
A Formally Verified Floating-Point
Implementation of the Compact Position

Reporting Algorithm

Laura Titolo1, Mariano M. Moscato1, César A. Muñoz2, Aaron Dutle2, and
François Bobot3⋆

1 National Institute of Aerospace, Hampton, VA, USA
{laura.titolo,mariano.moscato}@nianet.org⋆⋆

2 NASA, Hampton, VA, USA
{cesar.a.munoz, aaron.dutle}@nasa.gov

3 CEA LIST, Software Security Lab, Gif-sur-Yvette, France
francois.bobot@cea.fr⋆ ⋆ ⋆

Abstract. The Automatic Dependent Surveillance-Broadcast (ADS-B)
system allows aircraft to communicate their current state, including po-
sition and velocity information, to other aircraft in their vicinity and to
ground stations. The Compact Position Reporting (CPR) algorithm is
the ADS-B module responsible for the encoding and decoding of aircraft
positions. CPR is highly sensitive to computer arithmetic since it heav-
ily relies on functions that are intrinsically unstable such as floor and
modulo. In this paper, a formally-verified double-precision floating-point
implementation of the CPR algorithm is presented. The verification pro-
ceeds in three steps. First, an alternative version of CPR, which reduces
the floating-point rounding error is proposed. Then, the Prototype Verifi-
cation System (PVS) is used to formally prove that the ideal real-number
counterpart of the improved algorithm is mathematically equivalent to
the standard CPR definition. Finally, the static analyzer Frama-C is
used to verify that the double-precision implementation of the improved
algorithm is correct with respect to its operational requirement. The
alternative algorithm is currently being considered for inclusion in the
revised version of the ADS-B standards document as the reference im-
plementation of the CPR algorithm.

1 Introduction

The Automatic Dependent Surveillance-Broadcast (ADS-B) protocol [27] is a
fundamental component of the next generation of air transportation systems.

⋆ The authors are thankful to Guillaume Melquiond for his help and useful insights
on the tool Gappa.

⋆⋆ Research by the first two authors was supported by the National Aeronautics and
Space Administration under NASA/NIA Cooperative Agreement NNL09AA00A.

⋆ ⋆ ⋆ The work by the fifth author was partially funded by the National Aeronautics and
Space Administration under NASA/NIA Cooperative Agreement NNL09AA00A and
the grant ANR-14-CE28-0020.



It is intended to augment or replace ground-based surveillance systems such as
radar by providing real-time accurate surveillance information based on global
positioning systems. Aircraft equipped with ADS-B services broadcast a vari-
ety of information related to the current state of the aircraft, such as position
and velocity, to other traffic aircraft and to ground stations. The use of ADS-
B transponders is required to fly in some regions and, by 2020, it will become
mandatory for most commercial aircraft in the US [11] and Europe [17] . Thou-
sands of aircraft are currently equipped with ADS-B.4

The ADS-B broadcast message is defined to be 112 bits long. Its data frame
takes 56 bits, while the rest is used to transmit aircraft identification, message
type, and parity check information. When the data frame contains a position, 21
bits are devoted to the status information and altitude, leaving 35 bits in total
for latitude and longitude. If raw latitude and longitude data were expressed as
numbers of 17 bits each, the resulting position accuracy would be worse than
300 meters, which is inadequate for safe navigation. For this reason, the ADS-B
protocol uses an algorithm called Compact Position Reporting (CPR) to en-
code/decode the aircraft position in 35 bits in a way that, for airborne applica-
tions, is intended to guarantee a position accuracy of approximately 5 meters.
Unfortunately, pilots and manufacturers have reported errors in the positions
obtained by encoding and decoding with the CPR algorithm.

In [16], it was formally proven that the original operational requirements of
the CPR algorithm are not enough to guarantee the intended precision, even
when computations are assumed to be performed using exact arithmetic. Addi-
tionally, the ideal real number implementation of CPR has been formally proven
correct for a slightly tightened set of requirements [16]. Nevertheless, even as-
suming these more restrictive requirements, a straight-forward floating-point im-
plementation of the CPR algorithm may still be unsound and produce incorrect
results due to round-off error. For instance, using a standard single-precision
floating-point implementation of CPR on a position whose latitude is −77.368○

and longitude is 180○, the recovered position differs from the original one by
approximately 1500 nautical miles.

In this paper, an alternative implementation of the CPR algorithm is pre-
sented. This version includes simplifications that decrease the numerical com-
plexity of the expressions with respect to the original version presented in the
ADS-B standard. In this way, the accumulated round-off error is reduced. Frama-
C [21] is used to prove that the double-precision floating-point implementation
of the proposed CPR algorithm is correct in the sense that the encoding has
no rounding error and the decoded position satisfies the required operational
accuracy of the algorithm. The Frama-C WP (Weakest Precondition) plug-in
is used to generate verification conditions ultimately discharged with the aid of
the automatic solvers Gappa [15] and Alt-Ergo [12]. In addition, the interactive
theorem prover PVS [26] is used to formally prove that the real counterpart of
the proposed alternative CPR algorithm is mathematically equivalent to the one

4 https://generalaviationnews.com/2017/09/18/more-than-40000-aircraft-

now-equipped-with-ads-b/.

2

https://generalaviationnews.com/2017/09/18/more-than-40000-aircraft-now-equipped-with-ads-b/
https://generalaviationnews.com/2017/09/18/more-than-40000-aircraft-now-equipped-with-ads-b/


defined in the standard [27]. It follows that the correctness results presented in
[16] also hold for the proposed version of CPR. The PVS formalization of this
equivalence is available at https://shemesh.larc.nasa.gov/fm/CPR/.

The remainder of the paper is organized as follows. In Section 2, the original
definition of the CPR algorithm and the correctness of its real-valued version [16]
are summarized. The alternative version of CPR is presented in Section 3 along
with the results ensuring its mathematical equivalence with respect to the orig-
inal algorithm. In Section 4, the verification approach used to prove the cor-
rectness of the double-precision implementation of the alternative algorithm is
explained. Related work is discussed in Section 5. Finally, Section 6 concludes
the paper.

2 The Compact Position Reporting Algorithm

In this section, the CPR algorithm is introduced, summarizing its definition in
the ADS-B standard [27]. The CPR goal is to encode latitude and longitude in
17 bits while keeping a position resolution of approximately 5 meters. CPR is
based on the fact that transmitting the entire latitude and longitude at each
broadcasted message is inefficient since the higher order bits are very unlikely to
change over a short period of time. In order to overcome this inefficiency, only
an encoding of the least significant bits of the position is transmitted and two
different techniques are used to recover the higher order bits.

CPR uses a special coordinate system where each direction (latitude and lon-
gitude) is divided into zones of approximately 360 nautical miles. There are two
different subdivisions of the space in zones, based on the format of the message,
either even or odd. The number of zones depends on the format and, in the case
of the longitude, also on the current latitude of the target. Each zone is itself
divided into 217 parts, called bins. Fig. 1 shows how the latitude is divided into
60 zones (for the even subdivision) or into 59 zones (for the odd subdivision)
and how each zone is then divided into 217 bins. The CPR encoding procedure
transforms degree coordinates into CPR coordinates and is parametric with re-
spect to the chosen subdivision (even or odd). The decoding procedure recovers
the position of the aircraft from the CPR coordinates. A CPR message coordi-
nate is exactly the number corresponding to the bin where the target is located.
The correct zone can be recovered from either a previously known position (for
local decoding) or from a matched pair of even and odd messages (for global de-
coding). The decoding procedures return a coordinate which corresponds to the
centerline of the bin where the target is located (see Fig. 1). In a latitude zone
(respectively longitude zone), all the latitudes (respectively longitudes) inside a
bin have the same encoding. This means that the recovered latitude (respectively
longitude) corresponds to the bin centerline. Therefore, the difference between
a given position and the result of encoding and decoding should be less than or
equal to the size of half of a bin.

The modulo function is assumed to be computed as mod (x, y) = x − y ⌊x/y⌋.
In this section, all computations are assumed to be performed in real arithmetic.

3

https://shemesh.larc.nasa.gov/fm/CPR/


Bin

actual latitude

bin centerline recovered latitude

Even

Zones

Odd

Zones

Latitude

0.º

-90.º

90.º

Zone

bin 0

bin 217-1

Fig. 1. CPR latitude coordinate system.

Therefore, no rounding error occurs. All the results presented in this section
have been formally proven in a previous work [16].

2.1 Encoding

The CPR encoding translates latitude and longitude coordinates, expressed in
degrees, into a pair of CPR coordinates, i.e., bin indices. Each CPR message is
transmitted inside the data frame of an ADS-B message. The 35 bits composing
the CPR message are grouped into three parts. One bit determines the format
(0 for even and 1 for odd), 17 bits are devoted to the bin number for the latitude,
and the other 17 bits to the bin number for the longitude.

Let i ∈ {0,1} be the format of the message to be sent, the size of a latitude
zone is defined as dlat i = 360/(60− i). Given a latitude in degrees lat ∈ [−90,90],
the latitude encoding is defined as follows:

latEnc(i, lat) = mod(⌊217
mod (lat ,dlat i)

dlat i
+ 1

2
⌋ ,217) . (2.1)

In (2.1), mod (lat ,dlat i) is the distance between lat and the bottom of a zone

edge. Thus, mod(lat,dlati)
dlati

is the zone fraction of lat . Multiplying by 217 gives a

value between 0 and 217, while ⌊x + 1
2
⌋ rounds a number x to the nearest integer.

The external modulo ensures that the encoded latitude fits in 17 bits. It may
appear that this final truncation can discard some useful information. However,
it only affects half of a bin at the top of a zone, which is accounted for by
the adjacent zone. For longitude, the CPR coordinate system keeps the size of
zones approximately constant by reducing the number of longitude zones as the
latitude increases. As a consequence, the number of longitude zones circling the
globe is a function of the latitude. The function that determines the number of
longitude zones is called NL. While its value can be calculated directly from a
given latitude, in practice, it is determined from a pre-calculated lookup table.
Since the construction of this table occurs off-line it can be computed with

4



enough precision to ensure its correctness during the encoding stage. Note that
the latitude used to compute NL for encoding is actually the recovered latitude,
which is the centerline of the bin containing the location. This ensures that the
broadcaster and receiver can calculate the same value of NL for use in longitude
decoding.

Given a latitude value lat ∈ [−90,90], the NL value is used to compute the
longitude zone size as follows.

dloni(lat) = 360/max{1,NL(rlat(lat)) − i}. (2.2)

Note that the denominator in the above expression uses the max operator when
NL is 1, which occurs for latitudes beyond ±87 degrees. In this case, there is
only one longitude zone and even and odd longitude encodings coincide.

Given a longitude value lon ∈ [0,360] and a latitude value lat ∈ [−90,90], the
longitude encoding is defined similarly to latitude encoding:

lonEnc(i, lat , lon) = mod(⌊217
mod (lon,dloni(lat))

dloni(lat)
+ 1

2
⌋ ,217) . (2.3)

Let BN denote the domain of bin numbers which is composed by the integers
in the interval [0,217 − 1]. The following lemma ensures the message is of the
proper length.

Lemma 1. Given i ∈ {0,1}, lat ∈ [−90,90], and lon ∈ [0,360], then latEnc(i, lat) ∈
BN and lonEnc(i, lat , lon) ∈ BN .

2.2 Local Decoding

Each encoded coordinate broadcast in a CPR message identifies exactly one bin
inside each zone. In order to unambiguously compute the decoded position, it suf-
fices to determine the zone. To this end, the CPR local decoding uses a reference
position that is known to be near the broadcast one. This reference position can
be a previously decoded position or can be obtained by other means. The idea
behind local decoding is simple. Observe that a one zone wide interval centered
around a given reference position does not contain more than one occurrence
of the same bin number. Therefore, as long as the target is close enough to the
reference position (slightly less than half a zone), decoding can be performed
correctly.

Given a format i ∈ {0,1}, the encoded latitude YZ i ∈ BN , and a reference lat-
itude latref ∈ [−90,90], the local decoding uses the following formula to calculate
the zone index number (zin).

latZinL(i,YZ i, latref ) = ⌊
latref

dlat i
⌋ + ⌊1

2
+
mod (latref ,dlat i)

dlat i
− YZ i

217
⌋ . (2.4)

The first term in this sum calculates which zone the reference latitude lies in,
while the second term adjusts it by −1, 0, or 1 based on the difference between

5



the reference latitude and the received encoded latitude. The zone index number
is then used to compute the recovered latitude using the following function.

rlatL(i,YZ i, latref ) = dlat i (latZinL(i,YZ i, latref ) +
YZ i

217
) . (2.5)

This recovered latitude is used to determine the NL value for computing the
value of dloni by Formula (2.2). Given a reference longitude lonref ∈ [0,360],
the recovered latitude rlat ∈ [−90,90], and the encoded longitude XZ i ∈ BN , the
longitude zone index and recovered longitude are computed similarly to the case
of the latitude. In the following formulas, dloni is used as an abbreviation for
dloni(rlatL(i,YZ i, latref )).

lonZinL(i,XZ i, lonref , rlat) = ⌊
lonref

dloni
⌋ + ⌊1

2
+
mod (lonref ,dloni)

dloni
− XZ i

217
⌋ .

(2.6)

rlonL(i,XZ i, lonref , rlat) = dloni (lonZinL(i,XZ i, lonref , rlat) + XZ i

217
) . (2.7)

When the difference between original and reference latitude (respectively
longitude) is less than half zone size minus half bin size, local decoding is cor-
rect. This means that the difference between the original and recovered latitude
(respectively longitude) is at most half of a bin size.

Theorem 1 (Local Decoding Correctness). Given a format i ∈ {0,1}, a
latitude lat ∈ [−90,90], and a reference latitude latref ∈ [−90,90] such that
∣lat − latref ∣ < dlati

2
− dlati

218
,

∣lat − rlatL(i, latEnc(i, lat), latref )∣ ≤
dlat i
218

.

Furthermore, given a recovered latitude rlat ∈ [−90,90], a longitude lon ∈
[0,360], and a reference longitude lonref ∈ [0,360] such that ∣lon − lonref ∣ <
dloni(rlat)

2
− dloni(rlat)

218
,

∣lon − rlonL(i, lonEnc(i, rlat , lon), lonref , rlat)∣ ≤ dloni(rlat)
218

.

2.3 Global Decoding

Global decoding is used when a valid reference position is unknown. This can
occur when a target is first encountered, or when messages have not been received
for a significant amount of time. Similarly to the local decoding case, the correct
zone in which the encoded position lies has to be determined. To accomplish this,
the global decoding uses a pair of messages of different formats, one even and one
odd. The algorithm computes the number of zone offsets (the difference between
an odd zone length and an even zone length) from the origin (either equator or
prime meridian) to the encoded position. This can be used to establish the zone
for either message type, and hence used to decode the position.

6



The first step in global decoding is to determine the number of zone offsets
between the southern boundaries of the two encoded latitudes. Given two in-
tegers YZ 0,YZ 1 ∈ BN , the zone index number for the latitude is computed as
follows.

latZinG(YZ 0,YZ 1) = ⌊59YZ 0 − 60YZ 1

217
+ 1

2
⌋ . (2.8)

Note that YZ 0/217 is the fraction into the even zone that the encoded latitude
lies in. Since exactly 59 zone offsets fit into each even zone, 59YZ 0/217 is the
number of zone offsets from the southern boundary of an even zone. Similarly,
60YZ 1/217 is the number of zone offsets from the southern boundary of an odd
zone. The difference between these gives the number of zone offsets between
southern boundaries of the respective zones, which corresponds to the correct
zone. For example, if both are in zone 0, the southern boundaries coincide. If
both are in zone 1, the southern boundaries differ by 1 zone offset. The case
when encoding zones differ is accounted for by the modulo operation.

Given i ∈ {0,1}, the recovered latitude is calculated as shown below.

rlatG(i,YZ 0,YZ 1) = dlat i (mod (latZinG(YZ 0,YZ 1),60 − i) + YZ i

217
) . (2.9)

For the global decoding of a longitude, it is essential to check that the even
and odd messages being used were calculated with the same NL value. To this
end, both even and odd latitude messages are decoded, and their NL values
are calculated. If they differ, the messages are discarded, otherwise, the longi-
tude decoding can proceed using the common NL value. Given i ∈ {0,1} and
XZ 0,XZ 1 ∈ BN , if NL(rlatG(0,YZ 0,YZ 1)) = NL(rlatG(1,YZ 0,YZ 1)) the zone
index number is computed as follows, where NL denotes NL(rlatG(i,YZ 0,YZ 1))
for i = 0,1.

lonZinG(XZ 0,XZ 1) = ⌊(NL−1)XZ 0 − (NL)XZ 1

217
+ 1

2
⌋ . (2.10)

Using rlatG(i,YZ 0,YZ 1) to compute dloni and NL, and letting nli stand for
max(NL−i,1), the recovered longitude is computed as follows.

rlonG(i,XZ 0,XZ 1) = dloni (mod (latZinG(XZ 0,XZ 1), nli) +
XZ i

217
) . (2.11)

The zone offset represents the difference between an even and an odd zone. For
the latitude it is defined as ZO lat = dlat1−dlat0, while for the longitude, given a
latitude rlat , is defined as ZO lon = dlon1(rlat)−dlon0(rlat). When the difference
between the original coordinates is less than half zone offset minus the size of
one odd bin, global decoding is correct. This means that the difference between
the original and recovered latitude and longitude is at most the size of half bin.

Theorem 2 (Global Decoding Correctness). Given i ∈ {0,1}, for all lat0,
lat1 ∈ [−90,90] such that ∣lat0 − lat1∣ < ZO lat

2
− dlat1

217
,

∣lat i − rlatG(i, latEnc(0, lat0), latEnc(1, lat1))∣ ≤
dlat i
218

.

7



Furthermore, let rlat0 = rlatG(0, latEnc(0, lat0), latEnc(1, lat1)) and rlat1 =
rlatG(1, latEnc(0, lat0), latEnc(1, lat1)) be even and odd recovered latitudes, re-
spectively. If NL(rlat0) = NL(rlat1), then for all lon0, lon1 ∈ [0,360] such that

∣lon0 − lon1∣ < ZO lon

2
− dlon1(rlati)

217
,

∣loni − rlonG(i, lonEnc(0, lon0, rlat0), lonEnc(1, lon1, rlat1))∣ ≤
dloni(rlat i)

218
.

3 An Alternative Implementation of CPR

In this section, an alternative implementation of CPR is presented. This version
uses mathematical simplifications that decrease the numerical complexity of the
expressions with respect to the original implementation presented in the ADS-B
standard. The alternative version is designed to be more numerically stable and
to minimize the accumulated floating-point round-off error. Whenever possible,
the formulas are transformed in order to perform multiplications and divisions
by a power of 2, which are known to produce no round-off error as long as no over
or under-flow occurs. Other simplifications are applied to reduce the number of
operations, especially the modulo and floor. These operations are particularly
problematic because a small difference in the arguments can lead to a significant
difference in the result. For instance, consider a variable x that has an ideal
real value of 1, while its floating-point version x̃ has value 0.999999. The round-
off error associated to x is ∣x − x̃∣ = 0.000001, but the error associated to the
application of the floor operation is ∣ ⌊x⌋ − ⌊x̃⌋ ∣ = 1.

Assuming real arithmetic, the proposed implementation is shown to be equiv-
alent to the original one. All the results presented in this section have been for-
mally verified using the PVS theorem prover. The input coordinates for this CPR
algorithm are assumed to be given in a format called 32 bit angular weighted bi-
nary (AWB), a standard format for expressing geographical positions used by
GPS manufacturers and many others. An AWB coordinate is a 32 bit integer in
the interval [0,232 − 1], where the value x corresponds to 360x

232
degrees (negative

latitudes are identified with their value modulo 360). In the following, AWB
denotes the domain of AWB numbers and a hat is used to emphasize that a
given variable denotes an AWB value.

3.1 Alternative Encoding

Given a latitude l̂at ∈ AWB, Algorithm 1 encodes it in a bin index number. The
encoding is slightly different for AWB latitudes greater than 230 because the
input latitude range for the original encoding is [−90,90] and the AWB interval
from 230 to 232 corresponds to the range [90,360]. Therefore, a shift must be
performed to put the range [270,360] in the expected input format [−90,0].

Algorithm 2 implements the longitude encoding similarly to Algorithm 1.
In this case, no shift is needed since the input longitude range is [0,360]. The
variable nz denotes the number of longitude zones, which is 1 when NL = 1

8



Algorithm 1 latEnc′(i, l̂at)
nz ← 60 − i
if l̂at ≤ 230 then

tmp1 = (l̂at ∗ nz + 214
) ∗ 2−15

tmp2 = (l̂at ∗ nz + 214
) ∗ 2−32

else
tmp1 = ((l̂at − 232

) ∗ nz + 214
) ∗ 2−15

tmp2 = ((l̂at − 232
) ∗ nz + 214

) ∗ 2−32

end if
return ⌊tmp1⌋ − 217

∗ ⌊tmp2⌋

Algorithm 2 lonEnc′(i,NL, l̂on)
if NL = 1 then

nz ← 1
else

nz ← NL−i
end if
tmp1 = (l̂on ∗ nz + 214

) ∗ 2−15

tmp2 = (l̂on ∗ nz + 214
) ∗ 2−32

return ⌊tmp1⌋ − 217
∗ ⌊tmp2⌋

and NL−i otherwise. This is equivalent to taking the maximum between 1 and
NL−i as done in the original version of the algorithm (see Formula (2.2)). The
following theorem states the mathematical equivalence of the proposed alterna-
tive encoding with respect to the one described in Subsection 2.1 assuming ideal
real-valued arithmetic.

Theorem 3. Let lat ∈ [−90,90], lon ∈ [0,360], l̂at , l̂on ∈ AWB, and i ∈ {0,1}, if

lat = 360l̂at
232

, lon = 360l̂on
232

, and NL = NL(rlat′(lat)), then

latEnc′(i, l̂at) = latEnc(i, lat)
lonEnc′(i,NL, l̂on) = lonEnc(i, lat , lon).

To prove this lemma, it is necessary to use the following intermediate results.
First, the following alternative formula for encoding is used, which avoids the
external modulo of 217 used in Equations (2.1) and (2.3).

Lemma 2. Let lat ∈ [−90,90], lon ∈ [0,360], and i ∈ {0,1},

latEnc(i, lat) =
⎢⎢⎢⎢⎣
217

mod (lat + 2−18dlat i,dlat i)
dlat i

⎥⎥⎥⎥⎦

lonEnc(i, lat , lon) =
⎢⎢⎢⎢⎣
217

mod (lon + 2−18dloni(lat),dloni(lat))
dloni(lat)

⎥⎥⎥⎥⎦
.

The following two results, which have been formally proven correct in [16], are
also used. When the modulo operator is divided by its second argument, the
following simplification can be applied.

mod (a, b)
b

= a

b
− ⌊a

b
⌋ . (3.1)

Additionally, given any number x and any integer n, the floor function and the
addition of integers is commutative.

⌊x + n⌋ = ⌊x⌋ + n. (3.2)

9



Algorithm 3 rlat ′L(i, l̂at ,YZ )
nz ← 60 − i
dlat ← 360/nz
if l̂at ≤ 230 then

zin ← ⌊(l̂at ∗ nz − (YZ − 216
) ∗ 215

) ∗ 2−32⌋
else

zin ← ⌊((l̂at − 232
) ∗ nz − (YZ − 216

) ∗ 215
) ∗ 2−32⌋

end if
return dlat ∗ (YZ ∗ 2−17 + zin)

Given l denoting either a latitude or a longitude and dl representing dlat or dlon
respectively, the following equality holds.

⎢⎢⎢⎢⎣
217

mod (l + 2−18dl ,dl)
dl

⎥⎥⎥⎥⎦
= ⌊217 l

dl
+ 1

2
⌋ − 217 ⌊ l

dl
+ 1

218
⌋ . (3.3)

Since the input coordinate l is assumed to correspond to an AWB, there ex-

ists l̂ ∈ AWB such that l = 360l̂
232

. By replacing l, after some basic arithmetic
simplifications, the formula used in Algorithms 1 and 2 is obtained as follows.

⌊217 l

dl
+ 1

2
⌋−217 ⌊ l

dl
+ 1

218
⌋ = ⌊(̂l ⋅ nz + 214)2−15⌋−217 ⌊(̂l ⋅ nz + 214)2−32⌋ . (3.4)

3.2 Alternative Local Decoding

Given an encoded latitude YZ and a reference latitude in AWB format, Algo-
rithm 3 recovers the latitude corresponding to the centerline of the bin where the
original latitude was located. Similarly to the encoding algorithm, it is necessary
to shift the AWB to correctly represent the latitudes between −90 and 0 degrees.
Correspondingly, Algorithm 4 recovers the longitude centerline bin. Note that
the two algorithms differ only in the computation of the zone index number
(zin). Let ref be the reference latitude (respectively longitude) in degrees, dl
be the zone size, and enc the 17-bit encoding. By applying Equations (3.1) and

Algorithm 4 rlon ′
L(i,NL, l̂on,XZ )

if NL = 1 then
nz ← 1

else
nz ← NL−i

end if
dlon ← 360/nz
zin ← ⌊(l̂on ∗ nz − (XZ − 216

) ∗ 215
) ∗ 2−32⌋

return dlon ∗ (XZ ∗ 2−17 + zin)

10



Algorithm 5 rlat ′G(i,YZ 0,YZ 1)
dlat ← 360/(60 − i)
zin = ⌊(59 ∗YZ 0 − 60 ∗YZ 1 + 216

) ∗ 2−17⌋
if i = 0 then

return dlat ∗ ((zin − 60 ∗ ⌊zin/60⌋) +YZ 0 ∗ 2−17)
else

return dlat ∗ ((zin − 59 ∗ ⌊zin/59⌋) +YZ 1 ∗ 2−17)
end if

(3.2), the latitude (respectively longitude) zone index number formulas (2.4) and
(2.6) can be rewritten in the form

⌊1

2
+ ref

dl
− enc

217
⌋ .

Since the reference coordinate ref is assumed to represent an AWB, there exists

r̂ef ∈ AWB such that ref = 360r̂ef
232

. After some simple algebraic simplification,
Theorem 4 directly follows.

Theorem 4. Let i ∈ {0,1}, YZ i,XZ i ∈ BN , if latref = 360l̂atref
232

and lonref =
360l̂onref

232
, then

rlatL(i,YZ i, latref ) = rlat ′L(i,YZ i, l̂atref )
rlonL(i,XZ i, lonref , latref ) = rlon ′

L(i,NL(rlat ′L(i,YZ i, l̂atref )), l̂onref ,XZ i).

3.3 Alternative Global Decoding

Algorithm 5 and Algorithm 6 perform the global decoding for latitude and lon-
gitude, respectively. Variable i represents the format of the most recent message
received, which is used to determine the aircraft position. In Algorithm 6, NL
is the common value computed using both latitudes recovered by Algorithm 5.
When NL = 1, the computation is significantly simplified due to having only one
zone. Otherwise, the recovered longitude is computed similarly to the latitude.
Theorem 5 directly follows from simple algebraic manipulations. The sum of the
two fractions inside the floor in Formula (2.8) is explicitly calculated and the
modulo in Formulas (2.9) and (2.11) is expanded.

Theorem 5. Let i ∈ {0,1}, YZ i,XZ i ∈ BN , and nl = NL(rlat ′G(i,YZ 0,YZ 1)),

rlatG(i,YZ 0,YZ 1) = rlat ′G(i,YZ 0,YZ 1)
rlonG(i,XZ 0,XZ 1) = rlon ′

G(i,NL,XZ 0,XZ 1).

4 Verification Approach

This section presents the verification approach used to prove that double pre-
cision floating-point arithmetic is enough to obtain a correct implementation of

11



Algorithm 6 rlon ′
G(i,NL,XZ 0,XZ 1)

if NL = 1 then
if i = 0 then

return 360 ∗XZ 0 ∗ 2−17

else
return 360 ∗XZ 1 ∗ 2−17

end if
else

dlon ← 360/(NL−i)
zin ← ⌊((NL−1) ∗XZ 0 −NL∗XZ 1 + 216

) ∗ 2−17⌋
zin ′ ← zin/(NL−i)
if i = 0 then

return dlon ∗ ((zin − (NL−i) ∗ ⌊zin ′⌋) +XZ 0 ∗ 2−17)
else

return dlon ∗ ((zin − (NL−i) ∗ ⌊zin ′⌋) +XZ 1 ∗ 2−17)
end if

end if

the CPR algorithm. In the following, the double-precision floating-point coun-
terpart of a real-valued function f will be represented with a tilde, as f̃ . In the
floating-point version, every mathematical operator on real numbers is replaced
by the corresponding double-precision floating-point operator.

The floating-point encoding of CPR is considered correct if it returns exactly
the same value of the real number implementation. This means that no round-off
error affects the final outcome. The double precision implementation of encoding
achieves this, as indicated by the following theorem.

Theorem 6 (Correctness Double-precision Encoding). Let l̂at ∈ AWB,
l̂on ∈ AWB, NL be an integer in the range [1,59], and i ∈ {0,1},

latEnc′(i, l̂at) = ̃latEnc
′
(i, l̂at)

lonEnc′(i,NL, l̂on) = ̃lonEnc′(i,NL, l̂on).

For decoding, note that Theorem 1 and Theorem 2 state that the original
coordinate and the bin centerline differs by at most half the size of a bin. If
the recovered coordinate computed with floating-point decoding differs from the
bin-centerline computed with real numbers by at most half the size of a bin,
then the original coordinate, the bin-centerline, and the recovered coordinate
are all located in the same bin. Hence, a floating-point decoding function can be
considered correct when the recovered coordinate differs from the bin-centerline
by at most half the size of a bin. From the previous observation, it follows that
a new table ÑL, which takes as input the floating-point latitude resulting from

r̃latL
′
, can be computed off-line with sufficient precision. For each transition

latitude l in the original NL table the floating-point representation of the closest
bin centerlines enclosing l are used to decide the corresponding NL value. Recall
from Section 2 that the bin size for the even configuration is approximatively

12



4.578×10−5 degrees, and for the odd one is 4.655×10−5 degrees. In the following
theorems, the lower bound for half the bin size of 2.2888 × 10−5 degrees is used.

Theorem 7 (Correctness Double-precision Local Decoding). Let i ∈ {0,1},
YZ i,XZ i ∈ BN , and l̂atref , l̂onref ∈ AWB,

∣rlat ′L(i, l̂atref ,YZ i) − r̃latL
′
(i, l̂atref ,YZ i)∣ ≤ 2.2888 × 10−5

∣rlon ′
L(i,NL, l̂onref ,XZ i) − r̃lonL

′
(i, ÑL, l̂onref ,XZ i)∣ ≤ 2.2888 × 10−5

where NL = NL(rlat ′L(i,YZ i, l̂atref )) and ÑL = ÑL(r̃latL
′
(i,YZ i, l̂atref )).

Theorem 8 (Correctness Double-precision Global Decoding). Let i ∈
{0,1} and YZ i,XZ i ∈ BN , if NL(rlat ′G(0,YZ 0,YZ 1)) = NL(rlat ′G(1,YZ 0,YZ 1)),

∣rlat ′G(i,YZ 0,YZ 1) − r̃latG
′
(i,YZ 0,YZ 1)∣ ≤ 2.2888 × 10−5

∣rlon ′
G(i,NL,YZ 0,YZ 1) − r̃lonG

′
(i,NL,YZ 0,YZ 1)∣ ≤ 2.2888 × 10−5

where NL = NL(rlat ′G(j,YZ 0,YZ 1)) and ÑL = ÑL(r̃latG
′
(j,YZ 0,YZ 1)) for j =

0,1.

Fig. 2 depicts the verification approach followed in this work. Frama-C was
used to formally verify that Theorems 6, 7 and 8 hold. Frama-C is a tool suite
that collects several static analyzers for the C language. C programs can be
annotated with ACSL [2] annotations that state function contracts, pre and post
conditions, assertions, and invariants. The Frama-C WP plug-in implements a
weakest precondition calculus for ACSL annotations through C programs. For
each ACSL annotation, this plug-in generates a set of verification conditions
(VCs) that can be discharged by external provers. In the analysis presented in
this paper, the SMT solver Alt-Ergo and the prover Gappa are used.

Gappa [15] is a tool able to formally verify properties on finite precision com-
putations and to bound the associated round-off error. Additionally, it generates
a formal proof of the results that can be checked independently by an external
proof assistant. This feature provides a higher degree of confidence in the anal-
ysis of the numerical code. Gappa models the propagation of the round-off error
by using interval arithmetic and a battery of theorems on real and floating-point
numbers. The main drawback of interval arithmetic is that it does not keep track
of the correlation between expressions sharing subterms, which may lead to im-
precise over-approximations. To improve precision, Gappa accepts hints from
the user. These hints can be used to perform a bisection on the domain of an
expression, or to propose rewriting rules that appear as hypotheses in the gener-
ated formal proof. Gappa is very efficient and precise for checking enclosures for
floating-point rounding errors, but it is not always suited to tackle other types of
verification conditions generated by Frama-C. For this reason, the SMT solver
Alt-Ergo is used in combination with Gappa.

The real counterpart of each C function implementing the alternative version
of CPR is expressed as an ACSL logic function. As mentioned in Section 3, PVS

13



VCs

Frama-C

Gappa

Alt-Ergo

PVS
Alternative CPR
Real Arithmetic

Original CPR
Real Arithmetic

VCs

Alternative CPR
Double FP

From logic C to PVS

Fig. 2. Verification approach.

is used to formally verify the mathematical equivalence of these logic functions
with respect to the PVS formalization of the original CPR definition. Pre and
post-conditions are added to relate logic real-valued functions with the corre-
sponding C double-precision floating-point implementation and to model Theo-
rems 6, 7 and 8. Also, additional intermediate assertions are added after specific
instructions to help the WP reasoning.

Algorithms 1 and 2 are annotated with assertions stating that tmp1 and tmp2

do not introduce rounding error. This generates VCs that are easily proved by
Gappa because the computation just involves operations between integers and
multiplications by powers of 2. Since the floor operation is applied to expressions
that do not carry a round-off error, the computation of the floor is also exact
and, therefore, Theorem 6 holds.

Algorithms 3 and 4 are annotated with assertions stating that the computa-
tion of the zone index number zin has no round-off error. This holds and can
be easily discharged in Gappa since the computation of zin involves just integer
sums and multiplications, and multiplications by powers of 2. The only calcu-
lation that carries a round-off error different from 0 is the one of the zone size
(dlat and dlon) that involves a division. However, Gappa is able to prove that the
propagation of this error in the result is bounded by half bin size (Theorem 7).

The verification of the global decoding procedures involves more complex
reasoning. Similarly to the local decoding case, the code is annotated to explicitly
state that the zone index number is not subject to rounding errors, and that its
value is between −59 and 60. These two assertions are easily proved by Gappa.
With nz denoting the number of zones (60 or 59 for latitude, and the maximum
of NL−1 and 1 for longitude), an annotation is added to assert that the real-
valued and double-precision computation of ⌊zin/nz ⌋ coincide. In order to prove
the verification conditions generated by this assertion, Gappa was provided with
a hint on how to perform the bisection. It is important to remark that this hint
does not add any hypothesis to the verification process. Given these intermediate
assertions, Gappa is able to verify Theorem 8 as well.

14



5 Related Work

Besides Frama-C, other tools are available to formally verify and analyze numer-
ical properties of C code. Fluctuat [20] is a commercial static analyzer that, given
a C program with annotations about input bounds and uncertainties on its argu-
ments, produces bounds for the round-off error of the program decomposed with
respect to its provenance. Caduceus [18] produces verification conditions from
annotated C code and discharges them in an independent theorem prover. In [7],
the Caduceus tool is extended to reason about floating-point arithmetics. Here,
Why [5] is used to generate verification conditions that are manually proven in
the Coq proof assistant [3]. The static analyzer Astrée [13] detects the presence
of run-time exceptions such as division by zero and under and over-flows by
means of sound floating-point abstract domains [24,10].

The verification approach used in this work is similar to the analysis of nu-
merical programs described in [8], where a chain of tools composed of Frama-C,
the Jessie plug-in [23], and Why is used. The verification conditions obtained
from the ACSL annotated C programs are checked by several external provers
including Coq, Gappa, Z3 [25], CVC3 [1], and Alt-Ergo.

Recently, much work has been done on the verification of numerical proper-
ties for industrial and safety-critical C code, including aerospace software. The
approach presented in [8] was applied to the formal verification of wave propaga-
tion differential equations [6] and to the verification of numerical properties of a
pairwise state-based conflict detection algorithm [19]. A similar verification ap-
proach was employed to verify numerical properties of industrial software related
to inertial navigation [22]. Astrée has been successfully applied to automatically
check the absence of runtime errors associated with floating-point computations
in aerospace control software [4]. More specifically, in [14] the fly-by-wire primary
software of commercial airplanes is verified. Additionally, Astrée and Fluctuat
were combined to analyze on-board software acting in the Monitoring and Safing
Unit of the Automated Transfer Vehicle (ATV) [9].

6 Conclusion

In this paper, an alternative version of the CPR algorithm is proposed. This
algorithm is an essential component of the ADS-B protocol which will soon be
required in nearly all commercial aircraft in Europe and the USA. This alter-
native algorithm includes several simplifications aimed to reduce its numerical
complexity. The equivalence between this version and the original algorithm in
the ADS-B standard is formally proven in PVS. Additionally, it is shown that
double-precision floating-point computation guarantees the correct operation of
the alternative algorithm when implemented in C.

The verification approach applied in this work requires some level of exper-
tise. A background in floating-point arithmetic is needed to express the prop-
erties to be verified and to properly annotate for the weakest precondition de-
ductive reasoning. Deep understanding of the features of each tool is essential

15



for the analysis. Careful choice of types in the C implementation leads to fewer
and simpler verification conditions. Also, Gappa requires user input to identify
critical subexpressions when performing bisection.

The work presented here relies on several tools: the PVS interactive prover,
the Frama-C analyzer, and the automatic provers AltErgo and Gappa. These
tools are based on rigorous mathematical foundations and have been used in the
verification of several industrial and safety-critical systems. In addition, proof
certificates for significant parts of the analysis were generated (PVS and Gappa).
However, the overall proof chain must be trusted. For instance, AltErgo does
not generate any proof certificate that can be checked externally. Furthermore,
though some effort has been made to formalize and verify the Frama-C WP
plug-in, this endeavor is still incomplete. Nevertheless, the CPR algorithm is
relatively simple, containing no complex features such as pointers or loops, and
so the generation of verification conditions for CPR can be allegedly trusted.

References

1. Barrett, C., C., T.: CVC3. In: Proceedings of the 19th International Conference
on Computer Aided Verification, CAV 2007. pp. 298–302 (2007)

2. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto,
V.: ACSL: ANSI/ISO C Specification Language, version 1.12 (2016)

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer (2004)

4. Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.:
Static Analysis and Verification of Aerospace Software by Abstract Interpretation.
Foundations and Trends in Programming Languages 2(2-3), 71–190 (2015)

5. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Let’s verify this with Why3.
International Journal on Software Tools for Technology Transfer 17(6), 709–727
(2015)

6. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave
equation numerical resolution: A comprehensive mechanized proof of a C program.
Journal of Automatic Reasoning 50(4), 423–456 (2013)

7. Boldo, S., Filliâtre, J.C.: Formal verification of floating-point programs. In: Pro-
ceedings of ARITH18 2007. pp. 187–194. IEEE Computer Society (2007)

8. Boldo, S., Marché, C.: Formal verification of numerical programs: From C an-
notated programs to mechanical proofs. Mathematics in Computer Science 5(4),
377–393 (2011)

9. Bouissou, O., Conquet, E., Cousot, P., Cousot, R., Feret, J., Goubault, E., Ghor-
bal, K., Lesens, D., Mauborgne, L., Miné, A., Putot, S., Rival, X., Turin, M.: Space
Software Validation using Abstract Interpretation. In: Proceedings of the Interna-
tional Space System Engineering Conference, Data Systems in Aerospace (DASIA
2009). pp. 1–7. ESA publications (2009)

10. Chen, L., Miné, A., Cousot, P.: A Sound Floating-Point Polyhedra Abstract Do-
main. In: Proceedings of the 6th Asian Symposium on Programming Languages
and Systems, APLAS 2008. Lecture Notes in Computer Science, vol. 5356, pp.
3–18. Springer (2008)

16



11. Code of Federal Regulations: Automatic Dependent Surveillance-Broadcast (ADS-
B) Out, 91 c.f.r., section 225 (2015)

12. Conchon, S., Contejean, E., Kanig, J., Lescuyer, S.: CC(X): Semantic Combination
of Congruence Closure with Solvable Theories. Electronic Notes in Theoretical
Computer Science 198(2), 51 – 69 (2008)

13. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival:
The ASTREÉ Analyzer. In: Proceedings of the 14th European Symposium on
Programming (ESOP 2005). Lecture Notes in Computer Science, vol. 3444, pp.
21–30. Springer (2005)

14. Delmas, D., Souyris, J.: Astrée: From research to industry. In: Proceedings of the
14th International Symposium on Static Analysis, SAS 2007. pp. 437–451 (2007)

15. de Dinechin, F., Lauter, C., Melquiond, G.: Certifying the floating-point implemen-
tation of an elementary function using Gappa. IEEE Trans. on Computers 60(2),
242–253 (2011)

16. Dutle, A., Moscato, M., Titolo, L., Muñoz, C.: A formal analysis of the compact
position reporting algorithm. 9th Working Conference on Verified Software: Theo-
ries, Tools, and Experiments, VSTTE 2017, Revised Selected Papers 10712, 19–34
(2017)

17. European Commission: Commission Implementing Regulation (EU) 2017/386 of 6
march 2017 amending Implementing Regulation (EU) No 1207/2011, C/2017/1426
(2017)

18. Filliâtre, J.C., Marché, C.: Multi-prover verification of C programs. In: Proceedings
of the 6th International Conference on Formal Engineering Methods, ICFEM 2004.
Lecture Notes in Computer Science, vol. 3308, pp. 15–29. Springer (2004)

19. Goodloe, A., Muñoz, C., Kirchner, F., Correnson, L.: Verification of numerical
programs: From real numbers to floating point numbers. In: Proceedings of NFM
2013. Lecture Notes in Computer Science, vol. 7871, pp. 441–446. Springer (2013)

20. Goubault, E., Putot, S.: Static analysis of numerical algorithms. In: Proceedings
of SAS 2006. Lecture Notes in Computer Science, vol. 4134, pp. 18–34. Springer
(2006)

21. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-
C: A software analysis perspective. Formal Aspects of Computing 27(3), 573–609
(2015)

22. Marché, C.: Verification of the functional behavior of a floating-point program: An
industrial case study. Science of Computer Programming 96, 279–296 (2014)

23. Marché, C., Moy, Y.: The Jessie Plugin for Deductive Verification in Frama-C
(2017)

24. Miné, A.: Relational abstract domains for the detection of floating-point run-time
errors. In: Proceedings of the 13th European Symposium on Programming Lan-
guages and Systems, ESOP 2004. Lecture Notes in Computer Science, vol. 2986,
pp. 3–17. Springer (2004)

25. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Proceedings of the
14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS 2008. Lecture Notes in Computer Science, vol. 4963,
pp. 337–340. Springer (2008)

26. Owre, S., Rushby, J., Shankar, N.: PVS: A prototype verification system. In: Pro-
ceedings of CADE 1992. Lecture Notes in Artificial Intelligence, vol. 607, pp. 748–
752. Springer (1992)

27. RTCA SC-186: Minimum Operational Performance Standards for 1090 MHz ex-
tended squitter Automatic Dependent Surveillance - Broadcast (ADS-B) and Traf-
fic Information Services - Broadcast (TIS-B) (2009)

17


	A Formally Verified Floating-Point Implementation of the Compact Position Reporting Algorithm

