp. possibly) satisfies each φn w.r.t. the given se-

mantics.

Appendix A2, available at goo.gl/Hp33j2, contains the proof of Lemma 1 and
additional theorems and proofs.

5 Algorithms

MAPmAKER solves Problem 1 by implementing a decentralized planning with
partial knowledge. First, we discuss how robots are partitioned into dependency
classes; then, we discuss how planning is performed within each of these classes.

Compute the dependency classes To compute dependency classes the
following rule [16] is iteratively applied: a robot rn assigned to a local mission
φn defined over the services Πφ,n is in the same dependency class Di of rm if
and only if (1) the local mission predicates on a service π provided by robot rm,
i.e., π ∈ Πφ,n ∩Πm, or (2) rn and rm must meet.

goo.gl/Hp33j2


In the running example, one dependency class contains robots r1 and r2 since
these robots must meet in cell c7, the other contains robot r3.

Planning with partial knowledge Algorithm 1 receives a partial robot
application and a set of local missions and computes a set of definitive (or pos-
sible) plans that ensures the mission satisfaction. We discuss how the different
types of partial information are handled by Algorithm 1 by incrementally en-
abling Algorithm 1 to handle types of partial information. Identifiers A1, A2,
and A3 mark lines that enable handling different types of partial information.
Managing partial information in the transition relation. Let us first assume that
we have a partial robot application H= {r1, r2, . . ., rN} where each robot rn is
such that Meetn = Meetp,n and for each service π ∈ Πn and action α ∈ An,
Ln(α, π) ∈ {>,⊥}. In this case, partial information only refers to the presence

of maybe transitions, i.e., transitions sn
α
99K s′n such that sn

α−→ s′n 6∈ Tn. Lines
marked with the identifier A1 allow Algorithm 1 to handle this case.

The algorithm works in three steps.

Step 1. For each robot rn ∈ H it removes the transitions sn
α
99K s′n such that

sn
α−→ s′n 6∈ Tn (Line 3) and applies a classical decentralized planning algorithm

(Line 8). Variable pd contains whether the planner had found a plan, {pd1, pd2,
. . . , pdN} contains the plans if they are found. If a plan is found, pd is assigned
to true and the definitive plans for each of the robots are stored in variables
{pd1, pd2, . . . , pdN}. Otherwise, pd is assigned to false.

Step 2. It considers the original partial robot application (Line 9) and it
applies the decentralized planning algorithm (Line 12). If a set of possible plans
is found, pp is equal to true and the possible plans (one for each robot) are stored
in {pp1, pp2, . . . , ppN}.

Step 3. It analyzes the results contained in pd and pp. If both pd and pp are
equal to false then no plans are synthesizable (Line 13). If pd is false while pp is
not, only possible plans are available and they are returned as output (Line 14).
Otherwise, a policy is used to choose between {pd1, pd2, . . . , pdN} and {pp1, pp2,
. . . , ppN} (Line 15).

If no meeting primitives are specified in cell c9, actions ld and rd cannot be
performed by robots r1 and r2 in c9 and ud2 does not provide service unload,
plans p1, p2, and p3 are returned from robots r1, r2, and r3. Plan p2 is possible
since it is not known whether robot r1 can move from cell c8 to c14. Plan p3 is
possible since it is unknown whether robot r3 can perform action sp in cell c18.
Managing uncertainties in the service provision. Let us assume that we have a
partial robot application H where each robot rn is such that Meetn = Meetp,n,
i.e., there is no partial information about meeting capabilities. We designed an
algorithm similar to [5], specified by Lines marked with the identifier A2.

Step 1. For each rn, remove all the transitions sn
α
99K s′n such that sn

α−→ s′n 6∈ Tn
(Line 3).
Step 2. Put each formula φn ∈ Φ in its negation normal form (Line 4).
Step 3. For each rn, construct a model r′n called complement-closed, in which
for action α ∈ A and service π ∈ AP , there exists a new service π, called
complement-closed service, such that Ln(α, π) = comp(Ln(α, π)) (Line 5).



Algorithm 1 The PARTIAL PLAN function.

1: Input a partial robot application H and a set of missions Φ
2: Output a definitive or a possible plan (if they exist)

3: For each robot rn ∈ H remove transitions sn
α
99K s′n s.t. sn

α−→ s′n 6∈ Tn (A1)
4: Put each formula φn ∈ Φ in its negation normal form and rename the negated

propositions as in [5] (A2)
5: Compute the complement closed model r′n of each rn ∈ H (A2)
6: For each r′n and s ∈ Sn if Meetn,p(s) 6= Meetn(s) then Meetn,p(s) = {#}(A3)
7: For each model r′n construct the pessimistic approximation r′p,n (A2)
8: [pd, {pd1, pd2, . . . , pdN}]=DEC PLANNER ({r′p,1, r′p,2, . . . , r′p,N}, Φ)

9: For each robot rn insert the transitions sn
α
99K s′n s.t. sn

α−→ s′n 6∈ Tn (A1)
10: For each model r′n construct the optimistic approximation r′o,n (A2)
11: For each r′n insert all the meeting requests in Meetn,p (A3)
12: [pp, {pp1, pp2, . . . , ppN}]=DEC PLANNER ({r′o,1, r′o,2 . . . , r′o,N}, Φ)
13: if pd = false and pp = false then return NO PLAN AVAILABLE
14: if pd = false then return {pp1, pp2, . . . , ppN};
15: else return choose({pd1, pd2, . . . , pdN}, {pp1, pp2, . . . , ppN})

Step 4. Substitute function Ln of each r′n with its pessimistic approximation
Ln,pes. Specifically, Ln,pes is constructed as follows: for each action α and π such
that Ln(α, π) =?, Ln,pes(α, π) = ⊥ otherwise Ln,pes(α, π) = Ln(α, π) (Line 7).
Step 5. Apply the decentralized planning algorithm (Line 8). If a set of plans
is found they are definitive plans and stored in {pd1, pd2, . . . , pdN} otherwise a
false value is associated to pd.

Step 6. For each rn insert all the transitions sn
α
99K s′n such that sn

α−→ s′n 6∈ Tn
(Line 9).
Step 7. Construct the optimistic approximation function Ln,opt by associating
the value > to each atomic proposition of the complement-closure of r’ with
value ? (Line 10).
Step 8. Apply the decentralized planning algorithm (Line 12). If a set of plans
are found they are possible plans and stored in {pp1, pp2, . . . , ppN} otherwise a
false value is associated to pp.
Step 9. Analyzes the results. If both pd and pp are assigned with the false value
(Line 13), neither a possible nor a definitive plan can be synthesized. If pd is
false while pp is not (Line 14), then no definitive plans are available while a
possible plan has been found. Otherwise (Line 15), an appropriate policy is used
to choose between {pp1, pp2, . . . , ppN} and {pd1, pd2, . . . , pdN}.

If no meeting is required in cell c9, actions ld and rd cannot be performed by
robots r1 and r2 in c9 and it is not known whether ud2 provides service unload,
plans p1, p′2, and p3 are returned for r1, r2, and r3. Plan p′2 is possible since it
is unknown whether the execution of action ud2 provides the service unload.

Managing uncertainties in the meeting capabilities. Partial knowledge in the
meeting capabilities is handled considering lines marked with A3. These lines
ensure that before searching for a definitive plan, the meeting requests that are
possible in the partial model of each robot of the robot application are removed
(Line 6). These requests are added (Line 11) before searching for possible plans.



If meeting in cell c21 is considered, and actions ld and rd can be performed
by robots r1 and r2 in c9, plans p′′1 , p′′2 , and p3 are returned from robot r1, r2,
and r3, respectively. Plans p′′1 and p′′2 are shorter plans than p′2 and p1.

Algorithm 1 calls a classical decentralized planning algorithm twice. This
algorithm is also re-executed every time during that the plan execution a false
evidence about partial information is detected.

Theorem 1. Consider a partial robot application H, a set of missions Φ (one

for each robot) and the three-valued LTL semantics (
3
=). A set of plans B that

(1) are compatible and (2) B locally definitively (resp. possibly) satisfies each
φn w.r.t. the three-valued semantics. is returned from Algorithm 1 if and only if
they exist in H. If formulae are self-minimizing this theorem also applies to the

thorough LTL semantics (
T
=).

Proof of Theorem 1 and additional details of the algorithm are in Appendix A3,
available at goo.gl/Hp33j2.

6 Evaluation

This section reports on our experience evaluating MAPmAKER. We considered
the following research questions: RQ1: How does MAPmAKER help planning
in partially known environments? RQ2: How does the employed decentralized
algorithm help in planning computation?

Implementation. As a proof of concepts we implemented MAPmAKER as
a Matlab application, based on the planner proposed in [38]. The source code, a
complete replication package and a set of videos showing MAPmAKER in action
can be found at https://github.com/claudiomenghi/MAPmAKER/.

RQ1. We analyzed MAPmAKER on a set of simulated models.
Methodology. We considered two existing examples proposed in literature.
Example 1. The model of the robot application of the RoboCup Logistics League
competition [18] which has a map made by 169 cells and 4 rooms.
Example 2. The model of a robot application deployed in an apartment of about
80 m2, which is part of a large residential facility for senior citizens [1]. The
map had originally been used to evaluate a planning algorithm for a single robot
based on information contained in RFID tags present in the environment [19].

In both the examples, we considered a team of 2 robots (r1 and r2), which
is the same number of robots used in the RoboCup competition. However, we
considered a higher number of services. Specifically, we considered 5 services:
services s1, s2, and s3 for robot r1 and services s4 and s5 for robot r2.

We simulated the presence of partial knowledge about the robot application
to evaluated the impact of partial information about the execution of transi-
tions (Exp 1 ), services provisioning (Exp 2 ) and meeting capabilities (Exp 3 )
on the planning procedure. To simulate the presence of partial information we
constructed a partial robot application that conforms with Definition 1. To an-
alyze partial information in the execution of transitions (Exp 1 ) we considered
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2 rooms (that had multiple exits) and for each of these we added two unknown
transitions. Both of these transitions allow leaving the room and are placed in
correspondence with an exit and a wall. Thus, they will turn into a true and
false evidence about the partial information when reached by the robot, respec-
tively. To simulate partial information about the service provisioning (Exp 2 ) we
assumed that service s2 is associated with actions a1 and a2. However, there is
partial information on whether the execution of a1 and a2 actually provides ser-
vice s2. In one case, when action a1 is executed a true evidence on the provision
of s2 is returned. Contrariwise, when action a2 is executed, a false evidence is
returned by the dynamic discovering procedure. To simulate partial information
about the meeting capabilities (Exp 3 ) we assumed that it is unknown whether
robots r1 and r2 can meet in two cells when service s1 is provided. In one of the
cells, when meeting is performed, a true evidence is returned while in the other
case false evidence is returned.

We consider different missions since in the RoboCup competition each mis-
sion was supposed to be performed in isolation by a single robot, while we aim to
evaluate the behavior of the overall team. Our missions were inspired by the one
used in the RoboCup competition and formalized as self-minimizing LTL proper-
ties and based on well known properties patterns [21],[43]. The following missions
were considered: (1) robot r1 must achieve the mission F(s1∧(F(s2∨s3))). It had
to reach a predefined destination where service s1 is provided, and then perform
either service s2 or service s3. (2) robot r2 must achieve the following mission
G(F(s4 ∨ s5)). Furthermore, it aims at helping r1 in providing service s1, i.e.,
robots r1 and r2 must meet in cells where service s1 is provided.

Our simulation scenarios were obtained by considering different initial condi-
tions (indicated as I1, I2, and I3), where robots were initially located in different
cells, and models of the partial robot application (indicated as C1, C2, and C3),
obtained by making different choices about partial information. Each simulation
scenario is associated with an identifier (ID) and is obtained by considering a
model of the partial robot application in one of the initial conditions.

Then, we performed the two following steps.

Step 1. We run MAPmAKER by considering the partial model of the robot
application. The algorithm iteratively computes possible plans that are executed
by the robots. As the robots explore their environment, true or false evidence
about partial information is detected meaning that a transition, service, and
meeting capability is detected to be firable, provided, and possible, respectively.
If a false evidence about a partial information is detected, e.g., a transition of the
plan is not executable, MAPmAKER is re-executed to recompute a new possible
plan. As all the partial information needed to achieve the mission is turned into
a true or a false evidence, the produced plan is actually definitive.

Step 2. We run MAPmAKER on a model of the robotic application obtained
by assuming that unknown transitions, services, and meeting capabilities are not
executable, not provided, and not possible, respectively. Thus, MAPmAKER
returns a definitive plan (if present). This model is not the real model of the
robot application since some transitions, services, and meeting capabilities may



Table 1. Results of Experiments 1, 2, and 3 for Examples 1 and 2.

Example 1 Example 2
Exp 1 Exp 2 Exp 3 Exp 1 Exp 2 Exp 3

ID I C F T Tr Lr F T Tr Lr F T Tr Lr F T Tr Lr F T Tr Lr F T Tr Lr
1 I1 C1 1 1 4.9 1.3 0 1 1.4 0.6 0 0 2.3 1.0 0 1 - - 1 1 3.2 1.1 1 0 3.5 1.4

2 I1 C2 0 1 3.6 0.9 0 0 2.1 1.0 0 1 2.3 0.7 0 0 3.4 1.0 0 0 2.0 1.0 0 0 2.0 1.0

3 I1 C3 1 1 5.2 1.3 1 1 3.3 1.1 1 0 4.0 1.4 1 0 6.3 1.9 0 1 1.2 0.6 0 0 2.1 1.0

4 I2 C2 1 1 5.2 1.4 0 1 2.0 0.9 0 0 2.1 1.0 0 2 - - 0 1 1.8 0.8 1 0 3.0 1.0

5 I2 C2 1 2 - - 0 1 1.5 0.6 0 1 1.8 0.9 0 1 - - 0 0 2.0 1.0 0 0 2.0 1.0

6 I2 C2 1 2 7.6 1.1 0 1 1.9 0.9 1 1 3.1 0.8 1 0 3.0 1.2 1 1 3.8 1.3 0 0 2.0 1.0

7 I3 C3 0 0 3.9 1.0 0 0 2.0 1.0 0 0 2.0 1.0 0 1 - - 1 0 3.6 1.6 0 0 2.0 1.0

8 I3 C3 0 1 - - 1 0 2.1 1.0 0 1 1.8 0.8 0 2 - - 0 1 1.8 0.8 0 1 1.5 0.8

9 I3 C3 0 0 3.5 1.0 0 0 1.9 1.0 1 1 3.4 0.9 0 1 1.9 0.8 0 1 1.9 0.9 0 1 1.5 0.8

be turned into not firable, not provided and not possible, when they can actually
be fired, are provided, and are possible in the real model, respectively.

We measured (1) the time T1 and T2 spent by MAPmAKER in Steps 1
and 2 in computing possible and definitive plans. For Step 1 it also includes
the time necessary for synthesizing new plans where a false evidence about a
partial information is detected. For Step 2 it only includes the time spent by
MAPmAKER in computing the definitive plan. (2) the length L1 and L2 of the
plans computed by MAPmAKER, in Steps 1 and 2. For Step 1 it is obtained by
computing the sum of the length of the portions of the possible plans performed
before a false evidence about a partial information is detected and the length of
the final definitive plan (more details are provided in Appendix A4, available at
goo.gl/Hp33j2). For Step 2 it corresponds to the length of the definitive plan.
We compared the time spent by MAPmAKER in Steps 1 and 2 and the length
of the computed plans.

Results. Table 1 shows the obtained results. Column Tr contains the ratio
between T1 and T2, column Lr contains the ratio between L1 and L2. Columns
F and T contain the number of times true or false evidence about partial in-
formation about a transition, service and meeting capability was detected while
the plans were executed.

Example 1. Four cases are identified. In ID 2 for Exp 1, IDs 1, 4, 5, 6 for Exp 2
and IDs 2, 5, 6, 8, 9 for Exp 3 the plans computed in Step 1 were shorter than the
one computed in Step 2 (Case 1). In IDs 1, 3, 4, 6 for Exp 1, IDs 3 for Exp 2 and
ID 3 for Exp 3 the plans computed in Step 1 were longer than the one computed
in Step 2 (Case 2). In IDs 7, 9 for Exp 1, IDs 2, 7, 8 for Exp 2 and IDs 1, 4, 7, 9
for Exp 3 the plans computed in Step 1 correspond with the one computed in
Step 2 (Case 3). In IDs 5, 8 for Exp 1 plans were found in Step 1, while no plans
were obtained in Step 2 (Case 4). Thus, they are marked with a − since no
comparison was possible.

Example 2. In ID 9 for Exp 1, IDs 3, 4, 8, 9 for Exp 2 and IDs 8, 9 for Exp 3
the plans computed in Step 1 were shorter than the one computed in Step 2
(Case 1). In IDs 3, 6 for Exp 1, IDs 1, 6, 7 for Exp 2 and IDs 1 for Exp 3 the
plans computed in Step 1 were longer than the one computed in Step 2 (Case 2).
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In ID 2 for Exp 1, IDs 2, 5 for Exp 2 and IDs 2, 3, 4, 5, 6, 7 for Exp 3 the plans
computed in Step 1 correspond with the one computed in Step 2 (Case 3). In IDs
1, 4, 5, 7, 8 for Exp 1 plans were found in Step 1, while no plans were obtained
in Step 2 (Case 4).

Discussion. MAPmAKER is effective whenever it computes a possible plan,
and during its execution a true evidence about partial information is detected
(Case 1). When no partial information was involved in the plans computed by
MAPmAKER, the generated plans had the same length than a classical plan-
ner (Case 3). In several configurations MAPmAKER allows the achievement of
the mission while a classical procedure is not able to do so (Case 4). Indeed,
MAPmAKER computes a possible plan when no definitive plan is available and
true evidence about partial information is detected during the plan execution.
Finally, the detection of a false evidence decreases the effectiveness of MAP-
mAKER (Case 2). It happens due to the need of recomputing the plans to be
followed by the robots.

MAPmAKER introduced an overhead in plan computation since it runs two
times the decentralized planner. The average, median, minimum, and maximum
time required to compute the plans for Step 1 considering all the examples of the
previous experiments are 1982.28, 2371.38, 990.76, and 2972.64 seconds respec-
tively; while for Step 2 are 400.24, 387.34, 277.85 and 533,8 seconds respectively.
The high computation time is due to the planner on top of which MAPmAKER
is developed, which uses an explicit representation of the state space of the
robotic application. However, MAPmAKER simply relies on two invocations of
a general planner to compute plans, thus more efficient planners can be used.

RQ2. We analyzed the behavior of the decentralized procedure.

Methodology. We considered the set of partial models previously described.
We added an additional robot r3 which must achieve the mission G(F(s6 ∨ s7))
and does not meet neither with robot r1 nor with robot r2. We then perform
the following steps: Step 1 we run MAPmAKER with the decentralized proce-
dure enabled; Step 2 we run MAPmAKER without the decentralized procedure
enabled. For each of the steps, we set a timeout of 1 hour. We recorded the time
T1 and T2 required in Steps 1 and 2.

Results and discussion. In Step 1 MAPmAKER computes two depen-
dency classes; one containing robots r1 and r2 and one containing robot r3. In
Step 2 the team containing robots r1, r2, and r3 is analyzed. For all the con-
figurations and experiments, MAPmAKER ends within the timeout for Step 1,
while MAPmAKER was not able to find a solution for Step 2.

Threats to validity. The random identification of elements that are consid-
ered uncertain is a threat to construct validity since it may generate not realistic
models. To mitigate this threat we ensured that partial information about tran-
sitions is added in correspondence with an exit and a wall. This ensures that
both true and false evidence for transition executions can occur while the com-
puted plans are executed. Biases in the creation of models is a threat to internal
validity and is mitigated by considereding real models. The limited number of
examples is a threat to external validity. To mitigate this threat, we verified



that as possible plans were executed, both true and false evidence about partial
information were detected.

7 Related work

Decentralized solutions. The decentralized planning problem has been studied
for known environments [36],[16],[38]. However, planners for partially known
environments do not usually employ decentralized solutions [35],[12],[10].

Dealing with partial knowledge in planning. Most of the works proposed in litera-
ture to plan in partially known environments (see for example [11],[22],[42],[13])
treat partial information by modeling the robotic application using some form
of Markov decision processes (MDP). In MDPs, transitions are associated with
probabilities indicating the likelihood of reaching the destination state when an
action is performed [13]. The planning problem usually requires the actions the
robots must perform to reach a set of goal states. In our work, the planning goal
is specified in a richer language, i.e., LTL. Planning with LTL specifications has
been considered in MDPs (e.g., [23],[11],[25]). However, in MDPs the developer
knows the probabilities associated with transitions, while in the formulation pro-
posed in this work this information is not available. Encoding a partial robot
model into a MDP by associating a probability of 0.5 to maybe transitions is
not correct. Indeed, the obtained MDP would not correctly represent the current
scenario in which the probability of firing transitions is unknown.

8 Conclusions

This work presented MAPmAKER, a novel decentralized planner for partially
known environments. MAPmAKER solves the decentralized planning problem
when partial robot applications made by multiple robots are analyzed and mis-
sions are provided through a set of LTL specifications that are assigned to the
different robots. The results showed that MAPmAKER was effective in dealing
with partially known environments. They evidenced that the number of actions
performed by the robots was lower when the computed possible plans were ac-
tually executable in the real model of the robotic application. Furthermore, they
highlight that MAPmAKER outperformed classical planners by achieving the
desired mission when only possible plans were available. Finally, the show that
decentralization allows considering partial models of the robotic applications
that can not be handled with a classical centralized approaches.

Future work and research directions include (1) studying techniques to sup-
port developers in the automatic or manual development of the (partial) model
of a robotic application; (2) evaluation of the proposed procedure using robots
deployed in real environments; (3) the study of appropriate policies to select be-
tween definitive and possible plans; (4) the use of more efficient planners to speed
up plan computation. These may be based for example on symbolic techniques.
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