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Abstract. The automotive industry makes increasing usage of Simulink-
based software development. Typically, automotive Simulink designs are
analyzed using non-formal test methods, which do not guarantee the
absence of errors. In contrast, formal verification techniques aim at pro-
viding formal guarantees or counterexamples that the analyzed designs
fulfill their requirements for all possible inputs and parameters. There-
fore, the automotive safety standard ISO 26262 recommends the usage
of formal methods in safety-critical software development.

In this paper, we report on the application of formal verification to check
discrete-time properties of a Simulink model for a park assistant R&D
prototype feature using the commercial Simulink Design Verifier tool.
During our evaluation, we experienced a gap between the offered func-
tionalities and typical industrial needs, which hindered the successful
application of this tool in the context of model-based development. We
discuss these issues and propose solutions related to system development,
requirements specification and verification tools, in order to prepare the
ground for the effective integration of computer-assisted formal verifica-
tion in automotive Simulink-based development.

1 Introduction

In modern cars a huge number of embedded software components support the
vehicle control. These software components are usually developed in a model-
based approach with a graphical modeling language like Simulink/Stateflow that
allows automatic code generation for the deployment of the controller. Though
the safe operation of a software component is rigorously tested in offline simula-
tions, the absence of errors cannot be guaranteed by testing.

The automotive safety standard ISO 26262 recommends to integrate — be-
sides other approaches — also formal verification in the development process of
safety-critical software. Formal verification either guarantees that the property
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holds for all possible input and parameter combinations, or it provides a coun-
terexample (i.e., a system run that violates the property) which can be used to
identify the error and to re-design the controller.

In this paper we present an industrial case study from the automotive sector
with the aim to empirically identify and solve technical problems that might arise
during the integration of discrete-time formal verification in Simulink-based mass
production of safety-critical systems by engineers who are not formal methods
experts. These problems might not be obvious or seem pressing but they become
prominent and relevant for large-scale development, a development process with
much legacy, or a development without a strong dedicated formal methods team.

We decided to rely on the commercial verification tool Simulink Design Ver-
ifier (SLDV ) [1], which is developed by the vendors of Simulink and backed
by a dedicated support team. We applied SLDV to analyze a Simulink con-
troller model for a park assistant R&D prototype feature against 41 functional
requirements, which were given informally in textual form as a Microsoft Word
document. The model is open-loop, as the controlled environment is not in-
cluded, and contains no continuous-time blocks, such that we could use SLDV’s
discrete-time verification functionalities. Using formal verification we detected
inconsistencies between requirements and their implementations in our model,
which demonstrates the importance of formal verification for safety-critical soft-
ware components.

Besides the verification results, we report on the strengths of SLDV, identify
its limitations and collect important general observations.

Though the verification of our model was successful, we encountered dif-
ferent technical challenges. Introducing formal verification into fast pace mass
automotive product development by engineers who are not familiar with for-
mal methods is not at all straightforward and needs a high level of automation.
We give recommendations to support requirement engineers to build complete,
unambiguous and consistent requirements and to help system engineers to de-
velop “verification-friendlier” models. We also give some ideas for new features
in verification tools that can support the integration of formal verification into
Simulink-based development in the automotive sector.

Related work. Techniques and tools for formal discrete-time verification of
Simulink models has been widely studied. Regarding applications, a medical
case study using SLDV is presented in [2]. In [3] the authors apply the SMT-
based static verification tool VerSAA to a Simulink model and also provide
a comparison to SLDV. In [4] an SMT-based approach for explicit LTL model
checking of Simulink models is presented. A tool chain for the formal verification
of Simulink models in the avionics industry using the LTL model checker DiVinE
and a proprietary verification tool HiLiTE is presented in [5, 6].

Some other approaches transform Simulink models into the input modeling
language of different verification tools. The authors of [7] transformed Simulink
models into the modeling language Boogie and compare the performance of the
Boogie verification framework with SLDV on an automotive case study. The
work [8] translates Simulink to UCLID and applies SMT-based bounded model
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checking to an automotive case study. The works [9, 10] and the Simulink toolbox
cocoSim [11] offer translations of Simulink resp. SCADE models to the interme-
diate language Lustre in order to enable the application of different verification
tools. Additionally, [9, 10] report on the experiences with the integration of for-
mal verification in an avionics model-based development process. The RCRS
project [12, 13] formalizes Simulink models in Isabelle and uses the Isabelle the-
orem prover for formal analysis. SLDV and UPPAAL were used for the formal
verification of an automotive case study in [14].

A project to establish formal verification in the development process in auto-
motive industry is presented in [15]. The work [16] presents a study that explores
the extent to which model checking can be performed usefully in an industrial
environment, where usefully means that model checking is cheaper, faster, more
thorough than conventional testing or review or able to find more subtle errors.

A complementary automotive case study on C code verification using BTC
is presented in [17].

Contributions. Although a lot of research has been done on the verification
of Simulink models, we are not aware of an exhaustive analysis of SLDV where
different verification approaches and the scalability are evaluated. Moreover, our
aim is to investigate the gap that still exists to integrate formal verification into
Simulink-based development, even if a verification tool like SLDV is used, that is
tightly integrated into Simulink. We present our observations and ideas to im-
prove the level of automation for the preprocessing of the model, the formalization
of a specification, and the feature set of a verification tool.

Outline. In Sect. 2 we describe our case study, the SLDV verification tool and
specify the project goals. The verification process and the results are presented in
Sect. 3. In Sect. 4 we list our observations and formalize some recommendations
for computer-assisted solutions to integrate formal verification into Simulink-
based development. We conclude the paper in Sect. 5.

2 The Case Study

First, we present our case study, the SLDV verification tool and our project
goals. Due to confidentiality reasons, we cannot provide access to the concrete
model and requirements, but we provide high-level insight into issues that are
relevant for understanding the aims and results of this work.

2.1 Controller Model

Simulink. Simulink is an extension of Matlab which allows to build and simu-
late complex system models. Simulink (SL) models are block diagrams. Stateflow
(SF) charts, that are based on finite-state machines and flow diagrams, can be
embedded into Simulink models. Blocks and charts can be nested to create a hi-
erarchical structure. For Simulink models which might contain Stateflow charts,
in the following we use the abbreviation SLSF model.
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Besides internal variables, Simulink models define a set of signals, (calibra-
tion) parameters and constants whose properties are fixed by attributes like,
e.g. the data type, the dimensions, lower and/or upper bounds and initial val-
ues. Signals can take any value from their data type domain during a simulation
while constants have a fixed value. Calibration parameters allow to define ab-
stract models and specifications, which can be concretized by assigning concrete
values to the parameters. E.g. a specification x = c · y parameterized in c can be
concretized to x = 2 · y by fixing c = 2.

Controller model. Our case study models the R&D prototype feature Low

Speed Control for a next-gen Park Assist. The Park Assist allows the ve-
hicle to park automatically and operates at relatively low speeds compared to
other driving situations. During assisted parking maneuvers, the vehicle speed
has to be controlled at low vehicle speed targets and scenarios like climbing on a
curb during parking have to be supported. The selected R&D prototype feature
Low Speed Control takes the vehicle speed set point from Park Assist and
controls the combustion engine speed and the brakes during automated parking.

We want to investigate how well Simulink formal verification performs for
decision logic, state charts, filters, rate limiters, look-up tables and feedback
control. Therefore, we selected our case study such that it contains a mixture of
these different kinds of functionalities. The model has 41 open-loop functional
requirements, 26 inputs, 5 outputs, 69 calibration parameters and 1095 blocks
(≈ 1500 lines of C code). The model contains Boolean, integer and floating-
point variables: All input and output signals are scalar with the following data
type distribution: 5 Boolean, 12 unsigned 8-bit integer and 14 single-precision
floating point. Among the calibration parameters we have 52 scalar parameters
(2 Boolean and 50 single-precision floating-point) and 17 parameters are arrays
with 7 to 14 single-precision floating-point elements.

Requirements. The 41 textual requirements of the R&D prototype feature
Low Speed Control describe the functional behavior of the controller and are
used to develop the Simulink model. A single requirement typically describes
only a part of the model that is implemented in a subsystem.

We classified 39 requirements as safety properties which follow the pattern
“Always P”. In 30 of these safety requirements P is an invariant without any tem-
poral operators. For the remaining 9 safety properties, P describes time-bounded
temporal properties. The two remaining requirements are liveness properties
which claim that something good eventually happens. They follow the pattern
“The value of x is eventually equal to c” and express unbounded temporal prop-
erties.

Since 30 of the 41 requirements contain floating-point variables, the state
space is relatively large in most cases. Only 11 requirements are restricted to
Boolean and integer data types, which reduces the verification effort.

Most of the requirements can be specified using the following common oper-
ators: +,−, ∗, /, min, max, if, abs. Twelve requirements make use of special oper-
ators such as saturation, rate limiters, filters, PID controllers, or lookup tables.
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2.2 Simulink Design Verifier

For our case study we used the commercial verification tool Simulink Design
Verifier (SLDV ) [1, 18]. Due to the tight integration into Simulink, the sup-
port team and detailed documentation we expect to minimize problems with
embedding formal verification in an automotive development process. SLDV is a
toolbox that offers the following analysis methods for SLSF models: Automatic
test case generation, static analysis and discrete-time formal verification.

The SLDV tool uses software from Polyspace [19] and Prover Technology AB
[20]. The latter offers (un)bounded model checking and test case generation.
Unfortunately, the translation of the SLSF model and the specification into the
formal input language of the verification engine, the verification engine itself and
the generation of counterexamples remains a black box to the user. For Property
Proving (formal verification) SLDV offers the following options: FindViolation
checks if a property can be violated within a bounded number of steps, while
Prove performs an unbounded analysis. ProveWithViolationDetection is a
combination of FindViolation and Prove and performs a bounded analysis.

Properties that describe a subsystem of the model, i.e. properties that are
restricted to the input and output signals of a subsystem, can be verified either
on the complete model or on a subsystem (bottom-up approach). Subsystem
verification is over-approximative because it considers arbitrary input for the
subsystem instead of the values which it might receive as input signals in the
complete model. As a consequence, properties that could be verified with sub-
system verification hold also at the complete model level, but counterexamples
on subsystem level might be spurious, i.e. not realizable in the complete model.

If the model includes calibration parameters, the verification can be per-
formed either for a fixed model and specification (a concrete calibration pa-
rameter valuation is considered) or in one shot for all model and specification
instances (all possible calibration parameter values are considered). For historic
reasons, we speak of fixed or varying calibration parameters.

SLDV does not use a formal specification language with a formal semantics.
Instead, an SLDV specification is an SLSF model which forms a verification
subsystem (cf. Fig. 1). This specification language allows the flexibility to use
complex operators and it is easy to use for engineers, but there is no formal
semantics for Simulink blocks.

Each verification subsystem should contain at least one proof objective that
outputs true as long as its input is constantly true. The input of a proof ob-
jective is typically the result of an implication or a comparison between the
specification and an output of the model.SLDV is shipped with a library that
contains — among others — verification subsystems, proof objectives and tem-
poral operators.

The verification result of a requirement is valid if the corresponding proof ob-
jective returns true for all possible input combinations of the model. Otherwise,
the verification tool cannot decide if the requirement is valid in the model or not
and returns undecided or the requirement is violated and a counterexample is
generated. The counterexample is given on the level of the SLSF model in form
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Fig. 1: A verification subsystem (left) and the specification (right) of the require-
ment: “If all of the following conditions are true: in1 is TRUE; in2 is zero; the
absolute value of in3 is below a threshold (const1); then out1 shall be set.”

of a harness model. This harness model can be used to simulate the execution
path that violates the specification. An HTML or PDF report can be generated
that contains the verification results, the analysis options and approximations
SLDV applied to the model. An example for an approximation is floating-point
arithmetic that is approximated by rational arithmetic.

In this paper, we primarily use the Property Proving feature of SLDV with
the Prove option for an unbounded analysis.

2.3 Goals

Our project goal is to evaluate formal verification of Simulink controller models
using SLDV, to identify empirical technical challenges for a tight integration of
formal verification into Simulink-based development in the automotive industry
and to propose solutions for a higher level of automation and a better support
of engineers without expert knowledge in formal methods. We are especially
interested in a clear separation of the controller model from the specification,
the speed and scalability of the verification tool, the usefulness, generality and
reliability of the analysis results and automated batch processing.

We assume that problems with the specification of complex operators like
filters, feedback control and lookup tables might occur. Expected challenges for
the verification tool are temporal requirements, the high proportion of floating-
point variables and the complexity of the model.

3 Feasibility Analysis

In this section, we report on our experiences with formal verification of our
SLSF model using SLDV and present the verification results. We performed our
experiments using Matlab R2014b on a 2.5GHz Intel Core i5 machine with 8GB
RAM running Windows 7 (64-bit).
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3.1 Preparation

Requirement issues. We were not surprised to find incomplete, ambiguous
and inconsistent formulations in 20 of the 41 textual requirements. Incomplete
specifications have been found in 15 requirements, eight ambiguity issues have
been detected, and two requirement pairs were inconsistent with each other.
Causes for incompleteness were missing declaration of values for discrete signals
(e.g., certain gear lever positions), missing information for complex operators
like filters or hysteresis functions, or no mentioning of the output signal whose
computation is described in the requirement. Reasons for the detected ambiguity
in the requirements are imprecise formulations (e.g. to distinguish between the
status or the event of status change), formulations that need further explanations
and different textual descriptions for the same signal name. An example for
inconsistency is two requirements that allow activation and deactivation of a
signal to occur simultaneously.

Discussions with the requirement and feature engineers and reviewing the
model implementation helped to resolve the issues.

SLDV Specification. Finally, we could manually transform all textual re-
quirements to an SLDV specification in form of new verification subsystems.

For each requirement a separate verification subsystem was created and
added to the model to have the flexibility to add/remove certain blocks and
to copy them for verification on model- or subsystem-level. Some requirements
have been easy to handle while for roughly half of the requirements discussions
with the requirement and control engineers and/or information from the con-
troller model were needed to clarify all issues. Finally, all 41 requirements could
be specified for SLDV, although twelve requirements make use of complex oper-
ators like feedback control, rate limiters, filters and lookup tables, which might
be difficult to express in a common specification language like formal logics.

Block replacement. A compatibility check of SLDV on our model revealed a
set of custom blocks that are not supported by SLDV. These blocks include ad-
ditional functionality for code generation but can be replaced by blocks from the
standard library with equivalent functionality. We used the block replacement
feature of SLDV to automate the replacement. This feature allows to continue
the iterative development with the original model but to generate a model with
replaced blocks for formal verification.

3.2 Verification

We analyzed each of the 41 requirements, specified as 41 independent verification
subsystems, separately on model- and subsystem-level using either fixed or vary-
ing calibration parameters. To do so, we temporarily removed the other 40 ver-
ification subsystems that contain the specification of the other requirements.To
analyze the impact of bounded temporal operators in the specification on the
running time of the verification, we use fixed time bounds (five simulation steps)
as an upper limit. This reduces the number of calibration parameters in our
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Table 1: Verification results and accumulated running times for model and sub-
system verification using varying and fixed calibration parameters.

Model Verification Subsystem Verification
Varying Fixed Varying Fixed

Valid 24 26 25 26
Unknown 13 10 5 4
Invalid 4 5 11 11

Running time > 300s 7 7 2 2
Running time > 7200s (TO) 1 1 1 1

Acc. running times [s] 22062 21465 7672 7783

model. We also fix the lookup-table data for the verification. Thus, for our anal-
ysis we consider only 47 out of 69 varying calibration parameters. An overview
of the verification results is given in Table 1. For a majority of requirements we
got conclusive results. However, the analysis revealed inconclusive results for up
to 31% (resp. 12%) of the requirements on model- (resp. subsystem-)level. Rea-
sons for inconclusive results are nonlinear behavior in the model and timeouts
(running times > 7200s) for temporal requirements.

Invalid verification results. Simulink Design Verifier detected eleven in-
stances of invalid implementation against the specifications. Most of them were
implementation flaws like missing or wrong operators. In other cases, implemen-
tation details were omitted in the textual requirements, parameters have been
incorrectly calibrated, or the initialization causes requirement violations.

Analysis time. We did not notice a significant difference in the analysis
time for valid, unknown and invalid verification results on subsystem-level: 39
verification results were delivered within four seconds. An exception are two
temporal properties for which we observed running times above 300 seconds. On
model level, 22 verification results are available within four seconds, 12 results
have running times between 11 and 133 seconds and the running times of the
remaining 7 requirements are above 300 seconds. Further investigations revealed
that all running times above 300 seconds can be explained by temporal behavior
either in the analyzed requirement or in a subsystem that delivers an input for
the analyzed subsystem.

Model- vs. subsystem-level. We compare the results for verification on
model- and subsystem-level: The number of inconclusive verification results can
be reduced from 10 for fixed (respectively, 13 for varying) calibration parameters
on model-level to 4 for fixed (resp. 5 for varying) calibration parameters on
subsystem-level. Also the analysis time can be reduced by almost four hours if the
verification is applied on subsystem-level. An explanation for both observations
can be that on model-level nonlinear and/or temporal behavior in other parts
of the model is propagated.
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On subsystem-level we revealed two requirement violations for requirements
that were proven valid on model-level. A missing minimum operator and time
delays in the implementation that are not reflected in the textual requirement are
the reasons for the invalid results on subsystem-level. These conflicting results
were either caused by considering arbitrary inputs on subsystem-level, leading
to spurious counterexamples in which some subsystem inputs are not realizable
at the model-level. An alternative explanation can be a bug that produces false
valid verification results in the verification on model-level.

Varying vs. fixed calibration parameters. Using subsystem verification,
the running time could be decreased if we defined fixed (instead of varying)
values for 47 calibration parameters, while for model verification the running
time increased, both differences being within 3%.

Based on the experience with our model, we believe SLDV to scale well
with increasing state space size. Although on subsystem-level only a few of the
calibration parameters influence the verification, on model-level the effect on the
state space is much stronger. Thus, we have the impression that SLDV can handle
a large number of input signals and parameters with large data type domains
quite well. To our surprise, the number of inconclusive verification results does
not change much with increasing state space: For verification on model-level three
and on subsystem-level one additional requirements could be decided using fixed
calibration parameters.

Simultaneous execution on model-level. We found a serious tool issue in
SLDV (R2014b – R2017a): When running the formal verification on model-
level simultaneously for all 41 requirements, we detected conflicting analysis
results, i.e. a valid and an invalid result for the same requirement. We observed
a conflict for two different verification runs using simultaneous execution of all
requirements. Another conflict occurred between a verification run using simul-
taneous execution (valid) and a verification run analyzing only the respective
requirement either on model- or subsystem-level (invalid). We could confirm the
requirement violations, i.e. the valid results are caused by a bug. Another finding
using R2016b were verification runs using simultaneous execution of all require-
ments where all requirements were reported as violated and no counterexamples
were generated. However, MathWorks assured that these problems are resolved
in release R2017b. Note that these bugs in SLDV can also be an explanation for
the conflicting results of a single requirement on model- and subsystem-level.

We also detected nondeterminism in the results (the order and number of
counterexamples changes). This results from the fact that SLDV implements a
portfolio solution where different counterexample search strategies are applied.

3.3 Scalability

For a better understanding of the scalability of SLDV with respect to temporal
requirements on our model we analyzed the following property from the set of
requirements for an increasing time duration d and fixed calibration parameter
values on both model- and subsystem-level: “If a Boolean signal in1 is true for



10

0.0 0.2 0.4 0.6 0.8 1.0
Duration d [s]

0

5000

10000

15000

20000

25000

30000

An
al

ys
is 

Ti
m

e 
[s

]

Verification on model level
Verification on subsystem level

Fig. 2: The analysis time needed to prove a temporal property with increasing
time duration d on model- and subsystem-level with fixed calibration parameters.

longer than a time duration d then the Boolean output signal out1 shall be set;
it shall be cleared otherwise.” The Boolean signal in1 is computed using four
floating-point signals in2, in3, in4 and in5 with single precision: “The Boolean
signal in1 is true if any of the following conditions is true: The signal in2
is above 4000.0 with offset −100.0, (the signal in3 is above 2000.0 with offset
−30.0 and the absolute value of the signal in5 is below 0.2,), or the signal in3
is not increasing and the signal in4 is below the signal in3 with offset −30.0”.

We considered time durations d between 0.05 and 1 second and a fixed sim-
ulation step size of 0.01 second. Note that the temporal operators of SLDV only
support simulation steps as the unit for time bounds, we converted the time
durations. The results are presented in Fig. 2.

The running time grows exponentially in the time duration d. The results
show that on subsystem-level up to 80 simulation steps can be handled with
a time out of 7200 seconds. More than four hours are needed to complete the
analysis for 100 simulation steps. The results for model verification are much
worse due to the complexity of the model. Already for 20 simulation steps more
than seven hours were needed for the analysis.

For a more general result on the scalability of SLDV, a more rigorous analysis
on a larger benchmark set would be needed.

4 Lessons Learned

In this section, we report our observations and recommendations for formal
verification of SLSF models using SLDV.

4.1 Specification

Interferences. We encountered several examples with different requirements
for the same output signal. These interferences may lead to inconsistencies.
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Proper specification of priorities can be applied to solve this kind of incon-
sistency. Requirement engineers may also follow the defensive approach to use
exactly one requirement for each disjunctive part of the model.

Specification language. The Simulink Design Verifier uses Simulink as speci-
fication language. On the one hand, Simulink offers a rich set of operators that are
often not available in other specification languages. To speed up the specification
work, a custom library with efficient implementations of commonly used opera-
tors might be helpful. For example, a hysteresis function and customized lookup
tables can be provided. This approach also ensures that the same block parame-
ters (e.g. interpolation and extrapolation methods) are used for each occurrence
of an operator. On the other hand, we are not aware of a formal semantics for
Simulink, and using the same language for modeling and specification can easily
lead to false-positive verification results. A formal specification language may as-
sist the requirement engineers to avoid incompleteness and ambiguity [21]. This
language should be easy to understand for engineers without expert knowledge
in formal methods. We propose a pattern-based textual language as in [22, 23].
This formal specification language would also help to separate the formalization
of a property from its Simulink implementation.

Compositional reasoning. All 41 requirements have been formulated on
subsystem level. Thus, verification on subsystem-level and bottom-up composi-
tional reasoning can be applied to verify the complete model. The main benefits
of this approach are shorter analysis time and stronger verification results.

4.2 Model

Floating-point numbers. A big challenge for the formal verification are the
floating-point numbers, which are approximated by SLDV. Although it is not
possible to eliminate all floating-point signals, we encourage to search for integer
implementations with equivalent functionality. The R&D prototype Low Speed

Control contains timers with floating-point arithmetic, which often leads to un-
decided results or to spurious counterexamples, the latter because floating-point
approximation leads to property violation but the provided counterexample can-
not be confirmed by simulation, where the approximation is not applied.

Consider a timer using floating-point arithmetic and a counter using integer
arithmetic, that are both initialized with 0. In each simulation step, the timer is
updated according to timer := timer+timestep while the counter is increased
by one: counter := counter + 1. The timer is reset if the upper bound ub is
reached (timer ≥ ub). The counter restarts if an upper limit c := b ub

timeStep
c

is reached (counter ≥ c). Because controller models use fixed-step solvers, the
bound c can always be computed. Using such transformations, we recommend to
replace floating-point timers by equivalent integer counters in Simulink models.
We also found another example in the model where the number of operations
on floating-point variables could be reduced by an alternative implementation.

Value domains. To keep the state space as small as possible and the analysis
time low, a system engineer should specify lower and upper bounds for all input,
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output and calibration parameters reducing the admissible valuations as much
as possible. E.g., the data type domain of a floating-point signal representing
the vehicle speed can be restricted to values between 0 and 320 km/h.

Stateflow models. Special attention is needed for Stateflow implementations.
We observed time delays, that are not reflected in the textual requirements. For
example, moving from one state to another takes a simulation step, and outgoing
transitions of the new state are not evaluated immediately. The engineer should
be aware of the time delays he/she introduces in the model and the textual
requirements should be updated. To facilitate the specification for a Stateflow
chart, a variable storing the active state of the chart should be introduced.

Calibration parameters. A special class of calibration parameters are time
bounds. Our case study includes such a calibration parameter whose value should
be set to the simulation step size before each simulation run. To verify such mod-
els for all possible step sizes, we propose to automatically replace all occurrences
of such calibration parameters by Weighted Sample Time blocks or to add an
assertion stating the equality between the calibration parameter and the output
of a Weighted Sample Time block, before formal verification is started.

4.3 Verification Tool

Usability. Simulink Design Verifier is intuitive to use and easy to integrate in
Simulink. Although no expert knowledge is necessary to apply formal verification
on a Simulink model, finding explanations for certain verification results and the
development of workarounds are hardly possible without special expertise. The
black box implementation of SLDV hinders even experts to exploit the strengths
of the underlying verification techniques and to avoid their weaknesses.

Inconclusive results. We encountered a lot of inconclusive verification re-
sults. Most of them occurred due to nonlinear behavior in the model. Often
the issues could be resolved by verification on subsystem level, which indicates
that the nonlinear behavior on model-level is propagated from other parts of the
model. However, it is hard to identify the block causing the nonlinear behavior.
It would be very helpful to have tool support. We also suspect that sometimes is-
sues with floating-point arithmetic are reported as inconclusive due to nonlinear
behavior in the model.

Floating-point variables. SLDV approximates floating-point arithmetic by
rational arithmetic. This approximation often results in inconclusive verification
results or spurious counterexamples, which cannot be confirmed by simulation
where the approximation is not applied. Even more dangerous are results re-
porting correctness, because they are not reliable: the generated C-code of a
successfully verified Simulink model might violate its requirements. We would
appreciate to get more information how the approximation is done, how it affects
the verification outcome, whether the analysis tool uses exact or inexact com-
putations and an explanation for non-expert users that counterexamples might
not be reproducible via simulation.
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Specification implementation. To analyze whether the model is initialized
correctly, we compared two different implementations of a correct-initialization
requirement for an unsigned integer variable: the first one uses an Extender block
(a temporal operator provided by SLDV) and the second one a Delay and an
Implication block. To our surprise, the running times were quite different: while
the verification result was available in less than a second for the first approach,
the analysis time was 23 seconds for the second one. This example demonstrates
once more that for an efficient implementation sometimes knowledge of the
verification techniques or even implementation details are necessary.

Model- vs. subsystem-level verification. The strengths of model-level ver-
ification are the clear separation between specification and implementation and
the possibility to analyze all enabled proof objectives simultaneously. Drawbacks
are longer analysis times and more inconclusive results. Verification on subsystem
level is faster and independent of other parts of the model, yielding conclusive
results in more cases. Verification results on subsystem-level can be reused if a
subsystem is embedded into another model, while results on model-level cannot
be transferred. However, the user needs to know the model well to be able to
identify a subsystem that assures the validity of a requirement, independently
of its context. Moreover, for subsystem-verification the chosen subsystem must
be modified to be an atomic unit. Though this modification does not change the
behavior of the subsystem, it affects the processing order of blocks in the model.
Therefore, these modifications must be undone after verification. An automated
solution would be helpful that temporarily treats the subsystem as atomic during
verification while the original model remains unaffected.

Recommended tool-chain. A first verification run should be performed on
model-level using varying calibration with all proof objectives enabled and with
a short running time e.g., 100 seconds. If verification on model-level yields incon-
clusive results, the analysis of the corresponding requirement should be repeated
on subsystem-level with a larger running time for temporal requirements. Since
the analysis time of SLDV for temporal requirements can increase exponentially
in the number of simulation steps, we recommend to start with a small number
of time steps (e.g. 5), which can slowly be increased to more realistic values as
long as the analysis time remains acceptable. It might also be possible to in-
clude a different verification tool that scales better for temporal properties in
the tool chain. Note that if any parameter value or data type domain is changed
in the model, e.g. if lookup table data is replaced, former verification results
cannot be trusted anymore for all analyses on model-level and for those task on
subsystem-level, where the changed parameter is used in the subsystem.

Counterexamples. If verification on model-level verification reports a coun-
terexample we recommend to simulate it to strengthen its reliability. Subsystem
verification assumes arbitrary subsystem-inputs and may therefore produce spu-
rious counterexamples, but these subsystem-counterexamples cannot be easily
simulated at model level because the inputs for the subsystem’s environment are
not fixed. If the user can argue that the inputs in the subsystem-counterexample
are not possible in the full model, we recommend to limit the domains for the
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subsystem’s inputs by adding assumptions and re-check the limited subsystem.
Otherwise, if a subsystem-counterexample seems plausible, we propose to add
assumptions to restrict the subsystem’s behavior to the counterexample and ap-
ply model-level verification to this restricted model to search for an extension
at the model level. Restricting the subsystem’s behavior to the counterexample
is doable, however, it is a non-trivial and tedious task. Furthermore, we ob-
served one case where subsystem verification returned a counterexample but at
model-level the requirement could be proven, indicating the spuriousness of the
subsystem counterexample. However, we found strong indications that instead
a software bug produced a false valid verification result on model-level.

Batch verification. For large-scale applications, formal verification with a
higher level of automation is needed that offers one-click solutions for the sequen-
tial verification of a set of requirements both on model- and on subsystem-level.
Currently, the simultaneous verification of a set of requirements is possible on
model level, but we have the impression that this mode does not process the
requirements sequentially one after the other, but it rather uses an incremental
verification technique (possibly incremental SMT-solving) that considers all re-
quirements simultaneously. Although we are aware that using the provided API,
it is possible to develop a custom solution for batch processing on model- and
subsystem-level, a built-in solution would be appreciated.

Temporal requirements. One weakness of SLDV is the verification of tem-
poral requirements. In some cases, checking temporal requirements over just 5
simulation steps took more than two hours. For the temporal operators pro-
vided by SLDV, numerical values are needed to specify upper bounds for the
time steps. The support of constants or calibration parameters would offer much
more flexibility, e.g. if different bounds need to be checked. We also noticed that
the upper bounds are restricted to values of ≈ 128 simulation steps (depending
on the temporal operator), while in practice larger time bounds might be needed.

Calibration parameters. We like the automated solution to verify models
for all calibration parameter values from some user-defined intervals, which is of
high relevance in the automotive sector. However, it is not clear what such an
interval domain means for, e.g., lookup tables data. We encountered a bug in
R2014b where calibration parameters of data type Boolean were not supported.
An available bug-fix for R2015b could be adapted to R2014b. Furthermore, cal-
ibration parameter values can be restricted to intervals but we have found no
ways to restrict such hyperrectangle-domains further by putting restrictions on
the relation of different parameters, e.g. assuming that the value of one param-
eter is not larger than the value of another one. As some blocks work correctly
only for certain calibration parameter combinations, it was sometimes necessary
to add assumptions to such blocks when verifying over calibration parameter
domains. For example, a saturation block expects an upper-bound value to be
larger or equal to a lower-bound value; if the definition of these bounds involve
some calibration parameters then we need to add such assertions to the model.

Reliability. During our experiments we detected (and reported) some bugs in
SLDV. We are aware that software for formal verification is quite complex and
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that bugs in the code are likely. Thus, our recommendation is to use more than
one analysis tool for a better reliability on the verification results (though, for
Simulink unfortunately the number of available tools is quite small). It would also
be helpful to have open-source tools, which offer the possibility for temporary
patches by the user, such that he/she can proceed and does not need to wait
for the next release. Furthermore, we strongly recommend to use the latest tool
release if possible to avoid resolved bugs.

Verification report. SLDV generates a report containing information like
verification results, analysis times and applied approximations. Counterexamples
can be simulated which is very helpful for the detection of property violations.
Unfortunately, the time that is needed for translation and compilation of the
model to create the input for the verification engine is not listed in the report.

5 Conclusions and Discussion

In this paper, we shared our experiences with the application of formal ver-
ification to an automotive controller model using the commercial verification
tool SLDV. Despite the mixture of different functionalities in the model and all
requirement issues, we achieved verification results for all 41 functional require-
ments of the R&D prototype feature Low Speed Control.

SLDV is easy to use, well integrated into Simulink and provides features for
a high degree of automation like block replacement and support for calibration
parameters. Still, the level of automation could be further improved, e.g. by
one-click solutions for batch processing. All in all, we experienced SLDV to be
scalable for open-loop controller models, especially using subsystem-level veri-
fication, but temporal properties bring SLDV to its limits. Closed-loop models
that contain plant models with continuous time and varying-step solvers are
currently not supported. A serious concern is the missing formal semantics for
Simulink and the black box implementation of the verification tool. We further
discovered a serious tool issue that leads to contradicting verification results. We
recommend to use SLDV release R2017b, where the bug is supposedly resolved.

We strongly suggest to not only apply verification on the Simulink model
where counterexamples can be analyzed relatively easy and comfortable in the
high-level, hierarchical, graphical simulation environment. Additionally, verifi-
cation on generated C code [17] can be beneficial since data types like floating-
points and data type domains can be handled exactly.

Although SLDV is quite comfortable to use, there is still a gap which needs
to be closed for a smooth integration in the industrial Simulink-based develop-
ment. For future work, we want to put further effort into closing this gap and
developing computer-assisted methods for complete, unambiguous and consis-
tent requirement writing and for verification into Simulink-based development.
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