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Linear tree constraints arise in object-oriented resource analysis, when inferring resource types for

programs in a Java-like language named RAJA (Resource Aware JAva). These types encode the

heap space usage of programs, and one can calculate an upper bound on it using the constraint

solutions.

We build on the work by Hofmann, Jost, and others, who carried out type based resource analysis

for functional [1, 4, 5] and object-oriented languages [2, 3, 6, 7, 8, 9].

The constraints are linear inequalities between infinite trees, which have nonnegative rational or

real numbers or a symbol for infinity in their nodes. These trees are added and compared pointwise.

In addition to that, we have arithmetic constraints on selected nodes that have the form of a linear

program.

Figures 1, 2 and 3 present the formal version of the above description.

Figure 1: Linear List Constraint Syntax

l ::= x|tail(x) (Atomic list)

t ::= l|t+ t (List term)

c ::= t ≥ t (List constraint)

Figure 2: Linear Tree Constraint Syntax

t ::= x|l(x), where l ∈ L with L <∞ (Atomic tree)

te ::= t|te+ te (Tree term)

c ::= te ≥ te (Tree constraint)

An example of a list constraint is tail(tail(x)) ≥ tail(x) + x, which states that the unknown

list tail(tail(x)) is growing at least as fast as the Fibonacci sequence (depending on the initial

variables head(x) and head(tail(x))).
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Figure 3: Arithmetic Constraint Syntax

v ::= n|λ|head(l) (Arithmetic expression (number, variable or head of an atomic list))

h ::= v|h+ h (Head term)

c ::= h ≥ h (Arithmetic constraint)

An example of a tree constraint system for a tree x degree three with labels l, r,m is

lr(x) ≥ x, l(x) ≥ x,m(x) ≥ x

ml(x) ≤ x, rl(x) ≤ x. (1)

We study the question of simultaneous satisfiability of a system of such constraints. If we translate

the tree constraints into such a linear program, we obtain an infinite number of linear inequalities,

which cannot be solved directly.

We split our considerations in three variants of the problem: lists in general, a restricted sort of

list constraints, and this restricted form generalized to trees.

For the first, general list constraints, there is a close connection to recurrences. We use this fact to

show that in its general form this satisfiability problem is — already in the list case — hard for

the famous Skolem-Mahler-Lech problem whose decidability status is still open but which is at

least NP-hard.

We thus identified a subcase of the problem that still covers all instances arising from type inference

in the aforementioned amortized analysis and show decidability of satisfiability for lists by a

reduction to linear programming. To make this possible, we show that the list constraints are

equisatisfiable over the set of periodic lists and that there are three observations:

• lists that have strict growth cannot have any upper bounds such that they can be set to

infinity.

• Similarly, lists that are strictly decreasing have no lower bounds and thus can be set to zero.

• Lists with upper and lower bounds are periodic.

The algorithm that is derived from the proof has polynomial complexity.

In the case of trees replacing all trees by the analogous to periodic lists — trees with only finitely

many subtrees — seems to be impossible. Still, linear tree constraints of that form are also

decidable, which we prove with another approach using finite automata and word combinatorics.

In contrast to the list case, the corresponding decision algorithm is no longer polynomial.

In the above example, we must calculate the set L of subtrees equal to the tree x. This can be

done by intersecting the language L1 consisting of labels of trees greater than x with the language
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L2 for trees less than x. These two languages are here obtained by iterative application of labels:

L1 = (l | lr |m)∗, L2 = (ml | rl)∗, L = ml(rl)∗

In other cases, it is more complicated, since we may have subtrees on both sides of the inequality

sign. This corresponds to deleting label symbols when combining the constraints as in the example

system (1).

We show that still this language can be described by a finite automaton and thus intersection with

other regular languages is always possible and results in a regular language. By taking the union

over this languages, we have now found a description of trees that are bounded only from below,

only from above, or in both directions. We use this knowledge to replace all nodes bounded in only

one direction by zero or infinity, and for the remaining nodes we calculate the intervals in which

they must lie by an iterative procedure. We then show that the set of the inequalities stating that

these intervals are nonempty is finite, by an argument that shows that all the different branchings

in the tree that are strictly increasing have resemblance with the list case. Thus we can employ the

arguments used there and obtain a finite number of linear inequalities that can finally be solved by

an LP-solver.

We stress that the reduction to a finite number of inequalities does not entail a description of the

trees by trees with only a finite number of subtrees. The reason is that the nodes that fulfill the

inequalities can be split over different subtrees (as prescribed by the regular languages Li).

The proof for the tree case yields a decision procedure that covers the entire range of constraints

needed for resource analysis and we have now set the theoretical basis to analyze arbitrary RAJA

programs.
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