
A wide-spectrum language for verification of
programs on weak memory models

Robert J. Colvin and Graeme Smith

School of Information Technology and Electrical Engineering
University of Queensland

Abstract. Modern processors deploy a variety of weak memory models,
which for efficiency reasons may (appear to) execute instructions in an
order different to that specified by the program text. The consequences
of instruction reordering can be complex and subtle, and can impact
on ensuring correctness. Previous work on the semantics of weak mem-
ory models has focussed on the behaviour of assembler-level programs.
In this paper we utilise that work to extract some general principles
underlying instruction reordering, and apply those principles to a wide-
spectrum language encompassing abstract data types as well as low-level
assembler code. The goal is to support reasoning about implementations
of data structures for modern processors with respect to an abstract
specification.
Specifically, we encode a weak memory model in a pair-wise reordering
relation on instructions. Some architectures require an additional defini-
tion of the behaviour of the global storage system if it does not provide
multi-copy atomicity. In this paper we use the reordering relation in an
operational semantics. We derive some properties of program refinement
under weak memory models, and encode the semantics in the rewriting
engine Maude as a model-checking tool. The tool is used to validate the
semantics against the behaviour of a set of litmus tests (small assembler
programs) run on hardware, and also to model check implementations of
data structures from the literature against their abstract specifications.

1 Introduction

Modern processor architectures provide a challenge for developing efficient and
correct software. Performance can be improved by parallelising computation to
utilise multiple cores, but communication between threads is notoriously error-
prone. Weak memory models go further and improve overall system efficiency
through sophisticated techniques for batching reads and writes to the same vari-
ables and to and from the same processors. However, code that is run on such
memory models is not guaranteed to take effect in the order specified in the
program code, creating unexpected behaviours for those who are not forewarned
[1]. For instance, the instructions x := 1 ; y := 1 may, from the perspective of
another process, taken effect in the order y := 1 ; x := 1. Architectures typi-
cally provide memory barrier/fence instructions which can enforce ordering –

so that x := 1 ; fence ; y := 1 can not be reordered – but reduce performance
improvements (and so should not be overused).

Previous work on formalising weak memory models has resulted in abstract
formalisations which were developed incrementally through communication with
processor vendors and rigorous testing on real machines [2–4]. A large collection
of “litmus tests” have been developed [5, 6] which demonstrate the sometimes
confusing behaviour of hardware. We utilise this existing work to provide a wide-
spectrum programming language and semantics that runs on the same relaxed
principles that apply to assembler instructions. When these principles are spe-
cialised to the assembler of ARM and POWER processors our semantics gives
behaviour consistent with existing litmus tests. Our language and semantics,
therefore, connect instruction reordering to higher-level notions of correctness.
This enables verification of low-level code targeting specific processors against
abstract specifications.

We begin in Sect. 2 with the basis of an operational semantics that allows
reordering of instructions according to pair-wise relationships between instruc-
tions. In Sect. 3 we describe the semantics in more detail, focussing on its in-
stantiation for the widely used ARM and POWER processors. In Sect. 4 we give
a summary of the encoding of the semantics in Maude and its application to
model-checking concurrent data structures. We discuss related work in Sect. 5
before concluding in Sect. 6.

2 Instruction reordering in weak memory models

2.1 Thread-local reorderings

It is typically assumed processes are executed in a fixed sequential order (as given
by sequential composition – the “program order”). However program order may
be inefficient, e.g., when retrieving the value of a variable from main memory
after setting its value, as in x := 1 ; r := x, and hence weak memory models
sometimes allow execution out of program order to improve overall system effi-
ciency. While many reorderings can seem surprising, there are basic principles
at play which limit the number of possible permutations, the key being that the
new ordering of instructions preserves the original sequential intention.

A classic example of weak memory models producing unexpected behaviour
is the “store buffer” pattern below [5]. Assume that all variables are initially 0,
and that thread-local variables (registers) are named r , r1, r2, etc., and that x
and y are shared variables.

(x := 1 ; r1 := y) ‖ (y := 1 ; r2 := x) (1)

It is possible to reach a final state in which r1 = r2 = 0 in several weak memory
models: the two assignments in each process are independent (they reference
different variables), and hence can be reordered. From a sequential semantics
perspective, reordering the assignments in process 1, for example, preserves the
final values for r1 and x .

2

Assume that c and c′ are programs represented as sequences of atomic actions
α ; β ; . . ., as in a sequence of instructions in a processor or more abstractly a
semantic trace. Program c may be reordered to c′, written c ; c′, if the following
holds:

1. c′ is a permutation of the actions of c, possibly with some modifications due
to forwarding (see below).

2. c′ preserves the sequential semantics of c. For example, in a weakest precon-
ditions semantics [7], for all predicates P , wp(c,P)⇒ wp(c′,P).

3. c′ preserves coherence-per-location with respect to c (cf. po-loc in [3]). This
means that the order of updates and accesses of each shared variable, con-
sidered individually, is maintained.

We formalise these constraints in the context of pair-wise reordering of instruc-
tions below. The key challenge for reasoning about programs executed on a weak
memory model is that the behaviour of c ‖ d is in general quite different to the
behaviour of c′ ‖ d , even if c ; c′. We focus in this paper on the principles
for ARM and POWER processors; for space reasons we do not address TSO
[8], which has fewer relevant instruction types (e.g., only one type of fence) and
stricter conditions on reordering.

2.2 Reordering and forwarding instructions

We write α
r⇐ β if instruction β may be reordered before instruction α. It is rela-

tively straightforward to define when two assignment instructions (encompassing
stores, loads, and register operations at the assembler level) may be reordered.
Below let x nfi f mean that x does not appear free in the expression f , and say
expressions e and f are load-distinct if they do not reference any common shared
variables.

x := e
r⇐ y := f if

1) x , y are distinct; 2) x nfi f ; 3) y nfi e; and
4) e, f are load-distinct;

(2)

Note that
r⇐ as defined above is symmetric, however when calculated after the

effect of forwarding is applied (as described below) there are instructions that
may be reordered in one direction but not the other. The relation is neither
reflexive nor transitive. In TSO processors a load may be reordered before a
store, but not vice versa [8], and hence the general condition for TSO is stronger
and not reflexive.

Provisos 1), 2) and 3) ensure executing the two assignments in either order
results in the same final values for x and y , and proviso 4) maintains order on
accesses of the shared state. If two updates do not refer to any common variables
they may be reordered. The provisos allow some reordering when they share
common variables. Proviso 1) eliminates reorderings such as (x := 1 ; x := 2) ;
(x := 2 ; x := 1) which would violate the sequential semantics (the final value of
x). Proviso 2) eliminates reorderings such as (x := 1 ; r := x) ; (r := x ; x := 1)
which again would violate the sequential semantics (the final value of r). Proviso

3

3) eliminates reorderings such as (r := y ; y := 1) ; (y := 1 ; r := y) which
again would violate the sequential semantics (the final value of r). Proviso 4),
requiring the update expressions to be load-distinct, preserves coherence-per-
location, eliminating reorderings such as (r1 := x ; r2 := x) ; (r2 := x ; r1 := x),
where r2 may receive an earlier value of x than r1 in an environment which
modifies x .

The instructions used in the above examples, where each instruction refer-
ences at most one global variable and uses simple integer values, correspond to
the basic load and store instruction types of ARM and POWER processors. We
may instantiate (2) to such instructions, giving reordering rules such as the fol-
lowing, which states that a store may be reordered before a load if they are to

different locations (r1 := y
r⇐ x := r2). We use ARM syntax to emphasise the

application to a real architecture.

LDR r1, y
r⇐ STR r2, x (3)

In practice, proviso 2) may be circumvented by forwarding1. This refers to
taking into account the effect of the earlier update on the expression of the latter.
We write β[α] to represent the effect of forwarding the (assignment) instruction
α to the instruction β. For assignments we define

(y := f)[x := e] = y := (f[x\e]) if e does not refer to global variables (4)

where the term f[x\e] stands for the syntactic replacement in expression f of
references to x with e. The proviso of (4) prevents additional loads of globals
being introduced by forwarding.

We specify the reordering and forwarding relationships with other instruc-
tions such as branches and fences in Sect. 3.3.

2.3 General operational rules for reordering

The key operational principle allowing reordering is given by the following tran-
sition rules for a program (α ; c), i.e., a program with initial instruction α.

(α ; c)
α−→ c (a)

c
β−→ c′ α

r⇐ β[α]

(α ; c)
β[α]−−→ (α ; c′)

(b) (5)

Rule (5a) is the straightforward promotion of the first instruction into a step in
a trace, similar to the basic prefixing rules of CCS [9] and CSP [10]. Rule (5b),
however, states that, unique to weak memory models, an instruction of c, say
β, can happen before α, provided that β[α] can be reordered before α according
to the rules of the architecture. Note that we forward the effect of α to β before
deciding if the reordering is possible.

1 We adopt the term “forwarding” from ARM and POWER [3]. The equivalent effect
is referred to as bypassing on TSO [8].

4

Applying Rule (5b) then Rule (5a) gives the following reordered behaviour
of two assignments.

(r := 1 ; x := r ; nil) x := 1−−−→ (r := 1 ; nil) r := 1−−−→ nil (6)

We use the command nil to denote termination. The first transition above is
possible because we calculate the effect of r := 1 on the update of x before
executing that update, i.e., x := r [r := 1] = x := 1.

The definitions of instruction reordering, α
r⇐ β, and instruction forwarding,

β[α] are architecture-specific, and are the only definitions required to specify an
architecture’s instruction ordering.2 The instantiations for sequentially consistent

processors (i.e., those which do not have a weak memory model) are trivial: α 6r⇐ β
for all α, β, and there is no forwarding. Since reordering is not possible Rule (5b)
never applies and hence the standard prefixing semantics is maintained. TSO
is relatively straightforward: loads may be reordered before stores (provided
they reference different shared variables). In our framework there is no need to
explicitly model local buffers, as the forwarding (bypassing) mechanism ensures
that only the most recently stored value for a global x is used locally (or x ’s value
is retrieved from the storage system). In this paper we focus on the more complex
ARM and POWER memory models. These memory models are very similar,
the notable difference being the inclusion of the lightweight fence instruction in
POWER. Due to space limitations, we omit lightweight fences in this paper but
see the appendix of [11] for a full definition.

2.4 Reasoning about reorderings

The operational rules allow a standard trace model of correctness to be adopted,
that is, we say program c refines to program d , written c v d , iff every trace of
d is a trace of c. Let the program α � c have the standard semantics of prefixing,
that is, the action α always occurs before any action in c (Rule (5a)). Then
we can derive the following laws that show the interplay of reordering and true
prefixing.

α ; c v α � c (7)

α ; (β � c) v β[α] � (α ; c) if α
r⇐ β[α] (8)

Note that in Law (8) α may be further reordered with instructions in c. A typical
interleaving law is the following.

(α � c) ‖ d v α � (c ‖ d) (9)

We may use these laws to show how the “surprise” behaviour of the store buffer
pattern above arises.3 In derivations such as the following, to save space, we
abbreviate a thread α ; nil or α � nil to α, that is, we omit the trailing nil.

2 Different architectures may have different storage subsystems, however, and these
need to be separately defined (see Sect. 3.2).

3 To focus on instruction reorderings we leave local variable declarations and process
ids implicit, and assume a multi-copy atomic storage system (see Sect. 3.2).

5

(x := 1 ; r1 := y) ‖ (y := 1 ; r2 := x)

v From Law (8) (twice), since x := 1
r⇐ r1 := y from (2).

(r1 := y � x := 1) ‖ (r2 := x � y := 1)
v Law (9) (four times) and commutativity of ‖.

r1 := y � r2 := x � x := 1 � y := 1

If initially x = y = 0, a standard sequential semantics shows that r1 = r2 = 0 is
a possible final state in this behaviour.

3 Semantics

3.1 Formal language

The elements of our wide-spectrum language are actions (instructions) α, com-
mands (programs) c, processes (local state and a command) p, and the top level
system s, encompassing a shared state and all processes. Below x is a variable
(shared or local) and e an expression.

α ::= x := e | [e] | fence | cfence | α∗

c ::= nil | α ; c | c1 u c2 | while b do c

p ::= (lcl σ • c) | (tidn p) | p1 ‖ p2

s ::= (glb σ • p) | (stg W • p)

(10)

An action may be an update x := e, a guard [e], a (full) fence, a control fence
(see Sect. 3.3), or a finite sequence of actions, α∗, executed atomically. Through-
out the paper we denote an empty sequence by 〈〉, and construct a non-empty
sequence as 〈α1 , α2 . . .〉.

A command may be the empty command nil, which is already terminated,
a command prefixed by some action α, a choice between two commands, or an
iteration (for brevity we consider only one type of iteration, the while loop).
Conditionals are modelled using guards and choice.

if b then c1 else c2 =̂ ([b] ; c1) u ([¬b] ; c2) (11)

A well-formed process is structured as a process id n ∈ PID encompassing a
(possibly empty) local state σ and command c, i.e., a term (tidn lcl σ • c). We
assume that all local variables referenced in c are contained in the domain of σ.

A system is structured as the parallel composition of processes within the
global storage system, which may be either a typical global state, σ, that maps
all global variables to their values (modelling the storage systems of TSO, the
most recent version of ARM, and abstract specifications), or a storage system,
W , formed from a list of “writes” to the global variables (modelling the storage
systems of older versions of ARM and POWER). The storage W injects more
nondeterminism into the system than the typical global state approach. A top-
level system is in one of the two following forms.

(glb σ • (tid1 lcl σ1 • c1) ‖ (tid2 lcl σ2 • c2) ‖ . . .)
(stg W • (tid1 lcl σ1 • c1) ‖ (tid2 lcl σ2 • c2) ‖ . . .)

(12)

6

(α ; c)
α−→ c (a)

c
β−→ c′ α

r⇐ β[α]

(α ; c)
β[α]−−−→ (α ; c′)

(b) (13)
c u d

τ−→ c

c u d
τ−→ d

(14)

while b do c
τ−→ ([b] ; c ; while b do c) u ([¬b] ; nil) (15)

c r := v−−−→ c′

(lcl σ • c)
τ−→ (lcl σ[r := v] • c′)

(16)
c x := r−−−→ c′ σ(r) = v

(lcl σ • c) x := v−−−→ (lcl σ • c′)
(17)

c r := x−−−→ c′

(lcl σ • c)
[x=v]−−−→ (lcl σ[r := v] • c′)

(18)
c

[e]−−→ c′

(lcl σ • c)
[eσ]−−→ (lcl σ • c′)

(19)

p
α−→ p′

(tidn p) n:α−−→ (tidn p′)
(20)

p1
α−→ p′

1

p1 ‖ p2
α−→ p′

1 ‖ p2

p2
α−→ p′

2

p1 ‖ p2
α−→ p1 ‖ p′

2

(21)

p n:x := e−−−−−→ p′

(glb σ • p)
τ−→ (glb σ[x := eσ] • p′)

(22) p
n:[e]−−−→ p′ eσ ≡ true

(glb σ • p)
τ−→ (glb σ • p′)

(23)

Fig. 1. Semantics of the language

3.2 Operational semantics

The meaning of our language is formalised using an operational semantics, sum-
marised in Fig. 1. Given a program c the operational semantics generates a trace,

i.e., a possibly infinite sequence of steps c0
α1−→ c1

α2−→ . . . where the labels in
the trace are actions, or a special label τ representing a silent or internal step
that has no observable effect.

The terminated command nil has no behaviour; a trace that ends with this
command is assumed to have completed. The effect of instruction prefixing in
Rule (13) is discussed in Sect. 2.3. Note that actions become part of the trace.
We describe an instantiation for reordering and forwarding corresponding to the
semantics of ARM and POWER in Sect. 3.3.

A nondeterministic choice (the internal choice of CSP [10]) can choose either
branch, as given by Rule (14). The semantics of loops is given by unfolding, e.g.,
Rule (15) for a ‘while’ loop. Note that speculative execution, i.e., early execution
of instructions which occur after a branch point [12], is theoretically unbounded,
and loads from inside later iterations of the loop could occur in earlier iterations.

For ease of presentation in defining the semantics for local states, we give
rules for specific forms of actions, i.e., assuming that r is a local variable in the
domain of σ, and that x is a global (not in the domain of σ). The more general
version can be straightforwardly constructed from the principles below.

7

Rule (16) states that an action updating variable r to value v results in a
change to the local state (denoted σ[r := v]). Since this is a purely local operation
there is no interaction with the storage subsystem and hence the transition is
promoted as a silent step τ . Rule (17) states that a store of the value in variable
r to global x is promoted as an instruction x := v where v is the local value for
r . Rule (18) covers the case of a load of x into r . The value of x is not known
locally. The promoted label is a guard requiring that the value read for x is
v . This transition is possible for any value of v , but the correct value will be
resolved when the label is promoted to the storage level. Rule (19) states that a
guard is partially evaluated with respect to the local state before it is promoted
to the global level. The notation eσ replaces x with v in e for all (x 7→ v) ∈ σ.

Rule (20) simply tags the process id to an instruction, to assist in the in-
teraction with the storage system, and otherwise has no effect. Instructions of
concurrent processes are interleaved in the usual way as described by Rule (21).

Other straightforward rules which we have omitted above include the pro-
motion of fences through a local state, and that atomic sequences of actions are
handled inductively by the above rules.

Multi-copy atomic storage subsystem. Traditionally, changes to shared
variables occur on a shared global state, and when written to the global state are
seen instantaneously by all processes in the system. This is referred to as multi-
copy atomicity and is a feature of TSO and the most recent version of ARM [13].
Older versions of ARM and POWER, however, lack such multi-copy atomicity
and require a more complex semantics. We give the simpler case (covered in
Fig. 1) first.4

Recall that at the global level the process id n has been tagged to the actions
by Rule (20). Rule (22) covers a store of some expression e to x . Since all local
variable references have been replaced by their values at the process level due to
Rules (16)-(19), expression e must refer only to shared variables in σ. The value
of x is updated to the fully evaluated value, eσ.

Rule (23) states that a guard transition [e] is possible exactly when e evalu-
ates to true in the global state. If it does not, no transition is possible; this is how
incorrect branches are eliminated from the traces. If a guard does not evaluate to
true, execution stops in the sense that no transition is possible. This corresponds
to a false guard, i.e., magic [14, 15], and such behaviours do not terminate and
are ignored for the purposes of determining behaviour of a real system. Interest-
ingly, this straightforward concept from standard refinement theory allows us to
handle speculative execution straightforwardly. In existing approaches, the se-
mantics is complicated by needing to restart reads if speculation proceeds down
the wrong path. Treating branch points as guards works because speculation
should have no effect if the wrong branch was chosen.

To understand how this approach to speculative execution works, consider
the following derivation. Assume that (a) loads may be reordered before guards

4 In this straightforward model of shared state there is no global effect of fences, and
we omit the straightforward promotion rule.

8

if they reference independent variables, and (b) loads may be reordered if they
reference different variables. Recall that we omit trailing nil commands to save
space.

r1 := x ; (if r1 = 0 then r2 := y)
= Definition of if (11)

r1 := x ; (([r1 = 0] ; r2 := y) u [r1 6= 0])
v Resolve to the first branch, since (c u d) v c

r1 := x ; [r1 = 0] ; r2 := y
v From Law (8) and assumption (a)

r1 := x ; r2 := y � [r1 = 0]
v From Law (8) and assumption (b)

r2 := y � r1 := x ; [r1 = 0]

This shows that the inner load (underlined) may be reordered before the branch
point, and subsequently before an earlier load. Note that this behaviour results
in a terminating trace only if r1 = 0 holds when the guard is evaluated, and
otherwise becomes magic (speculation down an incorrect path). On ARM pro-
cessors, placing a control fence (cfence) instruction inside the branch, before
the inner load, prevents this reordering (see Sect. 3.3).

Non-multi-copy atomic storage subsystem. Some versions of ARM and
POWER allow processes to communicate values to each other without accessing
the heap. That is, if process p1 is storing v to x , and process p2 wants to load
x into r , p2 may preemptively load the value v into r , before p1’s store hits the
global shared storage. Therefore different processes may have different views of
the values of global variables; see litmus tests such as the WRC family [3].

Our approach to modelling this is based on that of the operational model
of [2]. However, that model maintains several partial orders on operations re-
flecting the nondeterminism in the system, whereas we let the nondeterminism
be represented by choices in the operational rules. This means we maintain a
simpler data structure, a single global list of writes. The shared state from the
perspective of a given process is a particular view of this list. There is no single
definitive shared state. In addition, viewing a value in the list causes the list to
be updated and this affects later views. To obtain the value of a variable this
list is searched starting with the most recent write first. A process p1 that has
already seen the latter of two updates to a variable x may not subsequently then
see the earlier update. Hence the list keeps track of which processes have seen
which stores. Accesses of the storage subsystem are also influenced by fences.

A write w has the syntactic form (x 7→ v)nS , where x is a global variable
being updated to value v , n is the process id of the process from which the store
originated, and S is the set of process ids that have “seen” the write. For such a
w , we let w .var = x , w .thread = n and w .seen = S. For a write (x 7→ v)nS it is
always the case that n ∈ S. The storage W is a list of writes, initially populated
with writes for the initial values of global variables, which all processes have
“seen”.

9

p
n:[x=v]−−−−−→ p′

∀w ∈ ran(W1) • x = w .var ⇒ n 6∈ w .seen

(stg W1
a (x 7→ v)mS

aW2 • p)
n:[x=v]−−−−−→ (stg W1

a (x 7→ v)mS∪{n}
aW2 • p′)

(24)

p n:x := v−−−−−→ p′

∀w ∈ ran(W1) • n 6= w .thread ∧ (x = w .var ⇒ n 6∈ w .seen)

(stg W1
aW2 • p) n:x := v−−−−−→ (stg W1

a (x 7→ v)n{n}
aW2 • p′)

(25)

p n:fence−−−−−→ p′

(stg W • p) n:fence−−−−−→ (stg flushn(W) • p′)
(26)

where

flushn(〈〉) = 〈〉 flushn(w aW) =

{
w[seen :=PID]

a flushn(W) if n ∈ w .seen

w a flushn(W) otherwise

Fig. 2. Rules for the non-multi-copy atomic subsystem of ARM and POWER

We give two specialised rules (for a load and store) in Fig. 2.5 Rule (24)
states that a previous write to x may be seen by process n if there are no more
recent writes to x that it has already seen. Its id is added to the set of processes
that have seen that write. Rule (25) states that a write to x may be added to the
system by process n, appearing earlier than existing writes in the system, if the
following two conditions hold for each of those existing writes w : they are not
by n (n 6= w .thread , local coherence), and x = w .var ⇒ n 6∈ w .seen, i.e., writes
to the same variable are seen in a consistent order (although not all writes need
be seen). A fence action by process n ‘flushes’ all previous writes by and seen
by n. The flush function modifies W so that all processes can see all writes by
n, effectively overwriting earlier writes. This is achieved by updating the write
so that all processes have seen it, written as w[seen :=PID].

3.3 Reordering and forwarding for ARM and POWER

Our general semantics is instantiated for ARM and POWER processors in Fig. 3
which provides particular definitions for the reordering relation and forwarding
that are generalised from the orderings on stores and loads in these processors.6

5 To handle the general case of an assignment x := e, where e may contain more than
one shared variable, the antecedents of the rules are combined, retrieving the value
of each variable referenced in e individually and accumulating the changes to W .

6 We have excluded address shifting, which creates address dependencies [3], as this
does not affect the majority of high-level algorithms in which we are interested.
However, address dependencies are accounted for in our tool as discussed in [11].

10

α 6 r⇐ fence (27)

fence 6 r⇐ α (28)

[b] 6 r⇐ cfence (29)

cfence 6 r⇐ r := e (30)

[b1]
r⇐ [b2] (31)

[b] 6 r⇐ ϕ := e (32)

[b]
r⇐ r := e iff r nfi b (33)

x := e
r⇐ [b] iff x nfi b (34)

α
r⇐ β in all other cases

x := e
r⇐ y := f iff (35)

x 6= y , x nfi f , y nfi e, and

e, f are load-distinct

x := e [y := f] = x := e[y\f] if (36)

e has no shared variables

[e][y := f] = [e[y\f]] if (37)

e has no shared variables

β[α] = β otherwise

Fig. 3. Reordering and forwarding following ARM assembler semantics. Let x , y denote
any variable, r a local variable, and ϕ a global variable.

Fences prevent all reorderings (27, 28). Control fences prevent speculative
loads when placed between a guard and a load (29, 30). Guards may be reordered
with other guards (31), but stores to shared variables may not come before a
guard evaluation (32). This prevents speculative execution from modifying the
global state, in the event that the speculation was down the wrong branch. An
update of a local variable may be reordered before a guard provided it does
not affect the guard expression (33). Guards may be reordered before updates if
those updates do not affect the guard expression (34).

Assignments may be reordered as shown in (35) and discussed in Sect. 2.2.
Forwarding is defined straightforwardly so that an earlier update modifies the
expression of a later update or guard (36, 37), provided it references no shared
variables.

4 Model checking concurrent data structures

Our semantics has been encoded in the Maude rewriting system [16]. We have
used the resulting prototype tool to validate the semantics against litmus tests
which have been used in other work on ARM (348 tests) [4] and POWER (758
tests) [2]. As that research was developed through testing on hardware and in
consultation with the processor vendors themselves we consider compliance with
those litmus tests to be sufficient validation. With two exceptions, as discussed
in Sect. 5, our semantics agrees with those results.

We have employed Maude as a model checker to verify that a (test-and-set)
lock provides mutual exclusion on ARM and POWER, and that a lock-free stack
algorithm, and a deque (double-ended queue) algorithm, satisfy their abstract
specifications on ARM and POWER. We describe the verification of the deque
below, in which we found a bug in the published algorithm.

11

4.1 Chase-Lev deque

Lê et. al [17] present a version of the Chase-Lev deque [18] adapted for ARM
and POWER. The deque is implemented as an array, where elements may be
put on or taken from the tail, and additionally, processes may steal an element
from the head of the deque. The put and take operations may be executed by a
single process only, hence there is no interference between these two operations
(although instruction reordering could cause consecutive invocations to overlap).
The steal operation can be executed by multiple processes concurrently.

The code we tested is given in Fig. 4 where L is the maximum size of the
deque which is implemented as a cyclic array, with all elements initialised to
some irrelevant value. The original code includes handling array resizing, but
here we focus on the insert/delete logic. For brevity we omit trailing nils. We
have used a local variable return to model the return value, and correspondingly
have refactored the algorithm to eliminate returns from within a branch. A
CAS (x , r , e) (compare-and-swap) instruction atomically compares the value of
global x with the value r and if the same updates x to e. We model a conditional
statement with a CAS as follows.

if CAS (x , r , e) then c1 else c2 =̂ (〈[x = r] , x := e〉 ; c1) u ([x 6= r] ; c2) (38)

The put operation straightforwardly adds an element to the end of the deque,
incrementing the tail index. It includes a full fence so that the tail pointer is
not incremented before the element is placed in the array. The take operation
uses a CAS operation to atomically increment the head index. Interference can
occur if there is a concurrent steal operation in progress, which also uses CAS
to increment head to remove an element from the head of the deque. The take
and steal operation return empty if they observe an empty deque. In addition
the steal operation may return the special value fail if interference on head
occurs. Complexity arises if the deque has one element and there are concurrent
processes trying to both take and steal that element at the same time.

Operations take and steal use a fence operation to ensure they have con-
sistent readings for the head and tail indexes, and later use CAS to atomically
update the head pointer (only if necessary, in the case of take). Additionally, the
steal operation contains two cfence barriers (ctrl isync in ARM).

Verification. We use an abstract model of the deque and its operations to
specify the allowed final values of the deque and return values. The function
last(q) returns the last element in q and front(q) returns q excluding its last
element.

put(v) =̂ q := q a 〈v〉
take =̂ lcl return := none •

〈[q = 〈〉] , return := empty〉 u
〈[q 6= 〈〉] , return := last(q) , q := front(q)〉

12

Initial state: {head 7→ 0, tail 7→ 0, tasks 7→ 〈 , , . . .〉}

put(v) =̂

lcl t 7→ •
t := tail ;

tasks[t mod L] := v ;

fence;

tail := t + 1

take =̂

lcl h 7→ , t 7→ , return 7→ •
t := tail − 1 ;

tail := t ;

fence ;

h := head ;

if h ≤ t then

return := tasks[t mod L] ;

if h = t then

if ¬CAS(head , h, h + 1) then

return := empty

tail := t + 1

else

return := empty ;

tail := t + 1

steal =̂

lcl h 7→ , t 7→ , return 7→ •
h := head ;

fence ;

t := tail ;

cfence ; // unnecessary

if h < t then

return := tasks[h mod L] ;

cfence ; // incorrectly placed

if ¬CAS(head , h, h + 1) then

return := fail

else

return := empty

Fig. 4. A version of Lê et. al’s work-stealing deque algorithm for ARM [17]

steal =̂ lcl return := none

〈[q = 〈〉] , return := empty〉 u
〈[q 6= 〈〉] , return := head(q) , q := tail(q)〉

For simplicity the abstract specification for steal does not attempt to detect
interference and return fail , and as such we exclude corresponding behaviours
of the concrete code from the analysis. We could encode this special failure case
for steal , requiring additional data to track which processes are active.

We ran several contextual programs calling the abstract model alongside the
same programs calling the concrete model, comparing final states after applying
a straightforward simulation relation between abstract and concrete states. The
contextual programs were combinations of concurrent processes – 1, 2 or 3 –
each sequentially making one or two calls to the three operations. This exposed
a bug in the code which may occur when a put and steal operation execute in
parallel on an empty deque. The load return :=tasks[hmodL] can be speculatively
executed before the guard h < t is evaluated, and hence also before the load of
tail . Thus the steal process may load head , load an irrelevant return value, at

13

which point a put operation may complete, storing a value and incrementing
tail . The steal operation resumes, loading the new value for tail and observing
a non-empty deque, succeeding with its CAS and returning the irrelevant value,
which was loaded before the put operation had begun.

Swapping the order of the second cfence with the load of tasks[h mod L]
eliminates this bug, and our analysis did not reveal any other problems. In
addition, eliminating the first cfence does not change the possible outcomes.

5 Related work

This work makes use of an extensive suite of tests elucidating the behaviour of
weak memory models in ARM and POWER via both operational and axiomatic
semantics [3, 2, 19, 4]. Those semantics were developed and validated through
testing on real hardware and in consultation with processor vendors themselves.
Our model is validated against their results, in the form of the results of lit-
mus tests. The hardware vendor does not provide a formal specification of the
assembler language, and hence the results of the litmus tests and their abstrac-
tion to axiomatic relations in the above work is the most reliable validation
benchmark. However, as identified by Alglave et al. [3], some chips have differ-
ent behaviour to others, contain bugs, and do not implement certain features;
in addition given that instructions sets and definitions may change over time it
is difficult to achieve a single canonical specification.

Excluding two tests involving “shadow registers”, which appear to be pro-
cessor-specific facilities which are not intended to conform to sequential seman-
tics (they do not correspond to higher-level code), all of the 348 ARM litmus
tests run on our model agreed with the results in [4], and all of the 758 POWER
litmus tests run on our model agreed with the results in [2], which the exception
of litmus test PPO015, which we give below, translated into our formal language.7

x := 1 ; fence ; y := 1 ‖
r0 := y ; z := (r0 xor r0) + 1 ; z := 2 ; r3 := z ;

(if r3 = r3 then nil else nil) ; cfence ; r4 := x

(39)

The tested condition is z = 2 ∧ r0 = 1 ∧ r4 = 0, which asks whether it is
possible to load x (the last statement of process 2) before loading y (the first
statement of process 2). At a first glance the control fence prevents the load
of x happening before the branch. However, as indicated by litmus tests such
as MP+dmb.sy+fri-rfi-ctrisb, [4, Sect 3,Out of order execution], under some
circumstances the branch condition can be evaluated early, as discussed in the

7 We simplified some of the syntax for clarity, in particular introducing a higher-level
if statement to model a jump command and implicit register (referenced by the com-
pare (CMP) and branch-not-equal (BNE) instructions). We have also combined some
commands, retaining dependencies, in a way that is not possible in the assembler
language. The xor operator is exclusive-or; its use here artificially creates a data
dependency [3] between the updates to r0 and z .

14

speculative execution example. We expand on this below by manipulating the
second process, taking the case where the success branch of the if statement
is chosen. To aid clarity we underline the instruction that is the target of the
(next) refinement step.

r0 := y ; z := (r0 xor r0) + 1 ; z := 2 ; r3 := z ; [r3 = r3] ; cfence ; r4 := x
v Promote load with forwarding (from z := 2), from Laws (7) and (8)

r3 := 2 � r0 := y ; z := (r0 xor r0) + 1 ; z := 2 ; [r3 = r3] ; cfence ; r4 := x
v Promote guard by Laws (7) and (8) (from (34))

r3 := 2 � [r3 = r3] � r0 := y ; z := (r0 xor r0) + 1 ; z := 2 ; cfence ; r4 := x
v Promote control fence by Laws (7) and (8) ((29) does not now apply)

r3 := 2 � [r3 = r3] � cfence � r0 := y ; z := (r0 xor r0) + 1 ; z := 2 ; r4 := x
v Promote load by Laws (7) and (8)

r3 := 2 � [r3 = r3] � cfence � r4 := x � r0 := y ; z := (r0 xor r0) + 1 ; z := 2

The load r4 := x has been reordered before the load r0 := y , and hence when in-
terleaved with the first process from (39) it is straightforward that the condition
may be satisfied.

In the Flowing/POP model of [4], this behaviour is forbidden because there
is a data dependency from the load of y into r0 to r3, via z . This appears to
be because of the consecutive stores to z , one of which depends on r0. In the
testing of real processors reported in [4], the behaviour that we allow was never
observed, but is allowed by the model in [3]. As such we deem this discrepancy
to be a minor issue in Flowing/POP (preservation of transitive dependencies)
rather than a fault in our model.

Our model of the storage subsystem is similar to that of the operational mod-
els of [2, 4]. However our thread model is quite different, being defined in terms
of relationships between actions. The key difference is how we handle branching
and the effects of speculative execution. The earlier models are complicated in
the sense that they are closer to the real execution of instructions, involving
restarting reads if an earlier read invalidates the choice taken at a branch point.

The axiomatic models, as exemplified by Alglave et al. [3], define relation-
ships between instructions in a whole-system way, including relationships be-
tween instructions in concurrent processes. This gives a global view of how an
architecture’s reordering rules (and storage system) interact to reorder instruc-
tions in a system. Such global orderings are not immediately obvious from our
pair-wise orderings on instructions. On the other hand, those globals orderings
become quite complex and obscure some details, and it is unclear how to extract
some of the generic principles such as (2).

6 Conclusion

We have utilised earlier work to devise a wide-spectrum language and semantics
for weak memory models which is relatively straightforward to define and extend,
and which lends itself to verifying low-level code against abstract specifications.
While abstracting away from the details of the architecture, we believe it provides

15

a complementary insight into why some reorderings are allowed, requiring a pair-
wise relationship between instructions rather than one that is system-wide.

A model-checking approach based on our semantics exposed a bug in an
algorithm in [17] in relation to the placement of a control fence. The original
paper includes a hand-written proof of the correctness of the algorithm based
on the axiomatic model of [19]. The possible traces of the code were enumerated
and validated against a set of conditions on adding and removing elements from
the deque (rather than with respect to an abstract specification of the deque).
The conditions being checked are non-trivial to express using final state analysis
only. An advantage of having a semantics that can apply straightforwardly to
abstract specifications, rather than a proof technique that analyses behaviours
of the concrete code only, is that we may reason at a more abstract level.

We have described the ordering condition as syntactic constraints on atomic
actions, which fits with the low level decisions of hardware processors. However
our main reordering principle (2) is based on semantic concerns, and as such
may be applicable as a basis for understanding the interplay of software memory
models, compiler optimisations and hardware memory models [20].

Future work. A feature of our framework is that we can potentially reason about
reordering of abstract instructions (i.e., those working with abstract data types),
and not only low-level assembler instructions. This allows the potential for step-
wise verification techniques to be applied, in particular potentially capturing the
complex interaction of the environment using rely-guarantee reasoning [21–24].
In this paper we consider assignments as the fundamental command, which is
sufficient for specifying many concurrent programs. However we hope to extend
the language to encompass more general constructs such as the specification
command [25], which may modify and access multiple global variables. Refine-
ment laws for decomposing a (non-atomic) rely-guarantee specification into a
sequence of atomic steps will have proof obligations referencing the reordering
relation to ensure that any reordering of the actions does not affect the guar-
antee; alternatively, where reordering would affect the guarantee, the law could
specify one or more fences in the implementation sequence.

Acknowledgements We thank Kirsten Winter, Ian Hayes, and the anonymous
reviewers for feedback on this work. It was supported by Australian Research
Council Discovery Grant DP160102457.

References

1. Adve, S.V., Boehm, H.J.: Memory models: A case for rethinking parallel languages
and hardware. Commun. ACM 53(8) (August 2010) 90–101

2. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. SIGPLAN Not. 46(6) (June 2011) 175–186

3. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: Modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2) (July 2014) 7:1–7:74

16

4. Flur, S., Gray, K.E., Pulte, C., Sarkar, S., Sezgin, A., Maranget, L., Deacon, W.,
Sewell, P.: Modelling the ARMv8 architecture, operationally: Concurrency and
ISA. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’16, New York, NY, USA, ACM
(2016) 608–621

5. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Litmus: Running tests against
hardware. In Abdulla, P.A., Leino, K.R.M., eds.: Tools and Algorithms for the Con-
struction and Analysis of Systems: 17th International Conference, TACAS 2011,
Held as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2011, Saarbrücken, Germany, March 26–April 3, 2011. Proceedings,
Berlin, Heidelberg, Springer Berlin Heidelberg (2011) 41–44

6. Mador-Haim, S., Alur, R., Martin, M.M.K.: Generating litmus tests for contrasting
memory consistency models. In Touili, T., Cook, B., Jackson, P., eds.: Computer
Aided Verification: 22nd International Conference, CAV 2010, Edinburgh, UK, July
15-19, 2010. Proceedings, Berlin, Heidelberg, Springer Berlin Heidelberg (2010)
273–287

7. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM 18(8) (August 1975) 453–457

8. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: X86-TSO: A rig-
orous and usable programmer’s model for x86 multiprocessors. Commun. ACM
53(7) (July 2010) 89–97

9. Milner, R.: A Calculus of Communicating Systems. Springer-Verlag New York,
Inc. (1982)

10. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA (1985)

11. Colvin, R.J., Smith, G.: A wide-spectrum language for verification of programs on
weak memory models. CoRR abs/1802.04406 (2018)

12. Sorin, D.J., Hill, M.D., Wood, D.A.: A Primer on Memory Consistency and Cache
Coherence. 1st edn. Morgan & Claypool Publishers (2011)

13. Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., Sewell, P.: Simplifying ARM
concurrency: Multicopy-atomic axiomatic and operational models for ARMv8. In:
Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), ACM Press (2018) To appear.

14. Morgan, C.: Programming from Specifications. Second edn. Prentice Hall (1994)
15. Back, R.J., von Wright, J.: Refinement Calculus: A Systematic Introduction.

Springer-Verlag (1998)
16. Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Que-

sada, J.F.: Maude: specification and programming in rewriting logic. Theoretical
Computer Science 285(2) (2002) 187 – 243

17. Lê, N.M., Pop, A., Cohen, A., Zappa Nardelli, F.: Correct and efficient work-
stealing for weak memory models. In: Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. PPoPP ’13, New
York, NY, USA, ACM (2013) 69–80

18. Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: SPAA’05: Pro-
ceedings of the 17th annual ACM symposium on Parallelism in algorithms and
architectures, New York, NY, USA, ACM Press (2005) 21–28

19. Mador-Haim, S., Maranget, L., Sarkar, S., Memarian, K., Alglave, J., Owens, S.,
Alur, R., Martin, M.M.K., Sewell, P., Williams, D.: An axiomatic memory model
for POWER multiprocessors. In: Proceedings of the 24th International Confer-
ence on Computer Aided Verification. CAV’12, Berlin, Heidelberg, Springer-Verlag
(2012) 495–512

17

20. Kang, J., Hur, C.K., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising semantics
for relaxed-memory concurrency. In: Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages. POPL 2017, New York,
NY, USA, ACM (2017) 175–189

21. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress.
(1983) 321–332

22. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5 (October 1983) 596–619

23. Hayes, I.J., Colvin, R.J., Meinicke, L.A., Winter, K., Velykis, A.: An algebra of
synchronous atomic steps. In Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A.,
eds.: FM 2016: Formal Methods: 21st International Symposium, Limassol, Cyprus,
November 9-11, 2016, Proceedings, Cham, Springer International Publishing (2016)
352–369

24. Colvin, R.J., Hayes, I.J., Meinicke, L.A.: Designing a semantic model for a wide-
spectrum language with concurrency. Formal Aspects of Computing 29(5) (Sep
2017) 853–875

25. Morgan, C.: The specification statement. ACM Trans. Program. Lang. Syst. 10
(July 1988) 403–419

18

