Stepwise Development and Model Checking of a
Distributed Interlocking System - using RAISE

Signe Geisler and Anne E. Haxthausen

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark.
signe.geisler@gmail.com and aeha@dtu.dk

Abstract. This paper considers the challenge of designing and verifying
control protocols for geographically distributed railway interlocking sys-
tems. It describes for a real-world case study how this can be tackled by
stepwise development and model checking of state transition models in
an extension of the RAISE Specification Language (RSL). This method
also allows different variants of the control protocols to be explored.

Keywords: stepwise development, model checking, RAISE, railway in-
terlocking systems, distributed systems

1 Introduction

This paper considers the challenge of formally modelling and verifying the real-
world geographically distributed railway interlocking system presented in [?].
The engineering concept of this was originally developed by INSY GmbH Berlin
for their railway control system RELIS 2000 designed for local railway networks.

1.1 Background

A railway interlocking system is a safety-critical system controlling the track side
equipment and movement of trains in a railway network such that train colli-
sions and derailments are avoided. Current computer-based interlocking systems
usually have a centralised design, but in a few cases, as for instance described in
[?], the control has been geographically distributed to processors deployed at the
sensors and actuators (e.g. points) along the track layout and to onboard train
control computers. One of the motivating factors for this is the lower cost, mak-
ing it available as a solution for small, local railway networks, cf. the discussion
in [2,7].

To verify the safety of distributed railway interlocking systems is even more
challenging than for centralised systems. For centralised interlocking systems,
there is a global notion of the state of the system, which can be observed by
the control computer to make interlocking decisions. In contrast to this, in the
geographically distributed approach, where each train is equipped with a train
control computer, and additional control components are distributed through-
out the railway network, the interlocking data must be distributed (but also

duplicated to some extent) in the different control components. Furthermore,
the control components must collaborate in order to take safe decisions, so com-
munication between the control computers must be introduced. This adds addi-
tional threads which would not be present in a centralised system. Hence, the
distribution of control gives new challenges for the safety verification.

Using formal methods for the verification of distributed interlocking systems
is a natural choice, as formal methods are strongly recommended by the CEN-
ELEC standard EN 50128[?] for safety-critical railway control components and
have proved useful for many applications. For instance, Haxthausen and Pe-
leska demonstrated this in [?], where they modelled and verified the distributed
interlocking system considered in this paper. For this they used the RAISE Spec-
ification Language, RSL [?], and the RAISE theorem prover, respectively.

Theorem proving, as used in [?], handles complex systems very well, but
the proof derivation process is very time consuming, as it must be directed
by a human. Furthermore, theorem provers are often unable to give counter-
examples when a proof fails. With model checking, the verification process is
fully automated, and if some asserted property is not satisfied in some state
of the system, the model checking tool will produce a counter-example, usually
showing the path to that state. The path can then be investigated in order to
discover the unintended behaviour. Therefore, in this paper, we will investigate
the use of model checking for verifying the considered interlocking system.

1.2 Contribution

The main contribution of the paper is a method for modelling and verifying a
distributed system by stepwise specification and model checking, and the appli-
cation of this method to a distributed railway interlocking system.

For the system specification the method uses an extension of RSL, called
RSL-SAL [?], which allows to specify systems by state transition system models.
In contrast to this, the work in [?] used the RSL process algebra to specify the
final model of the system. The formal verification is now performed using the
SAL symbolic model checker which is a backend to RSL-SAL. The challenge
of capturing the system behaviour in appropriate detail was tackled by using
stepwise development of state transition system models. This approach is novel
in the context of RAISE.

1.3 Related Work

Formal verification of interlocking systems via model checking is an active re-
search topic, investigated by several research groups, see e.g., [?,7,7,?] mostly
focusing on centralised interlocking. In [?,?] RSL-SAL and SAL was also used
for modelling and verifying an interlocking system, but this was a centralised
(relay) interlocking system, and in that work no stepwise development was used.

In [?], a geographically distributed railway interlocking system was formally
modelled and verified using UMC instead of RSL-SAL and SAL. The control
protocol presented in [?] radically differs from the one considered in our case

study: in [?], full train routes are allocated before trains start moving. This is
done using a two-phase commit protocol for determining agreement between
the control components. The control protocol in our case study allows trains to
allocate each section of their routes separately, which allows for greater flexibility,
since train routes can be interleaved to a greater extent.

1.4 Paper Overview

First Sect. 77 gives a brief introduction to the case study: the engineering concept
of the considered distributed interlocking system and an overview of the formal
development. Then, the following sections (Sect. 77, Sect. 2?7 and Sect. ?77?) give
an overview of the generic model specifications and the development steps be-
tween them. The verification of model instances is described in Sect. ?7. Finally,
Sect. 77 gives a conclusion and states ideas for future work.

2 Case Study

2.1 Engineering Concept

The control strategy of the system must ensure the safety of the system by
preventing the derailment and collision of trains. In this engineering concept,
safety is achieved by only allowing one train on each track segment at the same
time and ensuring that points are locked in correct position while trains are
passing them. To this end, trains must reserve track segments before entering
them and lock points in correct position before passing them.

The control components of the system are responsible for implementing the
control strategy. Each train is equipped with a train control computer. In the
railway network, several switchbozes are distributed, each controlling a single
point or an end point of the network. These components communicate with each
other in order to collaboratively control the system. Each control component
has its own, local state space for keeping track of the relevant information. As
can be seen from Figure 77, each of the train control computers has information
about the train’s route (a list of track segments) with its switch boxes, the
train position, and the reservations and locks it has achieved. Each switchbox
has information about its associated sensor (used to detect whether a train is
passing the critical area close to the point), which segments are connected at
its associated point (if any), for which train the point is locked (if any), and for
which train each of the associated segments is reserved (if any).

The basic idea of the control strategy is as follows:

1. Permisson to enter a segment: For a train control computer (TCC) to decide
whether it is legal to enter the next segment of its route, the TCC must
observe its local state space and check whether it has the needed reservations
and locks. More precisely, the following must hold:

— the next segment must have been reserved for the train at the two up-
coming switchboxes, and

T1

ROUTE SEGs s1,52,54

ROUTE SBs SB1, SB2,SB3

POSITION sl

RESERVATIONS [SB1:{S1}]

LOCKS -

SBO SB1 SB2 SB3

SBO sB1 SB2 sB3
CONNECTED | S1 CONNECTED | S1-S3 CONNECTED | S2-54 CONNECTED | S4
LOCKED BY | - LOCKED BY | - LOCKED BY | - LOCKED BY | -
SENSOR passive SENSOR passive SENSOR passive SENSOR passive
RES S1 - RES S1 T1 RES S2 - RES S4 -

RES 52 - RES S3 -

RES S3 - RES S4 -

Fig. 1. An example system.

— the point must have been switched in the direction for the train route
and locked for the train at the next switchbox.
In the scenario shown in Figure 77, for the train 71, this means that it must
have reservations for segment s2 at both the switchboxes SB1 and S B2, and
a lock for the point at SB1, before it can be allowed to enter s2.

2. Making reservations and locks: Reservations and locks are made by the trains
by issuing requests to the relevant switchboxes. Depending on its local state,
a switchbox may or may not comply with a request from a train. The switch-
box can only fulfil a segment reservation request if the segment is not already
reserved at the switchbox. Similarly, a switchbox can only lock a point (after
potentially having switched the point in the direction for the train route), if
the point is not already locked. Additionally, a request for locking a point can
only be made if the train has reservations for the two segments in its route
on either side of the point to be locked. In the scenario shown in Figure 77,
for the train T'1, this means that it must have a reservation for segments s1
and s2 at the switchbox SB1, before it can request to lock the point at SB1.
If a switchbox can meet a request, it will update its state space accordingly.
In any case, the switchbox will send a response to the train, based on which
the train can determine whether the request has been met and, thereby,
whether the train should update its state space as well.

3. Release of reservations and locks: When a train has passed the critical area of
a switchbox, both the lock and reservations for that train at that switchbox
are released in the state space of the train as well as in the state space of
the switchbox.

2.2 Overview of Formal Development

The modelling process follows a stepwise development paradigm, where several
different models are developed, going from a very abstract view of the real-world

system to a more concrete view. In this way, three specifications of generic state
transition system models were developed.

The first is an abstract model capturing the system behaviour, but abstract-
ing away from the explicit communication between the control components.
Hence, e.g. a reservation event is treated as an atomic event, abstracting away
from the intermediate steps issuing requests and acknowledgements. However, it
was known from the start that these intermediate steps should later be explicitly
modelled. The starting point is thus a stage where there is already an idea of
needing event decomposition. This affects the specification of the first model,
where the auxiliary functions for checking and updating the state spaces of the
control components are divided into functionality for train control computers
and switchboxes, respectively.

The second model is developed using event decomposition for collaborative
events (i.e. events involving communication between control components) of the
first model in order to model the steps of the communication protocols for such
events. At this modelling level, the transition rules are specified in a property-
oriented manner, resulting in the least restrictive possible behaviour of the sys-
tem. This allows for several different legal orders of events.

The third model is an example of restricting the second model to a more
specific control protocol for each collaborative event inducing a specific order of
events. This is achieved by restricting the guards of relevant transition rules, such
that the corresponding transitions can only be executed in fewer cases. Thus the
set of paths of the state transition system of the third model is a subset of that
of the second model.

The specified system models are generic, i.e. without any configuration data
describing the railway network and the control components with their data. To
verify the models by model checking, they must be instantiated with configu-
ration data. The instantiation and verification will be described in Section 77,
while the generic models will be explained in Sections 7?7, 7?7, and ?7.

3 First Model

The specification of the first (generic) model can be divided into several different
parts:

Types and values for the static configuration data and dynamic data.
Functions describing wellformedness and consistency of configuration data.
Functions describing the safety of the system.

Guard and state updater functions.

State variables.

Transition system rules.

Static configuration data. The static configuration data consist of the data for the
railway network, which includes information about which segments and switch-
boxes are in the network, and data about which trains are in the network.

Unique identifiers for segments, switchboxes, and trains of the system are
given by types. These are not further specified in the generic model, but are
intended to be defined by variant types enumerating the concrete identifiers
when the model is instantiated. Train identifiers must at least include the special
value t_none.

type
Segment,
TrainID == t_none | .,
SwitchboxID

The network layout describing how the segments of the system are connected
is given by a value network of an explicitly defined type Network. The network
value is not specified further in the generic model, but is intended to be explicitly
defined by a constant when the model is instantiated.

type Network = ...
value
network : Network

Types for dynamic data. Besides configuring the system with static configuration
data, the system must also be configured with initial values for dynamic data
which changes e.g. when trains move. The types specified are the ones needed
for each of the fields in the state spaces of the control components. For example,
the type for the reservations of a switchbox is called SbResMap and is a mapping
from segment identifiers to train identifiers:

type SbResMap = Segment 7 TrainlD

There is a similar map for reservations stored in a train:

type TResMap = SwitchboxID = Segment-set

For modelling the state spaces of each control component, types of the form
TrainID + [value type] and SwitchboxID - [value type] have been defined.
For example, the reservations for each of the switchboxes are saved in a variable
of the type

type SbResState = SwitchboxID = SbResMap,
and the reservations for the trains are saved in a variable of the type

type TResState = TrainlD = TResMap

Using maps from component identifiers to state values allows for the specification
of the local state of each component.!

1 As the model is generic, the number of components is not yet known, so we can’t
specify a variable for each component holding its local state. Instead we use maps
as shown above.

Wellformedness, consistency and safety functions. The functions describing well-
formedness and consistency of configuration data and the functions describing
the safety of the system are used when formulating the transition system as-
sertions, i.e. the properties which the instantiations of the models are checked
against.

Guard and state updater functions. The guard and state updater functions are
also used when formulating the transition system. They are used in the transition
system rules, where each rule consists of a guard and a collection of effects, i.e.
state updates. An example of a guard function is the following, sb_can_reserve,
which is used to determine, from the point of view of a switchbox, whether a
reservation can be made. This should be the case if the switchbox is associated
with the segment to be reserved and the segment is not reserved already by any
train at the switchbox.

sb_can_reserve : SbResMap x Segment — Bool
sb_can_reserve (res,seg) = seg € dom(res) A res(seg) = t_none

The parameters of the guard function are the segment which should be re-
served (seg) and the reservations of the switchbox itself (res).

An example of an updater function is the following sb_res, which updates the
reservations of a switchbox:

sb_res : SbResMap x TrainlD x Segment — SbResMap
sb_res (res, tid ,seg) = res 1 [seg > tid]

The parameters for the updater function consist of the data component, i.e.
the reservations of the switchbox, (res) to which changes should be made, and
the data necessary for the change, i.e. the train (tid) for which the segment (seg)
should be reserved.

For the reservation event, there is a similar guard function t¢_can_reserve
which is used to determine, from the point of view of a train control computer,
whether a reservation can be made and there is an updater function t_res to be
used to update the train state.

For other events e there are similar guard functions and updater functions.

State variables. Several local variables are declared in the transition system. The
initial values of these determine the initial state of the transition system. In the
generic model, the variables are uninitialised, so they must be given values when
the model is instantiated for model checking.

The variables are specified using the types for dynamic data mentioned ear-
lier. There is a variable for each field of the control component state spaces. For
example, the variables for the switchbox reservations and for the train reserva-
tions are specified as follows:

local sbRes : SbResState, tRes : TResState

Transition system rules. The rules of the transition system define the possible
events (state transitions) of the system. A transition rule consists of a guard and
an effect, where the guard is a predicate over the state variables determining for
which states the effect of the rule can be applied, and the effect of the rule is a
collection of state variable updates. In the state variable updates, primed versions
of the variables refer to the variables in the resulting post state. Transition
rules can be combined by non-deterministic choice ([]). Furthermore, a non-
deterministic choice over a set of rules of the same form, only differing by a
parameter x of finite type T, can be expressed as ([] = : T » rule), where x
occurs in the rule rule. It is a shorthand for writing a non-deterministic choice
between all rules that can be obtained by substituting a value v : T for x in rule.

In this first model, for each event e, there is a rule of the following form:

([] sbid : SwitchboxID, tid : TrainID, ... e
[rule_name]
tcane (...) Asb_cane(..) ==>
tData/(tid) = t.e (...), sbData’(sbid) = sb_e (...))

the ellipsis in the first line represents any extra values needed for that particu-
lar event; tData and sbData are place-holders for variables in the train control
computer state space and the switchbox state space, respectively, changed by
the transition (multiple variables from each state space may be changed by one
transition); ¢t_e and sb_e are place-holders for updater functions returning the
new value for the variables.

In case an event is not collaborative, but e.g. a pure train event like mowve,
the format of the rule is reduced by removing the quantification over tid or
sbid, respectively, and the guard and updates for the tid or sbid component,
respectively.

As an example of a transition system rule, the rule for the reservation event
is specified as follows:

([] sbid : SwitchboxID, tid : TrainID, seg : Segment
[res]
t_can_reserve (tSboxes(tid),sbid,seg, tRoute(tid),tRes(tid)) A
sb_can_reserve (sbRes(sbid),seg) ==>
tRes'(tid) = t_res(tRes(tid),sbid,seg),
sbRes’(sbid) = sb_res(sbRes(sbid),tid ,seg))

where tRoute(tid) and tSbozes(tid) give the segments and switchboxes of the
route of train tid, respectively, and tRes(tid) and sbRes(sbid) give the reserva-
tions of train tid and switchbox sbid, respectively.

As can be seen, two guard functions are used to determine whether the
reservation can be made: only if both the train and the switchbox agree, the event
can take place. The effect of the rule is specified using two updater functions to
update the reservations of both the train and the switchbox in question.

4 Second Model

In the second step, the model has been refined to explicitly model a communi-
cation scheme between the control components of the system. The collaborative
events of the system are decomposed into multiple sub-events, such that a sim-
ple request-acknowledge protocol scheme is modelled. The event refinement has
been chosen to be atomic (i.e. all the sub-events of an event have to be completed
before a new event can happen, so the communication protocols are performed
in an interleaved, non-atomic way) in order to keep the state space as small as
possible. It can be shown that removing the atomicity requirements from the
resulting model M; leads to a model Mé which is behaviourally equivalent to
M with respect to the externally (physical) observable state, i.e. train positions
and point positions. This is because the internal protocol states of different com-
munication events are disjoint, so that every set of interleaved communication
transactions has an outcome which is equivalent to that of a serialised execution
of the same transactions in some specific order. Hence, any safety conditions
proved for My will also hold for Mé

In the communication protocols, the train control computers are the initiating
party, issuing requests to the switchboxes. When a switchbox receives a request,
it decides whether it is able to comply with the request and, depending on this,
sends either a positive or negative acknowledgement to the train. If the switchbox
can comply with the request, it will also update its state space accordingly.
Similarly, when a train control computer receives a positive acknowledgement,
it will update its state space accordingly. If the switchbox cannot comply with
the request, neither the state space of the switchbox nor of the train control
computer will be updated.

To model the communication between the control components, the collabo-
rative events of the system have been decomposed in the following manner. For
each collaborative event e, the single transition rule in the first model is now
replaced with several separate sub-rules:

— req_e, which is the initiation of the event. This corresponds to a train con-
trol computer issuing a request to a specific switchbox with any relevant
information for the event in question.

— ack_e, which is the positive acknowledgement rule for the switchbox. This
corresponds to the switchbox accepting the request, changing its own state
space accordingly and issuing the positive acknowledgement to the train
control computer in question.

— end_e, which concludes the event. This corresponds to the train control com-
puter receiving the positive acknowledgement signal from the switchbox and
updating its own state space accordingly.

— nack_e, which is the negative acknowledgement rule for the switchbox. This
corresponds to the switchbox not being able to comply with the request, and
therefore issuing a negative acknowledgement to the train control computer
in question.

— end_nack_e is an auxiliary action for “consuming” the negative acknowledge-
ment from a switchbox and not changing the state space of the train control
computer.

To keep track of the messages sent between the control components, several
variables have been added to the model:

Interface variables are used to record whether a message is a request, an ac-
knowledgement or a negative acknowledgement, and to record who the sender
and receiver are:

req : TrainlD = SwitchboxID, —— request variable
ack : SwitchboxID + TrainlD, —— positive acknowledge variable
nack : SwitchboxID # TrainID, —— negative acknowledge variable

For instance, ack(sb) = ¢t models a positive acknowlegment from a switchbox sb
to a train t.

Data variables are used for storing data sent as part of a request. For example,
for a reservation request, the following variable? is used to store the segment to
be reserved:

tmpSeg : Segment

Event variables are used to keep track of which type of the collaborative events
is currently ongoing (if any). There is a Boolean variable for each kind of col-
laborative event. For example, for the reservation event, the following variable
is used:?

resEvent : Bool

The variable is set to true whenever a train control computer requests a reser-
vation of a segment at some switchbox, and set to false when the train control
computer has received an acknowledgement (either positive or negative).

As an example of how the new rules of the transition system are specified and
how the additional variables are used, consider the rules for requesting, (positive)
acknowledging and concluding the reservation event:

([] sbid : SwitchboxID, tid : TrainID, seg : Segment
[req-res]
—resEvent A —switchLockEvent A
t_can_reserve (tSboxes(tid),sbid,seg, tRoute(tid),tRes(tid)) A
tid ¢ dom(req) ==>
req’ =req T [tid + sbid],
resEvent’ = true,

2 Since only one event should be allowed at the same time in this model, it is sufficient
to store a segment rather than a map from trains to segments, where for each train
t, tmpSeg(t) could hold data sent by ¢.

3 For this variable there is a similar comment as for tmpSeg.

tmpSeg’ = seg)

([] sbid : SwitchboxID, tid : TrainID e

[ack_res]
tid € dom(req) A req(tid) = sbid A resEvent A
sb_can_reserve (sbRes(sbid),tmpSeg) ==>

req’ =req \ {tid},
ack’ = ack t [shid > tid],
sbRes’(sbid) = sb_res(sbRes(sbid), tid ,tmpSeg))

([] sbid : SwitchboxID, tid : TrainID e
[end_res]
sbid € dom(ack) A ack(sbid) = tid A resEvent ==>
tRes’(tid) = t_res(tRes(tid),sbid,tmpSeg),
ack” = ack \ {sbid},
resEvent’ = false)

The req_res rule can be applied when the system is idle, i.e. when no events
are ongoing®, when the reservation is legal from the train control computer’s
point of view and the train control computer has not already sent a request. As
its effect, the rule sets the request variable for the train identifier and switchbox
identifier in question, enables the reservation event variable and sets a data
variable to the segment to be reserved.

The ack_res rule can be applied when a request has been issued, the reserva-
tion event variable is enabled and the reservation event is legal from the point
of view of the switchbox. As its effect, the rule removes the issued request, issues
a positive acknowledgement and updates the state space of the switchbox with
the reservation (here, the segment data variable from before is used).

Finally, the end_res rule can be applied when a positive acknowledgement has
been received and the reservation event variable is enabled. As its effect, the rule
updates the state space of the train control computer (and again uses the segment
data variable), removes the acknowledgement and disables the reservation event
variable.

There are two additional rules (not shown here) for expressing the sending
of a negative acknowledgement from a switchbox to a train and for the train
receiving it, respectively.

Relation to the first model. Instances of this model are clearly able to
simulate all possible events of the corresponding instances of the first generic
model, which was the intention with this step in which no behaviour should be
lost. Furthermore, instances of the first model are able to simulate all atomic
events of the corresponding instances of this second generic model.

4 Tt is this condition which enforces the atomic event refinement.

5 Third Model

The third model has been restricted to model a just-in-time allocation principle.
In the previous models, any order of legal events was possible. This means, for
example, that nothing was preventing a train from reserving the last segment
of its route as the first event (other than if the segment was already reserved,
of course). This third model should now specify a control strategy, stating that
a train must only make reservations of the next upcoming segment in its route
(at the two upcoming switchboxes of its route), and must only lock the point at
the next upcoming switchbox. This strategy is just one of many choices, and is
used to demonstrate the possibility and technique of restricting the protocol of
the second model to enforce events to happen in a more specific order.

As mentioned, the train control computers are the initiating party for collabo-
rative events. Therefore, the desired restriction can be achieved by strengthening
the guard functions used by the train control computers. This limits the amount
of possible events such that they match the steps of the control strategy.

The restriction of the guard functions is accomplished by using the following
pattern. If the guard function was previously of the form

t.cane : ... — Bool

tcane (...) = ..

then the new, restricted guard function is of the form

restricted_t_can-e : ... — Bool
restricted_t_can_e (...) =
tcan_e (...) A new_restriction-1 A ... A new_restriction_n

The extra conjunct(s) can, in some cases, lead to the possibility of the prop-
erties of t_can_e to be reduced. This is the case when one of the new restrictions
implies (parts of) the properties found in the can_e guard function.

For the reservation event, the restrictions to be included in the updated
guard function consist of only allowing a train ¢ to reserve a segment seg at a
switchbox sb, if (1) sb is one of the two upcoming switchboxes of the route of ¢
and (2) the segment seg is the next segment with respect to the train’s position
and route.

Hence, the restricted guard function is specified as follows:

restricted_t_can_reserve : SboxMap x SwitchboxID x SwitchboxID x Segment x
Route x Position x ResMap — Bool

restricted_t_can_reserve (sboxes,sbid,nextsb,segment,route,pos,res) =
t_can_reserve (sboxes,sbid ,segment,route,res) A
(sbid = nextsb V (nextsb € dom(sboxes) A sbid = sboxes(nextsb))) A
is_single_pos (pos) A seg(pos) € dom(route) A segment = route(seg(pos))

In this case it turned out that some of the added sub-properties imply some
of the sub-properties in ¢_can_reserve(sbozes,sbid,segment,route,res), so we sim-
plified the conjunction.

The transition rule for req_res is obtained from the second model by replacing
t_can_reserve(tSboxes(tid),sbid,seg,tRoute(tid),tRes(tid)) with

restricted_t_can_reserve(tSbozes(tid),sbid,tNextsb(tid),seq,tRoute(tid),
tPos(tid),tRes(tid)).

Relation to second model. Instances of the second model can clearly simulate
all possible behaviours of the corresponding instances of this third generic model.

6 Verification

At each of the three specification steps, model instances of the generic model at
that level have been verified and tested in several different ways, as explained
below, in order to get confidence in the correctness of the generic models. Later,
if new network and train configurations are considered, the idea is that the final
generic model should be instantiated with that data and model checked.

Note that we have not formally verified a formal refinement/simulation re-
lation between the models, which would require considerably higher verification
effort, but only discussed this informally in the previous sections.

6.1 Model Checking

s3
B \ Al
}sl‘v s2 \is4l
[o]

Fig. 2. An example system configuration with two trains and their routes.

Each of the three generic models have been instantiated with several typi-
cal network layouts and a collection of trains. The network layouts and train
routes should be chosen such that they include cases where trains need access to
the same shared resources (e.g. track segments). In this paper we consider the
configuration shown in Figure ?7. In this network two trains are shown in their
initial position and the coloured lines show their routes. As it can be seen, the
two trains have routes passing the same station in opposite direction. Another
typical case we have considered is one, where two trains have routes passing the
same line between two stations in opposite direction.

After having instantiated the three generic models with configuration data
for our example, the three resulting model instances were model checked against
several assertions expressed in Linear Temporal Logic (LTL) using the symbolic
model checking tool of Symbolic Analysis Laboratory (SAL) [?]. The properties
asserted were as follows.

— Safety properties, stating the absence of derailments and collisions of trains
in all reachable states. The absence of collisions is stated as follows, using
an auxiliary function named no_collide:

[no_collide] TSk (Vtidl,tid2 : TrainID
G(tid1 # tid2 A tidl # t_none A tid2 # t_none = no_collide(tid1,tid2,tPos)))

where no_collide(tidl, tid2,tPos) expresses that the intersection of the seg-
ments of the positions of tidl and tid2 is empty, i.e. the trains are not both
occupying the same section. tPos is a state variable storing the positions of
all the trains. Similarly, the absence of derailments is stated as follows:

[no_derail] TS (Vtid : TrainID
G(—is_single_pos(tPos(tid)) = no_derail(tPos(tid),sbConn))),

where — is_single_pos(tPos(tid)) expresses that the train is passing a point
(is not on a single segment) and no_derail(tPos(tid), sbConn) expresses that
the train’s position tPos(tid) fits the position of the point. sbConn is a state
variable storing the point positions at all the switchboxes.

— Consistency properties, stating the consistency of distributed data, e.g. that
reservations saved in the train control computer state spaces are in agreement
with those from the switchbox state spaces, in all reachable states.

— Wellformedness properties, stating the wellformedness of configuration data
wrt. the static configuration data in all reachable states.

— Liveness properties, stating that events are always completed. This only
applies to the second and third model. For example, the fact that the reser-
vation event is always completed is stated as follows:

[finish.res | TS F G(resEvent = F(—resEvent))

Note that the result for such properties is only sound if there are no dead-
locks.

— Reachability properties, expressing that there is at least one possible sched-
ule where all trains reach their destination. These have been verified by
contradiction: by model checking properties stating that the trains do not
all eventually arrive at their destination:

[not_all_trains_arrive | TS F G(—(Vtid : TrainID «tPos(tid) = dest(tid)))

where dest(tid) is the destination position of train ¢id. This property is
expected to be false and should generate a counter example showing a trace
where all trains arrive at their destination.

All the desired properties were successfully verified for the three model in-
stances. (In particular, the property [not_all_trains_arrive] gave in each case, as
desired, rise to a counter example demonstrating that there exists at least one
schedule, where all trains arrive at their destination.)

Furthermore, we applied successfully the SAL deadlock checker to the three
model instances to ensure absence of deadlocks.

Note that even if invariant properties for a model instance of the first generic
model has been model checked, we need to model check them again for the

corresponding instance of the second generic model as there are new intermediate
states we want to be sure are safe.

Note also that in principle, the model checking of invariant properties for a
model instance of the third generic model should not be necessary when they
have been model checked for the corresponding instance of the second generic
model (as all behaviours of the third model are simulated by behaviours in the
second model), but since we made some simplifications of the guards in the third
generic model, we also model checked the properties for the model instance of
the third model.

6.2 Other Verification Activities

Before beginning the process of symbolic model checking different model in-
stances against the desired properties, other tools were used to gain confidence
in the correctness of the function and transition system rule specifications.

— Testing of functions: Important functions (e.g. for expressing safety and
consistency properties, which are used in the transition system assertions)
were tested using the RSL test case construct. The functions were validated
to ensure that the assertions to be verified in the model checking process are
correct. This testing activity was only needed in the first specification step,
as no new functions were used in the later steps.

— Bounded model checking: The transition rules of the model instances were
tested using the SAL bounded model checker, which only explores the paths
in the transition system to a certain, given depth. Therefore, attempting to
verify the properties stated above with the bounded model checker reveals
bugs much faster.

7 Conclusion and Future Work

In this paper we have shown a method to stepwise develop a generic state tran-
sition system model of a real-world distributed railway interlocking system and
verify safety and consistency properties of instances of these models by model
checking. This method could also carry over to other, similar applications.

The models are expressed in an extension to RSL: RSL-SAL[?]. Although
stepwise development of state transition systems is well known from other lan-
guages, it is novel for RSL. The stepwise development has shown to be very
useful: Firstly, it allows the initial specification to abstract away from details
and complexity which can be added later in a development step. This means
that a simpler model expressing essential system behaviour can be developed
first without worrying about concrete details. This eases the modelling process.
It also has the advantage that essential system behaviour can be verified already
at this stage, allowing the developer to gain confidence in the specification, be-
fore adding details that would most likely increase the time and memory usage
of the verification. Secondly, the idea of letting the second model be so general

(e.g. without having a restriction on the ordering of reservations that a train
should send) that it can be refined to several different concrete behaviours (e.g.
with specific orderings of reservations) by restricting the guards is useful as the
invariant properties which are shown to be satisfied by the general model will
also be satisfied by any restrictions. In this way one can create a library of differ-
ent families of models, and variants of different control protocols can be explored
and compared.

For the model checking, the SAL symbolic model checker was used, just for
a proof of concept of our method, but other back-ends can be used as well.

In future work we plan to experiment with other model checking techniques,
e.g. SAT-based k-induction, and other back-ends, e.g RT-Tester [?], in order
to find the most efficient verification technique and apply these also to larger
networks. In another case study [?], RT-Tester was used to perform k-induction
in order to prove a centralised interlocking system and turned out to be very
efficient and scale up to big networks. We also plan to extend the models with
additional operations for cancelling reservations and for changing the direction
of a train.

Acknowledgements. The authors would like to express their gratitude to Jan
Peleska from whom the case study originates and together with whom the sec-
ond author had the great pleasure to verify the same case study by theorem
proving [?]. We would also like to thank him and the reviewers for very useful
comments to drafts of this paper.

References

1. Symbolic Analysis Laboratory, SAL, home page: http://sal.csl.sri.com, 2001.

2. CENELEC European Committee for Electrotechnical Standardization. EN
50128:2011 — Railway applications — Communications, signalling and processing
systems — Software for railway control and protection systems. 2011.

3. Alessandro Fantechi, Stefania Gnesi, Anne Haxthausen, Jaco van de Pol, Marco
Roveri, and Helen Treharne. SaRDIn - A safe reconfigurable distributed interlock-
ing. In Proc. 11th World Congress on Railway Research (WCRR 2016), Milano,
2016. Ferrovie dello Stato Italiane.

4. Alessandro Fantechi, Anne E. Haxthausen, and Michel B. R. Nielsen. Model check-
ing geographically distributed interlocking systems using UMC. In 2017 25th Eu-
romicro International Conference on Parallel, Distributed and Network-based Pro-
cessing (PDP), pages 278-286, 2017.

5. Alessio Ferrari, Gianluca Magnani, Daniele Grasso, and Alessandro Fantechi.
Model Checking Interlocking Control Tables. In Eckehard Schnieder and Géza
Tarnai, editors, FORMS/FORMAT 2010 — Formal Methods for Automation and
Safety in Railway and Automotive Systems, pages 107-115. Springer, 2010.

6. Anne E. Haxthausen. Automated Generation of Formal Safety Conditions from
Railway Interlocking Tables. International Journal on Software Tools for Tech-
nology Transfer (STTT), Special Issue on Formal Methods for Railway Control
Systems, 16(6):713-726, 2014.

10.

11.

12.

13.

14.

Anne E. Haxthausen, Marie Le Bliguet, and Andreas A. Kjeer. Modelling and
Verification of Relay Interlocking Systems. In Christine Choppy and Oleg Sokol-
sky, editors, 15th Monterey Workshop: Foundations of Computer Software, Future
Trends and Techniques for Development, volume 6028 of Lecture Notes in Com-
puter Science, pages 141-153. Springer, 2010.

Anne E. Haxthausen and Jan Peleska. Formal Development and Verification of
a Distributed Railway Control System. In IEEE Transactions on Software Engi-
neering, volume 26, pages 687-701. IEEE, 2000.

Philip James, Faron Moller, Hoang Nga Nguyen, Markus Roggenbach, Steve
Schneider, Helen Treharne, Matthew Trumble, and David Williams. Verification of
Scheme Plans Using CSP||B. In Steve Counsell and Manuel Nufiez, editors, Soft-
ware Engineering and Formal Methods, volume 8368 of Lecture Notes in Computer
Science, pages 189-204. Springer, 2014.

Juan Ignacio Perna and Chris George. Model Checking RAISE Applicative Spec-
ifications. In Proceedings of the Fifth IEEE International Conference on Software
Engineering and Formal Methods, 2007, pages 257-268. IEEE Computer Society
Press, 2007.

The RAISE Language Group: Chris George, Peter Haff, Klaus Havelund, Anne E.
Haxthausen, Robert Milne, Claus Bendix Nielsen, Sgren Prehn, Kim Ritter Wag-
ner. The RAISE Specification Language. The BCS Practitioners Series. Prentice
Hall Int., 1992.

Verified Systems International GmbH. RT-Tester Model-Based Test Case and Test
Data Generator - RTT-MBT - User Manual, 2013. Available on request from
http://wuw.verified.de.

Linh Hong Vu, Anne E. Haxthausen, and Jan Peleska. Formal mod-
elling and verification of interlocking systems featuring sequential re-
lease. Science of Computer Programming, 133, Part 2:91 — 115, 2017.
http://dx.doi.org/10.1016/j.scico.2016.05.010.

Kirsten Winter. Model checking railway interlocking systems. In Proc. Twenty-
Fifth Australasian Computer Science Conference (ACSC2002), pages 303-310,
2002.

