
Resource-aware Design for Reliable Autonomous
Applications with Multiple Periods?

Rongjie Yan1, Di Zhu3,4, Fan Zhang1,2,
Yiqi Lv1,2, Junjie Yang3,4, and Kai Huang�3,4

{yrj,zhangf,lvyq}@ios.ac.cn
{{zhud5,yangjj27}@mail2,huangk36@mail}.sysu.edu.cn

1 State Key Laboratory of Computer Science, ISCAS, Beijing, China
2 University of Chinese Academy of Sciences, Beijing, China

3 Key Laboratory of Machine Intelligence and Advanced Computing
(Sun Yat-sen University), Ministry of Education, China

4 School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China

Abstract. Reliability is the most important design issue for current
autonomous vehicles. How to guarantee reliability and reduce hardware
cost is key for the design of such complex control systems intertwined
with scenario-related multi-period timing behaviors. The paper presents
a reliability and resource-aware design framework for embedded imple-
mentation of such autonomous applications, where each scenario may
have its own timing constraints. The constraints are formalized with the
consideration of different redundancy based fault-tolerant techniques and
software to hardware allocation choices, which capture the static and var-
ious causality relations of such systems. Both exact and heuristic-based
methods have been implemented to derive the lower bound of hardware
usage, in terms of processor, for the given reliability requirement. The
case study on a realistic autonomous vehicle controller demonstrates the
effectiveness and feasibility of the framework.

1 Introduction

As the automotive industry is striving for autonomous vehicles through inten-
sive sensing, computation, and communication, a larger number of more com-
plex control applications with guaranteed performances are expected to be on
board. Such complex control applications are usually composed of a set of func-
tions that are characterized by various timing behaviors, e.g., environment con-
straints, sensing/acting frequencies, or various worst case execution times of
software components. For these kinds of on-board control applications, reliabil-
ity is the most critical design issue, as any failure will incur catastrophes. Since

? This work has been partly funded by the National Key Basic Research (973) Program
of China under Grant No. 2014CB340701, Key Research Program of Frontier Sci-
ences, CAS, under Grant No. QYZDJ-SSW-JSC036, the CAS-INRIA major project
under No.GJHZ1844, the National Science Foundation of China under Grant No.
U1435220, No. U1711265, and the Fundamental Research Funds for the Central
Universities under grant No.17lgjc40.

2 Yan, Zhu, Zhang, Lv, Yang and Huang

Sensors IMU

Perception & LocalizationRouting

Behavioral
generation

Motion
planning Controller

Throttle
by-wire

Brake
motor

EPS motor

Road sequence

Follow,
stop…

Target
path

Physical
devices

Logical
control

Fig. 1: Functionality of an autonomous controller

algorithm development for these control applications is well-established, system-
level mechanisms are mandatory to mitigate the impact of transient faults to
ensure system reliability, even though hardware becomes more reliable.

Reliability, however, comes with costs. In principle, system-level mechanisms
always adopt active or passive redundancy based fault-tolerant techniques [10].
We consider active redundancy as the major technique to guarantee system
reliability, which replicates software tasks into multiple copies. Those copies can
be executed on the same processor (temporal redundancy), or distributed to
multiple processors (spatial redundancy). In the case of temporal redundancy,
additional latency will be introduced which may hamper the response time of the
applications. In the case of spatial redundancy techniques, additional hardware is
needed to accommodate the replicas. The additionally imposed hardware has to
be minimal as automotive industry is particularly sensitive in terms of hardware
costs [13]. Therefore, safety-critical control components in automobiles have to
be carefully designed, to deploy control components and their redundancy into
a given hardware architecture by considering all the constraints.

To motivate our work, let us consider an autonomous automobile controller
shown in Fig. 1, whose role is to extract the target path derived from motion
planning according to collected information from physical devices, and to control
low level actuators to track the path. The frequency of path tracking is usually
higher to follow environment updating. Meanwhile, the frequencies of every func-
tionality in different scenarios, such as going straight and making u-turns, are
also different. Since, for example, making a u-turn is generally harder than go-
ing straight, a higher frequency is required to minimize the tracking error. We
expect to adopt minimal number of homogeneous processors for its embedded
implementation, to meet reliability guarantees and all timing constraints.

To guarantee reliability and reduce hardware cost at the same time is not easy
for such complex control systems intertwined with scenario-related multi-period
timing behaviors as well as fault-tolerant mechanisms. The reason is multi-fold.
First, scenario-related multi-period timing behaviors incur more design and im-
plementation considerations: 1) timing constraints are scenario-related, and the
implementation should accommodate all scenarios; 2) various data dependen-
cies exist, due to the communication between tasks with different periods. Sec-
ond, hardware optimization for such design is not straightforward: 1) different
scenario-related constraints lead to different optimization results; 2) the goal of
processor minimization cannot be formatted as an expression that can be cal-

Resource-aware Design for Reliable Autonomous Applications 3

culated with a set of variables and constraints, because it is regarded as a fixed
parameter to encode the constraints in the embedded implementation.

To deal with the first challenge, we adopt hyper period (the least common
multiple of all periods) [14] to unify the scheduling length (makespan) for soft-
ware to hardware deployment consideration. Meanwhile, we adopt data refresh-
ing technique for communication between tasks with different periods to avoid
accessing to empty buffer, where buffered data will not be removed until new
data comes and overwrites the old. For the second challenge, to reduce the cost
for hardware and the latency for fault tolerance, as well as guaranteeing reli-
ability, we introduce both spatial and temporal redundancy of tasks. Majority
fault-free voters are applied to choose the result in majority from multiple repli-
cas, to simplify the implementation. To calculate the least number of required
processors, the hardware optimization problem is translated into a satisfiability
problem [3], i.e., whether a scheduler satisfying all the constraints exists, with
the given number of processors. Then we could provide the result by repeat-
edly checking the satisfiability problem with various numbers of processors. The
method can be employed in various scenarios, and we take the maximum number
among the minimized number of processors in various scenarios, such that the
implementation is capable of serving all scenarios.

The contributions of the paper are as follows. First, we provide a frame-
work for reliable and resource-aware design of autonomous applications with
scenario-related multi-period behaviors, where reducing processor usage is the
basis of other resource optimization. Second, we propose an effective method for
processor optimization to derive the solution for scenario-related applications.
Meanwhile, we present a rule to infer processor usage among various scenarios.
We also employ various techniques for solution calculation, such as model check-
ing, constraint solving and heuristic-based methods. The case study on realistic
autonomous automobile control systems has demonstrated the feasibility and
the effectiveness of our method.

The organization of paper is as follows. Sec. 2 discusses the related work. Sec.
3 concretizes the motivating example. We present the related concepts in Sec.
4. Sec. 5 formalizes the constraints for scenario-related multi-period behaviors
and fault-tolerant techniques, and proposes the detailed implementation. Sec. 6
provides the experimental results on the case study, and Sec. 7 concludes.

2 Related work
Automotives are classical instances of mixed-critical systems [5]. We concentrate
on reliability and resource-aware design for safety-critical parts of these mixed-
critical systems.

Reliability-aware design is widely acknowledged for safety-critical systems [8,
2, 9], which is always regarded as an optimization goal in design space explo-
ration. For example, the work in [9] applies temporal and spatial redundancy
and optimize the amount of redundancy with genetic algorithms. For automotive
systems, a model based strategy is introduced for soft error tolerance techniques
under real-time constraints [16]. The work in [12] analyzes transient errors for
automotive safety-critical applications. We consider transient faults caused by

4 Yan, Zhu, Zhang, Lv, Yang and Huang

Location
acquisition

Preprocess

Lateral
control

Longitudinal
control

Path
acquisition Extraction

Buffer
switch

t2t2t1t1

1

Period=15 Period=30

3
2

9 44

2

Path tracking(PT) Path extraction(PE)

t3t3

t4t4

t5t5t6t6

t7t7

Fig. 2: Task graph of the autonomous controller.

hardware and regard reliability as the fundamental requirement. Once the relia-
bility can be guaranteed, we try to minimize hardware resources, which is a hot
topic for embedded systems [6, 15]. The work in [6] considers the optimization of
hardware resources for multi-rate automotive control systems on single-processor
platforms. Zhao et al. concentrates on stack usage minimization for AUTOSAR
models [15]. Our concern is the minimization of processors, which is also the
basis of other resource optimizations.

To deal with data communication in multi-period systems, various tech-
niques, such as communication protocols [11] and lossless buffering [14], have
been introduced. In [14], base period (the greatest common divisor of all task
periods) is adopted as the length of the scheduling. We apply hyper period of all
tasks, and the communication is implemented with data refreshing technique.

3 The Motivating example

We present in Fig. 2 the structure of the controller5 mentioned in Sec. 1, whose
role is to receive a target path and control low level actuators to track the path.
It consists of two components: 1) Path tracking (PT), to track the path according
to the input from IMU (Inertial Measurement Unit); 2) Path extraction (PE),
to process the target path calculated from a motion planning module.

PT consists of three processes: location acquisition, preprocessing and control
instruction output. Once data from IMU is available (t1), tracking error will be
calculated in the preprocessing step (t2). This step also considers the output from
the buffer switch task (t7) in PE when it is available. Next, lateral control (t3)
and longitudinal control (t4) run in parallel. In the former, steering angle is cal-
culated by a structure with both feedforward controller and feedback controller,
and supplemented by yaw damping. The latter includes two PID controllers for
throttle and brake, respectively.

PE involves three steps: path acquisition (t5), extraction (t6) and buffer
switch (t7). Once a path is acquired in the first step, it will be delivered to
the extraction step. The extraction step mainly targets for spline interpolation,
radius calculation and other relevant computations. After the extraction, the
double buffer implemented for parallel writing and reading will be updated.

Difference in sampling rates makes the periods of PT and PE different. And
the periods of PT (or PE) are different in various scenarios, such as making a
u-turn, or going straight, though the worst case execution time (WCET) of every
task in all scenarios is the same.
5 To ease the description, periods, computation costs (labelled on tasks) presented

here are simplified.

Resource-aware Design for Reliable Autonomous Applications 5

4 Preliminaries
To globally consider multi-period timing behaviors among various subsystems
in a scenario and optimize hardware resources, we first propose the concept of
atypical task graph. Then we present the communication model for multi-period
behaviors. Finally, the fault-tolerant techniques applied here are recapped.

4.1 Atypical task graph

Every task can be encoded as a tuple with t = (id, δ, w), where id is the identity
of the task, δ indicates the cost of worst case execution, and w shows the degree
of importance. A subsystem can be described with an acyclic directed graph
Gi = 〈Ti, Ei〉 and period of occurrence Pi, where Ti is a finite set of tasks, and
Ei ⊆ Ti × Ti is a set of precedence relations with ce : Ei → N to indicate the
cost of data transferred between each pair of tasks. A system is composed of a
set of subsystems and the connection maintained by data transfer between these
subsystems. Due to the difference in periods, a task in a subsystem may ignore
the unavailable resource from another subsystem. Consequently, we introduce
strong and weak dependency for the relations of tasks in a global system and
formalize them in the model of atypical task graph.

Definition 1 An atypical task graph is a tuple G = 〈T,E〉, where T =
⋃n
i=1 Ti,

and E ⊆ {Ti × Tj |1 ≤ i, j ≤ n}, with Gi = 〈Ti, Ei〉 ∈ G. For ti, tj ∈ T , we have
– strong dependency: if ti → tj ∈ Ei, tj has to wait for the output of ti,
– weak dependency: if ti tj ∈ E \ (

⋃n
i=1Ei), tj can ignore the output of ti.

In the model of Fig. 2, we have t7 t2 (which is connected with dashed line).
Other precedence relations are strong.

4.2 Communication model

Communication for weak dependency relation is implemented with buffer re-
fresh semantics, i.e., the sink task reads the old data in the buffer until it is
refreshed. Given two tasks ti and tj from two subsystems with periods Pi and
Pj , respectively, if tj ti, their communication scenario can be described as the
case in Fig. 3, where the arrow shows the direction of data transfer for the weak
dependency relation. In the scheduling of Fig. 3, though tj finishes its execution
at time point σ1, ti has to wait for additional σ2 time units to use the refreshed
data. Intuitively, the number of iterations for ti to obtain the refreshed data is
in the range of [dσ1/Pie, dPj/Pie+ 1], where in the worst case tj is scheduled in
the end of its subsystem.

�1�1 �2�2

PjPj

PiPi

0

titi titi titi titi

tjtj

Fig. 3: Communication model for weak dependency relation.

For safety-critical systems, we may expect to reduce the time that one has to
wait for the other, i.e., minimize σ1 in the scheduling of Fig. 3. The optimization
is a local scheduling for the corresponding subsystem.

6 Yan, Zhu, Zhang, Lv, Yang and Huang

4.3 Active redundancy based fault tolerance

We consider spatial redundancy, and spatial and temporal mixed redundancy in
the paper. Intuitively, temporal redundancy will prolong the execution of tasks,
and spatial redundancy will require more hardware resources. The mixture of the
two may reduce these disadvantages. Consider the model given in Fig. 2. When
three replicas exist for t2 and t6, respectively, we present two schedulers in Fig.
4 with two redundancy strategies, where applying pure temporal redundancy
violates timing constraints and is ignored. In the case of spatial redundancy
shown in Fig. 4(a), four processors are required to satisfy timing requirements.
However, the case of mixed redundancy in Fig. 4(b) only needs three processors,
though data update for t2 from t7 is delayed by one period of PT.

t2t2

t7t7

t1t1 t3t3

t5t5 t6t6

t1t1 t2t2 t3t3

t4t4t4t4v vt2t2

t2t2 t2t2

t2t2

15 30

p1p1

p2p2

p3p3

p4p4

t6t6

t6t6

v

(a) Spatial redundancy

t6t6

t1t1 vt2t2

t2t2

15 30

p1p1

p2p2

p3p3 t6t6

t5t5 t6t6

t2t2 t3t3

t4t4

t1t1 t2t2 t2t2

t2t2

t7t7

t3t3

t4t4v

v

(b) Mixed redundancy

Fig. 4: Two schedulers for the model in Fig. 2.

5 Reliable and resource-aware design

Two design objectives, i.e., reliability guarantee and processor minimization, in-
troduce two optimization steps: 1) calculate the redundancy degree of every task
for system reliability, by assuming that communication between tasks is reliable;
2) find the minimal number of processors such that all the constraints can be
satisfied. We first present restrictions on satisfying reliability requirements, and
constraints on adopting various fault-tolerant techniques with multi-period tim-
ing behaviors. Then we discuss the implementation for optimizing two goals.

5.1 Redundancy optimization

We adopt the Poisson fault model [2] to compute the success/failure probability
of tasks. Given task ti and processor p with failure rate λp, the probability for
ti executing correctly on processor p is Pi = e−λpδi . Then the probability of ti
encountering a transient fault is 1−Pi. We employ Pi as the reliability of ti.

Given a system depicted with an atypical task graph G, we first evaluate the
reliability of its subsystems. For the task graph Gk of a subsystem, if one of the
tasks fails, it is not reliable. Therefore, for the task graph with |Tk| tasks, where
the reliability of every task is Pi, the reliability of its subsystem is

Rk =

|Tk|∏
i=1

Pi. (1)

If a task contains r replicas, its reliability becomes 1 − (1 −Pi)
r, which is

greater or equal to Pi. As redundancy can increase reliability, the subsystem

Resource-aware Design for Reliable Autonomous Applications 7

reliability can be enhanced with replicas of its tasks. Let ri be the number of
replicas for task ti with reliability Pi, we have

Rk =

|Tk|∏
i=1

(1− (1−Pi)
ri). (2)

Given a requirement that the system reliability should be at least R, we can
calculate the minimal number of replicas for all the tasks in a system, such that
all the subsystems satisfy the reliability requirement, i.e.,

minimize(
∑
Tk⊆T

∑|Tk|
i=1 ri · wi)

subject to:

forall k,
∏|Tk|
i=1 (1− (1−Pi)

ri) ≥ R
(3)

where wi is the weight of task ti, and |Tk| is the number of tasks in Tk.
We consider a majority voter, to generate an output if and only if more than

half of the inputs have the same value. And the reliability of a voter is assumed
to be 1. A voter can be regarded as a task by inserting it into the task graph,
according to the dependency relation of its predecessor.

5.2 Constraint formalization and resource optimization

Table 1: Constraints and variables

Const. Explanation Var. Explanation

Ni the number of iterations for task ti oij indicating the existence of communication
ri the number of replicas for task ti mu

ijk the jth replica of task ti is mapped to pk in iteration u
Pi the period of task ti suil start time of executing the lth replica of ti in iteration u
δi the cost of executing task ti fu

il end time of executing the lth replica of ti in iteration u
dij dependency relation for ti and tj seuij time for starting data transfer from ti to tj in iteration u
cij cost of data transfer from ti to tj feuij time for finishing data transfer from ti to tj in iteration u

αu
i arrival time for ti in iteration u

To formalize the mapping and scheduling constraints for the corresponding
embedded implementation, we assume that the number of replicas for every task
has been calculated, and all the necessary voters are converted into tasks. The
necessary notations for constants and variables are listed in Table 1. For multiple
periods, we first compute the least common multiple M of these periods. Then
the number of iterations of every task in a hyper period is Ni = M/Pi. We
introduce dij to record the precedence relation between pairs of tasks, where
dij = 0 stands for the non-existence of dependency relation, dij = 1 is for the
strong dependency relation, and dij = −1 is for the weak dependency relation.

Mapping and scheduling constraints The constraints presented here mainly
involve the mapping of tasks and replicas, the behaviors between strong and
weak dependent tasks, and the causality between various actions. For the type
of redundancy, we consider the cases of spatial, spatial and temporal mixed
redundancy. For the mapping relation between tasks and processors, it can be

8 Yan, Zhu, Zhang, Lv, Yang and Huang

Table 2: Case-specified mapping constraints

Type Fixed mapping Flexible mapping

Spatial

ri∑
j=1

|P |∑
k=1

mijk = ri,

ri∑
j=1

mijk ≤ 1 (4)

ri∑
j=1

|P |∑
k=1

mu
ijk = ri,

ri∑
j=1

mu
ijk ≤ 1 (5)

Mixed

ri∑
j=1

|P |∑
k=1

mijk = ri (6)

ri∑
j=1

|P |∑
k=1

mu
ijk = ri (7)

fixed (the mapping will not change in various iterations) or flexible (the mapping
can change among various iterations).

The constraints in Table 2 depict the mapping restriction in various cases. For
spatial redundancy, every processor p ∈ P can only accommodate one replica of
a task. However, in the mixed case, such limitation does not exist. If the mapping
is fixed, the allocation relations of tasks to processors keep the same in all the
iterations, and we ignore the iteration index.

Equation 8 requires that in spatial redundancy, all replicas of a task should
be executed at the same time, which is not involved in mixed redundancy.

∀1 ≤ l, l′ ≤ ri, suil = suil′ (8)

The general causality constraints on scheduling are depicted in Table 3.

Table 3: General constraints

Explanation Constraints

For any two dependent tasks, if they are
not allocated to the same processor,
communication exists.

(dij 6= 0) ∧ (∃k, k′.(mu
ilk ∧mu

jl′k′))→ oij (9)

The quantitive relation exists between task
execution and data transformation.

fu
il = suil + δi, fe

u
ij ≥ seuij + oij · cij (10)

Causality exists between data transfer and
subsequent tasks.

seuij ≥ fu
il , (dij = 1)→ sujl ≥ feuij (11)

Tasks executing on the same processor
cannot overlap.

mu
ilk ∧mv

jl′k → suil ≥ fv
jl′ ∨ svjl′ ≥ fu

il (12)

The arrival of tasks is periodic. αu+1
i − αu

i = Pi ∧ suil ≥ αu
i ∧ u+ 1 ≤ Ni (13)

Objectives The reliability requirement demands sufficient number of processors
to accommodate redundancy and to satisfy the timing requirements. Meanwhile,
we also expect to reduce the adopted hardware resources for cost consideration.
Therefore, we expect to minimize the number of allocated processors without
sacrificing system reliability.

Let T be a set of tasks with |T | = n, S be a set of scenarios of a system with
|S| = m, and Pij be the period of task ti in scenario sj . The minimum number
of processors we need is

max{minimize(|Pj |) | 1 ≤ j ≤ m} (14)

Resource-aware Design for Reliable Autonomous Applications 9

replica allocation
calculation

satisfiability based
processor optimization

an atypical task graph

deployment information

model and property extraction

satisfiability checking
with njnj processors

njnj++ (njnj--)

record the result
njnj (njnj+1)

satisfied?

Step 1:

Step 2:
yes (no)

no (yes)

scenarios?explored all

jj++

yes

no

max{ |Pj | |1 j |S||Pj | |1 j |S| }

��

Fig. 5: Optimization steps

where minimize(|Pj |) is the minimum number of processors used in scenario sj
to satisfy time constraints in the hyper period by considering the set of periods
{Pij}1≤i≤n. To satisfying the constraints of all the scenarios, we need to select
the maximum among all the results.

Theorem 1. Given a system with a set of tasks T and a set of applied scenarios
S, where Pij is the period of task ti ∈ T in scenario sj ∈ S, let Mj be the least
common multiple of all tasks T in scenario sj, and |Pj | be the minimal number
of required processors for a satisfiable scheduler in scenario sj. If there exists
sj′ ∈ S such that

(Mj ≤Mj′) ∧
|T |∧
i=1

(
Mj

Pij
≥ Mj′

Pij′
),

the tasks in s′j is schedulable with |Pj | processors.

Proof. If |Pj | is the number of required processors for scenario sj , we have
|T |∑
i=1

Mj

Pij
· δi ≤Mj · |Pj |.

Then we have |T |∑
i=1

Mj′

Pij′
· δi ≤

|T |∑
i=1

Mj

Pij
· δi ≤Mj · |Pj | ≤Mj′ · |Pj |.

Therefore, the tasks in sj′ is schedulable with |Pj | processors.

Informally speaking, with Theorem 1, we could save the effort of optimization
by ignoring the scenarios that the hardware resource usage can be inferred. The
reason is that we need to satisfy the requirements of all scenarios.

5.3 Implementation

We adopt a stepwise strategy for the optimization of the goals, as shown in Fig.
5. First, we introduce a greedy algorithm to calculate the allocation of repli-
cas, where every subsystem should satisfy the reliability requirement. Then, the
optimization for the minimal number of processors is translated into a satisfi-
ability problem, such that the existence of a deployment strategy satisfying all
the constraints can be checked.

10 Yan, Zhu, Zhang, Lv, Yang and Huang

Replica calculation Increasing the number of replicas for tasks with lower
reliabilities is more effective in enhancing system reliability. Therefore, the greedy
algorithm tends to assign more replicas to such tasks. Meanwhile, the number of
replicas is set to be odd for majority voting. If all the tasks have the same weight,
the calculated configuration of replicas is the optimized solution. However, when
the weights are different, there may exist many solutions for a given expected
system reliability. The algorithm just outputs one replica configuration.

Hardware resource minimization It is difficult to directly apply constraint-
based or meta-heuristic based optimization techniques to minimize the number
of adopted processors. The reason is that an optimization objective is usually
encoded as an expression that can be calculated with a set of variables and
constraints. However, the number of processors is regarded as a fixed param-
eter to encode the constraints in the design for an embedded implementation.
The intuition of the problem is to find a minimal number of processors, such
that the system is schedulable with the constraints. When the number is given,
checking whether there exists a scheduler meeting the constraints is a satisfi-
ability problem. Then we can use various techniques, such as model checking,
constraint solving or heuristic-based methods, for satisfiability analysis. There-
fore, we could keep on checking the satisfiability of the constraints mentioned in
Sec. 5.2 with various numbers of processors, until we reach the minimum such
that all the constraints in a certain scenario are satisfied.

We have encoded the constraints in various cases (the product between
mapping and redundancy choices) with model checking, constraint solving and
heuristic-based methods. As illustrated in the right-side of Fig. 5, the method
implemented with model checking works as follows:
1. we build a formal model to depict the constraints for tasks (replicas) being

executed on processors, such that the minimal number of required processors
to satisfy the constraints in the model can be checked.

2. the property we check is whether all the tasks can be done within a specified
deadline (hyper period) of scenario sj .

3. for a given number of processors nj ,
– if the property is satisfied, reduce nj by one and check the satisfiability

of the property until it is not satisfied. Then nj + 1 is the result in sj .
– if the property is not satisfied, increase nj by one and check the satisfi-

ability of the property until it is satisfied. Then nj is the result.
The condition marked with � in Fig. 5 must be explored at least once. Steps
2 and 3 are repeated until all necessary scenarios have been checked. Then the
maximal number among all the scenarios is the expected result.

The model mainly contains templates for tasks and processors, which are
formalized with timed automata [1]. The execution of tasks on processors is
encoded as the coordination between the corresponding components.

We provide the templates for flexible mapping and mixed redundancy in
Fig. 6 (a) and (b) with two timed automata for tasks (replicas) and processors,
respectively, where the nodes with double cycles are initial locations. The con-
dition labelled on edges between two locations describes the constraints for the

Resource-aware Design for Reliable Autonomous Applications 11

ready executing idle busy
x Ux U

enabled()
require!

require

release? release

x = 0x = 0

x � Lx � L

ready,
idle

executing,
busy

x = 0x = 0

x Ux U

(a) task (b) processor (c) task running on the processor

require

releasex � Lx � L

enabled()

Fig. 6: Models in timed automata

transition. There is a clock variable x in the processor model. When a task starts
execution on a processor, x is reset to zero to record time elapse. When x reaches
L, the task can release the occupation of the processor. The constraint x ≤ U
requires that the execution of a task should not exceed U (the WCET of a task).
The two timed automata coordinate via the message marked with ! and ?. The
composition of task and processor via message synchronization is shown in Fig.
6(c). Additional to the constraint of deadline, we could also encode the timing
requirements between weak dependent tasks that the scheduler should satisfy.
The templates can be instantiated with multiple tasks and processors. Then we
can check whether a scheduler satisfying all the timing constraints exists.

We employ model checker UPPAAL [4] to deal with the checking process.
Once we fix the minimal number of processors, a counter-example showing the
configuration and scheduling strategy can be given. If the given number of pro-
cessors cannot guarantee to satisfy all the constraints, the whole state space will
be explored by using model checking techniques. Then the model checker may
not present an answer due to state space explosion for large scale systems. With
this consideration, we also apply SMT solver Yices [7] to encode and solve the
constraints. Additionally, a heuristic-based method is implemented with some
greedy strategies, which is sound but not complete. That is, if the algorithm can
find a scheduler, adopting the given number of processors can satisfy the con-
straints. However, if the algorithm fails to find a scheduler within finite number
of iterations, we cannot say that the system is not schedulable with the given
number of processors.

6 Case study

We conduct experiments on the autonomous vehicle controller depicted in Fig.
1. The autonomous vehicle is modified from Dongfeng Fengshen AX7 SUV (Fig.
7(a)) with drive-by-wire ability. The vehicle is equipped with a variety of sen-
sors and low-level actuators. The actuators, e.g., electronic power steering motor,
brake motor, and throttle by-wire, receive and actuate commands from the con-
troller. Vehicle data such as current steering angle is sensed by on-board sensors
and obtained through a CAN bus. The IMU used for localization is an Inertial
Navigation System (INS) aided by external Differential Global Positioning Sys-
tem (DGPS). Other sensors, e.g., LiDAR, Radar and camera, provide data for
the centre computer. Then the centre computer delivers environment perception
and generates a target path that is a sequence of position points with maximum
speed information. Next, the controller keeps the vehicle tracking this path.

In the autonomous control system (Fig. 7(b)), the controller is a real-time
application running under a Linux kernel with PREEMPT RT patch. The type

12 Yan, Zhu, Zhang, Lv, Yang and Huang

(a) Dongfeng Fengshen AX7 (b) Autonomous control systems

Fig. 7: Our autonomous vehicle

of processors for controller execution is Raspberry Pi 3, namely a 1.2GHz quad-
core ARM Cortex A53 cluster. The communication between various processors is
via Ethernet. We conduct real urban road tests as well as simulation tests with
scenarios covering straight, curve, lane change, and u-turns. The frequencies
of PE and PT among various scenarios of the vehicle are listed in Table 4,
where “NA” means not available. The execution times of the tasks are recorded
when the controller runs on one processor. Their worst case execution times are
analyzed based on the collected data, as presented in Table 5.

Table 4: Various frequencies (Hz) of PE and PT in different scenarios

Speed
Path tracking (PT) Path extraction (PE)

Straight Turn U-turn Straight Turn U-turn

10km/h 100 100 120 10 10 12

20km/h 100 100 181 10 10 19

30km/h 100 107 NA 10 11 NA

40km/h 120 NA NA 12 NA NA

60km/h 197 NA NA 20 NA NA

Table 5: Worst case execution time of the tasks

Type Path tracking (PT) Path extraction (PE)

tasks t1 t2 t3 t4 t5 t6 t7
WCET(ms) 0.2842 0.0820 0.6674 0.5932 0.1306 6.7042 0.0868

6.1 Redundancy degree for various reliability requirements

The numbers of required replicas with respect to various system reliabilities,
the reliabilities of tasks and the weights of the tasks are listed in Table 6. To-
tally, we consider four tasks in PT and present two groups of weights w1 =
(0.25, 0.25, 0.25, 0.25), and w2 = (0.33, 0.01, 0.33, 0.33)6, and four groups of task
reliabilities, to compare the number of required replicas with various system
reliability requirements. The four groups of task reliability distributions in as-
cending order are:
D1 = (0.96, 0.99, 0.94, 0.94), D2 = (0.996, 0.999, 0.994, 0.994)
D3 = (0.9996, 0.9999, 0.9994, 0.9994), D4 = (0.99996, 0.99999, 0.99994, 0.99994)
The legends in Table 6 are as follows. The first column lists various reliability re-
quirements. The second column presents different weights explained above. The

6 The smaller the value is, the more important the task is.

Resource-aware Design for Reliable Autonomous Applications 13

other four columns provide the number of required replicas for the four tasks in
PT, respectively, with respect to various distributions of reliabilities and weights
of the tasks.

Table 6: The number of replicas for various reliability requirements

Reliability Weight D1 D2 D3 D4

1− 10−6 w1 (5,5,7,5) (3,3,3,3) (3,3,3,3) (3,3,3,3)
w2 (5,5,7,5) (3,3,3,3) (3,3,3,3) (3,3,3,3)

1− 10−9 w1 (7,5,9,9) (5,5,5,5) (3,3,3,3) (3,3,3,3)
w2 (7,7,9,9) (5,5,5,5) (3,3,3,3) (3,3,3,3)

1− 10−12 w1 (9,7,11,11) (7,5,7,7) (5,5,5,5) (3,3,3,3)
w2 (9,7,11,11) (7,5,7,7) (5,5,5,5) (3,3,3,3)

According to the results presented in Table 6, when the reliabilities of tasks
are lower, more replicas are required to meet system reliability requirements.
However, the allocation of replicas is less sensitive to weights, except for the
case with the lowest task reliabilities.

The total numbers of replicas in various reliability requirements and weights
with respect to more distributions of task reliabilities are illustrated in Fig. 8 (i
in Di stands for the degree of reliabilities, i.e., the bigger the number is, the more
reliable the tasks are). In every reliability requirement, the numbers of required
replicas in two sets of weights are similar, except for the case already shown in
Table 6. When task reliabilities are higher, the change in the number of required
replicas is not so obvious as the change in reliability requirements.

D1 D2 D3 D4 D5 D6 D7 D8 D96

9

12
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40

R
ep

li
ca

 n
u

m
b

er

w
1

w
2

Distributions
-lg(Reliability)

R
ep

li
ca

 n
u

m
b

er

 0
 5
 10
 15
 20
 25
 30
 35
 40

Fig. 8: Replicas distribution.

 1

 2

 3

 1 2 3

N
um

be
r

of
 it

er
at

io
ns

Number of processors

(100,10)
(197,20)

Fig. 9: PT’s iteration for fresh data.

6.2 Resource optimization within various scenarios

Hardware resource is sensitive to the number of replicas and the correspond-
ing timing requirements. We take two sets of experimentation to compare the
usage of hardware resource with respect to various scenarios, and different fault-
tolerant strategies, i.e., spatial redundancy, spatial and temporal mixed redun-
dancy, respectively. The experiments are conducted with the three methods men-
tioned in Sec. 5.3, to compare the performance of various techniques in the
satisfiability-based optimization.

In Table 7, we present the number of required processors by considering spa-
tial redundancy, with different mapping strategies and various numbers of task

14 Yan, Zhu, Zhang, Lv, Yang and Huang

replicas in various scenarios. In the table, the first column presents the frequen-
cies of various scenarios. The second lists the number of replicas for various
tasks, where ti × r stands for the existence of r replicas for all the tasks. The
third presents the number of used processors. Then the rest of columns provide
the satisfiability of the problem (the existence of a scheduler), and the cost of
the computation in seconds, with constraint solving, model checking and greedy
algorithm.

Table 7: Optimization with spatial redundancy

Frequency
Replica |P |

Constraint solving Model checking Greedy algorithm
fixed map. flexible map. fixed map. flexible map. fixed map. flexible map.

(Hz) sat. cost sat. cost sat. cost sat. cost sat. cost sat. cost

(100,10)
ti × 1 1 Y 0.041 Y 0.037 Y 0.010 Y 0.010 Y 0.003 Y 0.003
ti × 3 3 Y 0.161 Y 0.189 Y 7148.820 Y 7218.180 Y 0.003 Y 0.004

(120,12)
ti × 1 1 Y 0.036 Y 0.035 Y 0.010 Y 0.010 Y 0.003 Y 0.003
ti × 3 3 Y 0.095 Y 0.090 Y 5464.94 Y 6714.620 Y 0.003 Y 0.004

(107,11)
ti × 1 1 Y 0.040 Y 0.039 Y 0.010 Y 0.010 Y 3.579 Y 3.073
ti × 3 3 Y 0.098 Y 0.103 Y 7083.540 Y 8520.740 N 32.574 N 32.251

(197, 20)
ti × 1 1 Y 0.070 Y 0.073 Y 0.020 Y 0.010 Y 0.003 Y 0.004
ti × 3 3 Y 0.198 Y 0.189 Y 7183.370 Y 8494.460 N 30.043 N 30.681

Experimental results show that the performance of constraint solving is bet-
ter than the other two methods. When the total number of replicas is small,
the method of model checking may find a solution very quickly. However, with
the increasing scalability, the performance of model checking degrades rapidly.
For the case of heuristic-based method, the heuristic used here is not always
effective, which may fail to find a solution, though it exists. Among the results
of fixed mapping and flexible mapping, the model checking cost of the latter is
almost always higher than that of the former, due to the increased complexity
for the allowed flexibility. For these scenarios, it is enough to use three processors
to accommodate the spatial redundancy of three replicas for each task to satisfy
reliability requirements.

Table 8: Optimization with spatial and temporal mixed redundancy

Frequency
Replica |P |

Constraint solving Model checking Greedy algorithm
fixed map. flexible map. fixed map. flexible map. fixed map. flexible map.

(Hz) sat. cost sat. cost sat. cost sat. cost sat. cost sat. cost

(100, 10) ti × 3
1 Y 189.207 Y 228.648 Y 4.790 Y 2.650 N 106.903 N 110.818
2 Y 0.472 Y 1.127 Y 0.012 Y 0.013 Y 0.003 Y 0.006

(120, 12) ti × 3
1 Y 152.501 Y 150.642 Y 3.510 Y 2.540 N 132.833 N 117.347
2 Y 1.140 Y 1.235 Y 0.014 Y 0.013 Y 0.004 Y 0.004

(107, 11) ti × 3
1 Y 102.439 Y 101.999 Y 3.500 Y 2.560 N 119.581 N 142.081
2 Y 1.167 Y 1.088 Y 0.011 Y 0.012 Y 0.004 Y 0.004

(197, 20) ti × 3
1 N 5708.326 N 4232.964 N 3.180 N 2.370 N 75.561 N 75.964
2 Y 4.506 Y 3.564 Y 0.014 - - Y 0.004 Y 0.003

We present the experimental results with spatial and temporal mixed redun-
dancy in Table 8. In the table, “-” means out of memory. The underlined results
in model checking are obtained by applying under approximation to relieve state
space explosion, which is sound for satisfiability problem if the result is positive7.

7 We can also run the method to check the results in Table 7.

Resource-aware Design for Reliable Autonomous Applications 15

Intuitively, the delay of mixed redundancy is larger than the case with only spa-
tial redundancy, which is a trade-off between time and space. However, for the
first three scenarios, only one processor is enough to accommodate three replicas
for all the tasks, which is benefited from the small portion of task execution with
respect to the periods of the two subsystems. When we allow two processors (the
number of solutions is larger), these methods can find a solution more quickly,
except for the fourth scenario with the model checking method.

According to the results presented in Tables 7 and 8, in fact we could just
calculate the number of required processors for the last scenario, where others
can be inferred according to Theorem 1.

6.3 Timing constraint on weak dependency

For the weak dependency between two tasks, we have presented the upper and
lower bounds of iterations that the successor should wait in Sec. 4.2. In our case
study, we expect that data can be refreshed as early as possible in every hyper
period. Therefore, we have encoded the constraints such that the property can
be checked. Experimental results show that in the first iteration of PT, data from
PE cannot be refreshed with the existing scenarios, for the mixed redundancy
with one or two processors. Only using three processors can meet such constraint.
In Fig. 9, we present the number of minimal iterations for PT to acquire the
updated data from PE with various numbers of processors and various scenarios8,
where the horizontal shows the number of processors, and the vertical stands for
the number of iterations. It is obvious that data can be refreshed earlier for
PT with more processors. And when the frequencies are lower, it takes fewer
iterations to be refreshed.

Concluded from the experimental results, we could adopt three processors in
the implementation to accommodate various design considerations.

7 Conclusion

The paper presents an embedded design framework for safety-critical systems
with scenario-related multi-period timing behaviors in autonomous vehicles. The
main technical challenge is to guarantee system reliability and minimize proces-
sor usage, with various timing constraints and design choices. We have formalized
the constraints and employed both exact (model checking and constraint solv-
ing) and heuristic-based (greedy algorithm) methods for solution calculation.
The realistic case study for the controller of an autonomous vehicle has demon-
strated the applicability and flexibility of our framework. As the future work,
we are interested in considering the reliability issues in mixed-critical systems of
autonomous vehicles.

Acknowledgments
The authors would like to thank Jian Zhang and Feifei Ma for their assistance
with the work and valuable comments on this paper.

8 As the cases of (120,12) and (107,11) coincidence with the case of (100,10), we ignore
them in the figure.

16 Yan, Zhu, Zhang, Lv, Yang and Huang

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

2. P. Axer, M. Sebastian, and R. Ernst. Reliability analysis for MPSoCs with
mixed-critical, hard real-time constraints. In CODES+ISSS, pages 149–158.
IEEE/ACM/IFIP, 2011.

3. C. Baier, J.-P. Katoen, and K. G. Larsen. Principles of model checking. MIT press,
2008.

4. G. Behrmann, A. David, and K. Larsen. A tutorial on uppaal. Formal methods
for the design of real-time systems, pages 33–35, 2004.

5. A. Burns and R. Davis. Mixed criticality systems-a review. Department of Com-
puter Science, University of York, Tech. Rep, 2013.

6. W. Chang, S. Chakraborty, et al. Resource-aware automotive control systems de-
sign: A cyber-physical systems approach. Foundations and Trends R© in Electronic
Design Automation, 10(4):249–369, 2016.

7. B. Dutertre. Yices 2.2. In CAV, pages 737–744. Springer, 2014.
8. M. Glaß, M. Lukasiewycz, T. Streichert, C. Haubelt, and J. Teich. Reliability-aware

system synthesis. In DATE, pages 1–6, 2007.
9. J. Huang, S. Barner, A. Raabe, C. Buckl, and A. Knoll. A framework for reliability-

aware embedded system design on multiprocessor platforms. Microprocessors and
Microsystems, 38(6):539–551, 2014.

10. J. Jiang and X. Yu. Fault-tolerant control systems: A comparative study between
active and passive approaches. Annual Reviews in control, 36(1):60–72, 2012.

11. C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens. Multi-task im-
plementation of multi-periodic synchronous programs. Discrete event dynamic
systems, 21(3):307–338, 2011.

12. S. Pandey and B. Vermeulen. Transient errors resiliency analysis technique for
automotive safety critical applications. In DATE, page 9, 2014.

13. A. Sangiovanni-Vincentelli and M. Di Natale. Embedded system design for auto-
motive applications. Computer, 40(10), 2007.

14. E. Yip, M. M. Kuo, P. S. Roop, and D. Broman. Relaxing the synchronous ap-
proach for mixed-criticality systems. In RTAS, pages 89–100. IEEE, 2014.

15. Q. Zhao, Z. Gu, and H. Zeng. Design optimization for AUTOSAR models with
preemption thresholds and mixed-criticality scheduling. Journal of Systems Archi-
tecture, 72:61–68, 2017.

16. B. Zheng, H. Liang, Q. Zhu, H. Yu, and C.-W. Lin. Next generation automotive
architecture modeling and exploration for autonomous driving. In VLSI (ISVLSI),
pages 53–58. IEEE, 2016.

