
Encoding fairness in a
synchronous concurrent program algebra?

Ian J. Hayes and Larissa A. Meinicke

The University of Queensland, Brisbane, Queensland, Australia

Abstract. Concurrent program refinement algebra provides a suitable basis for
supporting mechanised reasoning about shared-memory concurrent programs in
a compositional manner, for example, it supports the rely/guarantee approach
of Jones. The algebra makes use of a synchronous parallel operator motivated
by Aczel’s trace model of concurrency and with similarities to Milner’s SCCS.
This paper looks at defining a form of fairness within the program algebra. The
encoding allows one to reason about the fair execution of a single process in
isolation as well as define fair-parallel in terms of a base parallel operator, of
which no fairness properties are assumed. An algebraic theory to support fairness
and fair-parallel is developed.

1 Introduction

In shared memory concurrency, standard approaches to handling fairness [16,13] fo-
cus on defining a fair parallel operator, c ‖f d, that ensures each process gets its fair
share of processor cycles. That complicates reasoning about a single process running
as part of a parallel composition because its progress is determined in part by the fair
parallel operator. In this paper we first focus on a single process that is run fairly with
respect to its environment. That allows one to reason about its progress properties in
relative isolation, although one does need to rely on its environment (i.e. all processes
running in parallel with it) satisfying assumptions the single process makes about its
environment. Fair parallel composition of processes can then be formulated as (un-
fair) parallel composition of fair executions of each of the individual processes (i.e.
fair-execution(c) ‖ fair-execution(d)), where fair-execution of a command is defined
below.

Unfair parallel. For a parallel composition, c ‖ d, the execution of cmay be pre-empted
forever by the execution of d, or vice versa. For example, execution of

x := 1 ‖ dox 6= 1→ y := y + 1 od (1)

with x initially zero may not terminate if the right side loop pre-empts the left side
assignment forever [17]. A minimal fairness assumption is that neither process of a
parallel composition can be pre-empted by the other process indefinitely.

? This work was supported by Australian Research Council (ARC) Discovery Project
DP130102901.

2 Ian J. Hayes, Larissa A. Meinicke

Aczel traces. The denotational semantics that we use for concurrency [3] is based on
Aczel’s model [2,4,5], in which the possible behaviours of a process, specified by Aczel
traces, describe both the steps taken by the process itself as well as the steps taken
by its environment. An Aczel trace is a sequence of atomic steps from one state σ to
the next σ′, in which each atomic step is either a program step of the form Π(σ, σ′)
or an environment step of the form E(σ, σ′). Parallel composition has an interleaving
interpretation and so program and environment steps are disjoint. Infinite atomic-step
sequences denote non-terminating executions, and finite sequences are labeled to differ-
entiate those that (i) terminate, (ii) abort or (iii) become infeasible after the last atomic
step in the sequence. Abortion represents failure (e.g. failure caused by a violation of
environment assumptions), that may be refined (i.e. implemented) by any subsequent
behaviour. Infeasibility may arise due to conflicting constraints in specifications, and
is a refinement of any subsequent behaviours. Because each Aczel trace of a process
defines both its behaviour as well as the behaviour of its environment, it is possible to
include assumptions and constraints (including fairness) on the environment of a pro-
cess in its denotation – the set of Aczel traces that it (or any valid implementation of it)
may perform.

When two processes are combined in parallel, each must respect the environmental
constraints placed upon it by the other process – unless either fails, in which case the
parallel composition also fails. For example, assuming neither process has failed, one
process may only take a program stepΠ(σ, σ′) if its parallel process may perform a step
E(σ, σ′), which permits its environment to take that program step at that point of exe-
cution. This is achieved by requiring parallel processes to synchronise on every atomic
step they take: a program step Π(σ, σ′) of one process matches the corresponding en-
vironment step E(σ, σ′) of the other to give a program step Π(σ, σ′) of the parallel
composition, and identical environment steps of both processes match to give that en-
vironment step for the parallel composition. Attempting to synchronise other steps is
infeasible.

Let π specify the nondeterministic command that executes a single atomic program
step and then terminates, but does not constrain the state-transition made by that step,
that is, π could take Π(σ, σ′) for any possible states σ and σ′. Similarly, let ε represent
the non-deterministic command that executes any single atomic environment step and
then terminates [3,8,9]. Neither π nor ε is allowed to fail: they do not contain aborting
behaviour.

The command c? represents finite iteration of command c, zero or more times, and
cω represents finite or infinite iteration of c, zero of more times. The command c∞ is
the infinite iteration of c. Note that cω splits into finite and infinite iteration of c, where
u represents (demonic) nondeterministic choice.

cω = c? u c∞ (2)

Imposing fairness. If a process is pre-empted forever its behaviour becomes an infinite
execution of any environment steps, i.e. ε∞. The process fair that allows any behaviour,
except abortion and pre-emption by its environment forever, can be defined by

fair =̂ ε? (π ε?)ω (3)

Encoding fairness in a synchronous concurrent program algebra 3

where juxtaposition represents sequential composition. The process fair requires all
contiguous subsequences of environment steps to be finite. A process representing fair
execution of a process c is represented by

c e fair

where the weak conjunction, c e d, of c and d behaves as both c and d unless one of
them aborts, in which case c e d aborts [6,3]. Because fair never aborts, any aborting
behaviour of c e fair arises solely from c. In this way, c is constrained to be fair until
it fails, if ever. Weak conjunction is associative, commutative and idempotent; it has
identity chaos defined in terms of iteration of any number of atomic steps, where α
represents a single atomic step, either program or environment.

α = π u ε (4)
chaos =̂ αω (5)

Because program and environment steps are disjoint, the conjunction of these com-
mands is the infeasible command >, i.e. π e ε = >.

Our interpretation of the execution of the process,

do true→ y := y + 1 od , (6)

from an initial state in which y is zero allows the loop to be pre-empted forever by its
environment and thus does not guarantee that y is ever set to, say, 7. In contrast, the fair
execution of (6),

do true→ y := y + 1 od e fair , (7)

rules out pre-emption by its environment forever and hence ensures that eventually y
becomes 7 (or any other natural number).

Fair termination. The command term allows only a finite number of program steps
but does not rule out infinite pre-emption by its environment. It is defined as follows
[6,3], recalling that α = π u ε.

term =̂ α? εω (8)

If term is combined with fair, pre-emption by the environment forever is eliminated
giving a stronger termination property that allows only a finite number of both program
and environment steps, see Lemma 14 (term-fair).

term e fair = α?

The notation c v d means c is refined (or implemented) by d and is defined by,

c v d =̂ ((c u d) = c) . (9)

Hence if term v c, then term e fair v c e fair, i.e. fair execution of c gives
strong termination, meaning that there are only a finite number of steps overall, both
program and environment.

4 Ian J. Hayes, Larissa A. Meinicke

Fairness and concurrency. Consider the following variation of example (1).

((x := 1) e fair) ‖ (dox 6= 1→ y := y + 1 od e fair) (10)

The fair execution of x := 1 rules out infinite pre-emption by the right side and hence
x is eventually set to one, and hence the right side also terminates thus ensuring termi-
nation of the parallel composition. Note that

(c ‖ d) e fair v (c e fair) ‖ (d e fair)

but the reverse refinement does not hold in general because (c ‖ d)e fair does not rule
out c being pre-empted forever by d (or vice versa) within the parallel; it only rules out
the whole of the parallel composition from being preempted by its environment forever.

Parallel with synchronised termination. The parallel operator ‖ is interpreted as syn-
chronous parallel for which every step of the parallel (until failure of either process)
must be a synchronisation of steps of its component processes: a program and envi-
ronment step synchronise to give a program step, π ‖ ε = π, two environment steps
synchronise to give an environment step, ε ‖ ε = ε and both the processes must termi-
nate together, nil ‖ nil = nil. This is in contrast to the early-termination interpretation
of parallel in which, if one process terminates the parallel composition reduces to the
other process. The command εω , referred to as skip,

skip =̂ εω (11)

is the identity of parallel composition, meaning that it permits any possible environment
behaviour when executed in parallel with any other command, e.g. c ‖ skip = c . A
command c for which

c = c skip (12)

is said to be unconstrained after program termination. When it is executed in parallel
with another command, then after termination of c, the parallel composition c ‖ d does
reduce to the other command, d. If d is also unconstrained after program termination,
then c ‖ d corresponds to the early-termination interpretation of parallel. Moreover,
c ‖ d is then also unconstrained after program termination, e.g. c ‖ d = (c ‖ d) skip,
see Lemma 8 (par-skip). In this way (12) can be perceived as a healthiness condition,
that is preserved by parallel composition of healthy commands.

The fair execution of any process c constrains the environment, even after the termi-
nation of the program steps in c, so that it cannot execute an infinite number of steps in
a row, e.g. terme fair = α?. This means that it is not healthy (12), and so for parallel
with synchronised termination, simply conjoining fair to both sides of a synchronous
parallel can lead to infeasibility. Consider another of Van Glabbeek’s examples [17]:

(x := 1 e fair) ‖ (do true→ y := y + 1 od e fair) . (13)

The fair execution of x := 1 rules out infinite pre-emption by the right side loop,
ensuring x is assigned one, but fair execution of x := 1 forces termination of the left
side, including environment steps, which as the right side is non-terminating leads to an

Encoding fairness in a synchronous concurrent program algebra 5

infeasible parallel composition. To remedy this one needs to allow infinite pre-emption
of a branch in a fair parallel once the command in the branch has terminated. For a
command c satisfying (12) we have that

(c e fair) skip (14)

represents fair execution of c until program termination. Like the original command
c, it remains unconstrained after program termination (i.e. healthy). For the example
above, we have implicitly that x := 1 and the loop (do true → y := y + 1 od)
are unconstrained after program termination, and so only requiring both branches to
execute fairly until program termination we get

(x := 1 e fair) skip ‖ (do true→ y := y + 1 od e fair) skip (15)

which is no longer infeasible, since the second process is allowed to execute forever
after termination of the program steps in the first.

That leads to the following definition for fair parallel,

c ‖
f

d =̂ (c e fair) skip ‖ (d e fair) skip (16)

which imposes fairness on c until it terminates, and similarly for d.
Our theory of fairness is based on the synchronous concurrent refinement algebra,

which is summarised in Sect. 2 and Sect. 3 gives a set of lemmas about iterations in
the algebra. Sect. 4 gives basic properties of the command fair, while Sect. 5 gives
properties of fair combined with (unfair) concurrency and Sect. 6 uses these to derive
properties of the fair-parallel operator which is defined in terms of (unfair) parallel (16).

2 Synchronous concurrent refinement algebra

The synchronous concurrent refinement algebra is defined in [8,9]. In this section we
introduce the aspects that are used to define and reason about fairness in this paper. A
model for the algebra based on Aczel traces, as discussed in the introduction, can be
found in [3].

A concurrent refinement algebra with atomic steps (A), and synchronisation opera-
tors parallel (‖) and weak conjunction (e) is a two-sorted algebra

(C,A,
l
,
⊔
, ;, ‖,e, ! ,nil, α, skip, chaos, ε)

where the carrier set C is interpreted as the set of commands and forms a complete
distributive lattice with meet (

d
), referred to as choice, and join (

⊔
), referred to as

conjunction, and refinement ordering given by (9), where we use c u d =̂
d
{c, d}, and

c t d =̂
⊔
{c, d} to represent the meet and join over pairs of elements. The least and

greatest elements in the lattice are the aborting command ⊥ =̂
d
C, and the infeasible

command > =̂
⊔
C, respectively. The binary operator “;”, with identity element nil,

represents sequential composition (and satisfies the axioms listed in Fig. 1), however
we abbreviate c;d to c d throughout this paper.

6 Ian J. Hayes, Larissa A. Meinicke

For i ∈ N, we use ci to represent the fixed-iteration of the command c, i times. It
is inductively defined by c0 =̂ nil, ci+1 =̂ c ci. More generally, fixed-point operators
finite iteration (?), finite or infinite iteration (ω), and infinite iteration (∞) are defined
using the least (µ) and greatest (ν) fixed-point operators of the complete distributive
lattice of commands,

c? =̂ (νx.nil u c x) (17)
cω =̂ (µx.nil u c x) (18)

c∞ =̂ cω > (19)

and satisfy the properties outlined in Sect. 3.
The second carrier set A ⊆ C is a sub-algebra of atomic step commands, defined

so that (A,u,t, ! ,>, α) forms a Boolean algebra with greatest element > (also the
greatest command), which can be thought of the atomic step that is disabled from all
initial states, the least element α, the command that can perform any possible atomic
step. The negation of an atomic step a ∈ A, written ! a, represents all of the atomic
steps that are not in a. Distinguished atomic step ε ∈ A is used to stand for any possible
environment step, and its complement, π =̂ ! ε, is then the set of all possible program
steps, giving us that α = π u ε.

Both parallel composition (‖) and weak conjunction (e) are instances of the syn-
chronisation operator (⊗), in which parallel has command identity skip = εω , and
atomic-step identity ε; and weak conjunction has command identity chaos = αω , and
atomic-step identity α. As well as satisfying the synchronisation axioms from Fig. 1, a
number of additional axioms, also listed in the figure, are assumed. These include, for
example, that both operators are abort-strict, (36) and (37), weak conjunction is idem-
potent (38), and they include assumptions about the synchronisation of atomic steps,
e.g. (39) and (40).

We follow the convention that c and d stands for arbitrary commands, and a and b for
atomic step commands. Further, subscripted versions of these stand for entities of the
same kind. We also assume that choice (u) has the lowest precedence, and sequential
composition has the highest; and we use parentheses to disambiguate other cases.

3 Properties of iterations

In this section we outline the iteration properties required in this paper. Omitted or
abbreviated proofs can be found in [7].

First, from [8,9], we have that the iteration operators satisfy the basic properties
listed in Fig. 2. The following lemma (also from [8]), captures that prefixes of finite
iterations of atomic steps a? c and b? d combine in parallel until either a? or b? or
both complete. If both a? and b? complete together, the remaining commands after the
prefixes run in parallel: c ‖ d. If the first completes before the second, c runs in parallel
with at least one b followed by d, and symmetrically if the second completes before the
first.

Lemma 1 (finite-finite-prefix).

a? c ‖ b? d = (a ‖ b)? ((c ‖ d) u (c ‖ b b? d) u (a a? c ‖ d))

Encoding fairness in a synchronous concurrent program algebra 7

Sequential

c0 (c1 c2) = (c0 c1) c2 (20)

c nil = c = nil c (21)

⊥ c = ⊥ (22)

(
l
C) d =

l

c∈C

(c d) (23)

D 6= ∅ ⇒ c (
l
D) =

l

d∈D

(c d) (24)

Synchronisation operators parallel and weak conjunction Both parallel (‖) and weak con-
junction (e) are instances of the synchronisation operator (⊗). For parallel we take the identity
command Id to be skip, and atomic-step identity 1 to be ε, and for weak conjunction we take
Id to be chaos and 1 to be α.

c0 ⊗ (c1 ⊗ c2) = (c0 ⊗ c1)⊗ c2 (25)

c⊗ d = d⊗ c (26)

c⊗ Id = c (27)

D 6= ∅ ⇒ c⊗ (
l
D) =

l

d∈D

(c⊗ d) (28)

a⊗ 1 = a (29)

nil⊗ nil = nil (30)

nil⊗ a c = > (31)

a⊗ b ∈ A (32)

(a c)⊗ (b d) = (a⊗ b) (c⊗ d) (33)

a∞ ⊗ b∞ = (a⊗ b)∞ (34)

(c0 d0)⊗ (c1 d1) v (c0 ⊗ c1) (d0 ⊗ d1) (35)

Additional parallel and weak conjunction axioms As well as satisfying the synchronisation
axioms the following axioms of parallel and weak conjunction are assumed to hold.

c ‖ ⊥ = ⊥ (36)

c e⊥ = ⊥ (37)

c e c = c (38)

π ‖ π = > (39)

π e ε = > (40)

c e αi = c ‖ εi (41)

c e α∞ = c ‖ ε∞ (42)

(c0 e α
i) d0 ‖ (c1 e αi) d1 = ((c0 e α

i) ‖ (c1 e αi)) (d0 ‖ d1) (43)

(c0 e α
i) d0 e (c1 e α

i) d1 = (c0 e c1 e α
i) (d0 e d1) (44)

(c0 ‖ d0) e (c1 ‖ d1) v (c0 e c1) ‖ (d0 e d1) (45)

Fig. 1. Axioms for the synchronous concurrent refinement algebra. We let c, d ∈ C be commands,
C,D ∈ P C be sets of commands, a, b ∈ A be atomic steps, and i ∈ N be a natural number.

c? = nil u c c? (46)

cω = nil u c cω (47)

cω = c? u c∞ (48)

c? =
d

i∈N c
i (49)

d u c x v x =⇒ cω d v x (50)

x v d u c x =⇒ x v c? d (51)

c (d c)? = (c d)? c (52)

c (d c)ω = (c d)ω c (53)

(c u d)ω = cω (d cω)ω (54)

Fig. 2. Basic properties of iteration operators for commands c, d, x ∈ C.

8 Ian J. Hayes, Larissa A. Meinicke

The next lemma is similar to Lemma 1, except one of the prefixes is finite and the
other is possibly infinite.

Lemma 2 (finite-omega-prefix).

a? c ‖ bω d = (a ‖ b)? ((c ‖ d) u (c ‖ b bω d) u (a a? c ‖ d))

The following lemma uses the fact that program steps do not synchronise with other
program steps in parallel (39), to simplify the parallel composition of two iterations.

Lemma 3 (iterate-pi-par-pi). (π c)ω ‖ (π d)ω = nil

Proof. The proof uses (47), distribution and then (30), (31) twice, (33), and (39). ut
Lemma 4 (iterate-pi-sync-atomic). For either synchronisation operator, ‖ or e, and
atomic step command a,

(π c)ω ⊗ a d = (π ⊗ a) (c (π c)ω ⊗ d) .

Proof. The proof uses (47), distribution and then (31) and (33). ut
Lemma 5 (distribute-infeasible-suffix). For any synchronisation operator (⊗) that is
abort strict, i.e. (c⊗⊥) = ⊥ for all c, then we have that for any commands c, d,

c⊗ d > = (c⊗ d) > .

Lemma 6 (infinite-annihilates). (c e α∞) d1 = (c e α∞) d2 .

Proof. The result follows straightforwardly from the fact that weak conjunction is abort
strict (37), α∞ = α∞ > from (19) and Lemma 5 (distribute-infeasible-suffix), together
with the fact that > d1 = > = > d2 from (23) by taking C in (23) to be empty. ut
Taking d2 to be nil in the above lemma gives (c e α∞) d = c e α∞, for any d.

Lemma 7 (sync-termination). For commands c and d such that c = c e α? and
d = d e α?,

(c a? ‖ d b?) (aω ‖ bω) = c aω ‖ d bω

The following lemma gives us that parallel composition preserves the healthiness
property (12).

Lemma 8 (par-skip). (c skip ‖ d skip) skip = c skip ‖ d skip
Proof. Refinement from left to right is straightforward because skip v nil:

(c skip ‖ d skip) skip v (c skip ‖ d skip) nil = c skip ‖ d skip .

Refinement from right to left can be shown as follows.

c skip ‖ d skip
= as skip = skip skip
c skip skip ‖ d skip skip
v by sync-interchange-seq (35)
(c skip ‖ d skip) (skip ‖ skip)

= skip is the identity of parallel composition
(c skip ‖ d skip) skip

ut

Encoding fairness in a synchronous concurrent program algebra 9

4 Properties of fair

This section provides a set of properties of the command fair culminating with Theo-
rem 1 (fair-termination), which allows termination arguments to be decoupled from fair-
ness. The command chaos allows any non-aborting behaviour. If a command refines
chaos, that command is therefore non-aborting. The command fair is non-aborting.

Lemma 9 (chaos-fair). chaos v fair

Proof. The proof uses the definition of chaos (5), (54), the property that cω v c?, for
any command c, and the definition of fair (3).

chaos = (ε u π)ω = εω (π εω)ω v ε? (π ε?)ω = fair ut

Fair execution of a command is always a refinement of the command.

Lemma 10 (introduce-fair). c v c e fair

Proof. The lemma holds because chaos is the identity of e and Lemma 9 (chaos-fair):

c = c e chaos v c e fair . ut

Fair execution followed by fair execution is equivalent to fair execution.

Lemma 11 (fair-fair). fair fair = fair

Proof.

fair fair
= by definition of fair (3)
ε? (π ε?)ω ε? (π ε?)ω

= by (53)
(ε? π)ω ε? ε? (π ε?)ω

= as c? c? = c?, for any c
(ε? π)ω ε? (π ε?)ω

= by (53)
ε? (π ε?)ω (π ε?)ω

= as cω cω = cω , for any c
ε? (π ε?)ω

= by definition of fair (3)
fair ut

Fair execution of a sequential composition is implemented by fair execution of each
command in sequence.

Lemma 12 (fair-distrib-seq). (c d) e fair v (c e fair) (d e fair)

Proof. The proof uses Lemma 11 (fair-fair) and then interchanges weak conjunction
with sequential (35).

(c d) e fair = (c d) e (fair fair) v (c e fair) (d e fair) ut

The command skip (= εω) is the identity of parallel composition. It allows any
sequence of environment steps, including ε∞, but fair execution of skip excludes ε∞,
leaving only a finite sequence of environment steps: ε?.

10 Ian J. Hayes, Larissa A. Meinicke

Lemma 13 (skip-fair). skip e fair = ε?

Proof. Expanding the definitions of skip (11) and fair (3) in the left side to start.

εω e ε? (π ε?)ω

= by Lemma 2 (finite-omega-prefix)
ε? ((nil e (π ε?)ω) u (nil e ε ε? (π ε?)ω) u (ε εω e (π ε?)ω))

= by (31) and Lemma 4 (iterate-pi-sync-atomic) and (40)
ε? (nil u > u >)

= ε? ut

The command term (8) allows only a finite number of program steps but does not
exclude an infinite sequence of environment steps, whereas fair excludes an infinite se-
quence of environment steps. When term and fair are conjoined, only a finite number
of steps is allowed overall.

Lemma 14 (term-fair). term e fair = α?

Proof. Note that α? = α? α? v α? ε? v α? nil = α?, and hence α? = α? ε?.

term e fair = α?

⇔ by the definition of term (8) and α? = α? ε?

α? εω e fair = α? ε?

The fixed point fusion theorem [1] is applied with F =̂ λx ·xe fair, G =̂ λx · εω uα x
and H =̂ λx · ε? u α x. The lemma corresponds to F (νG) = νH , which holds by the
fusion theorem if F ◦G = H ◦F and F distributes arbitrary nondeterministic choices.

(F ◦G)(x)
= by the definitions of F and G

(εω u α x) e fair
= distributing

(εω e fair) u (α x e fair)
= by Lemma 13 (skip-fair) and expanding the definition of fair (3)
ε? u (α x e ε? (π ε?)ω)

= by unfolding (46) on ε? and distribute
ε? u (α x e (π ε?)ω) u (α x e ε ε? (π ε?)ω)

= by Lemma 4 (iterate-pi-sync-atomic) and α e π = π and (33)
ε? u π (x e ε? (π ε?)ω) u ε (x e ε? (π ε?)ω)

= distribute and use definition of fair (3)
ε? u α (x e fair)

= by the definitions of H and F
(H ◦ F)(x)

Finally F distributes arbitrary nondeterministic choices because for nonempty C,

F (
l
C) = (

l
C) e fair =

l

c∈C

(c e fair) =
l

c∈C

F (c) ,

and for C empty, F (
d
∅) = > e fair = > =

d
c∈∅(c e fair) =

d
c∈∅ F (c) because

chaos v fair. ut

Encoding fairness in a synchronous concurrent program algebra 11

We do not build fairness into our definitions of standard sequential programming
constructs such as assignment, conditionals and loops [3], rather their definitions allow
preemption by their environment forever. Hence any executable sequential program
code may be preempted forever. The command term allows only a finite number of
program steps but also allows preemption by the environment forever. If a command c
refines term it will terminate in a finite number of steps provided it is not preempted
by its environment forever, and hence fair execution of c only allows a finite number
of steps because preemption by the environment forever is precluded by fair execution.
That allows one to show termination by showing the simpler property, term v c, which
does not need to consider fairness. Existing methods for proving termination can then
be used in the context of fair parallel.

Theorem 1 (fair-termination). If term v c, then α? v c e fair.

Proof. If term v c, by Lemma 14 (term-fair) α? = term e fair v c e fair. ut

5 Properties of fair and concurrency

This section provides a set of properties for combining fair with (unfair) concurrency,
in particular it provides lemmas for distributing fairness over a parallel composition.
Details of abbreviated proofs can be found in [7]. The following is a helper lemma for
Lemma 16 (fair-par-fair).

Lemma 15 (fair-par-fair-expand). fair ‖ fair = ε? (nil u π (fair ‖ fair))

Proof. The proof begins by expanding the definition of fair (3), then uses Lemma 1
(finite-finite-prefix) and (29), then Lemma 3 (iterate-pi-par-pi), Lemma 4 (iterate-pi-
sync-atomic) and (29) and finally the definition of fair once more. ut

Fair execution is implemented by fair execution of two parallel processes.

Lemma 16 (fair-par-fair). fair v fair ‖ fair

Proof.

fair v fair ‖ fair
⇔ by the definition of fair (3) and (53)
(ε? π)ω ε? v fair ‖ fair

⇐ by (50)
ε? u ε? π (fair ‖ fair) v fair ‖ fair

The above follows by Lemma 15 (fair-par-fair-expand) by distributing. ut

Fair execution of c ‖ d can be implemented by fair execution of each of c and d but
the reverse does not hold in general.

12 Ian J. Hayes, Larissa A. Meinicke

Lemma 17 (fair-distrib-par-both). (c ‖ d) e fair v (c e fair) ‖ (d e fair)

Proof. The proof uses Lemma 16 (fair-par-fair) and then interchanges weak conjunc-
tion and parallel (45).

(c ‖ d) e fair v (c ‖ d) e (fair ‖ fair) v (c e fair) ‖ (d e fair) ut

The following is a helper lemma for Lemma 19 (fair-par-chaos).

Lemma 18 (fair-par-chaos-expand). fair ‖ chaos = ε? (nil u π (fair ‖ chaos))

Proof. The proof uses the definitions of fair (3) and chaos (5) and (54), then Lemma 2
(finite-omega-prefix) and (29), then Lemma 3 (iterate-pi-par-pi) and Lemma 4 (iterate-
pi-sync-atomic) and (29), and finally (54) and definitions (3) and (5). ut

Fair execution in parallel with chaos gives a fair execution because chaos never
aborts.

Lemma 19 (fair-par-chaos). fair ‖ chaos = fair

Proof. The refinement from left to right is straightforward as chaos v skip and skip
is the identity of parallel: fair ‖ chaos v fair ‖ skip = fair. The refinement from
right to left uses the definition of fair.

fair v fair ‖ chaos
⇔ by the definition of fair (3) and (53)
(ε? π)ω ε? v fair ‖ chaos

⇐ by (50)
ε? u ε? π (fair ‖ chaos) v fair ‖ chaos

The above follows by Lemma 18 (fair-par-chaos-expand) and distributing. ut

Fair execution of one process of a parallel composition eliminates behaviour ε∞

for that process and hence because parallel compositions synchronise on ε (29), that
eliminates behaviour ε∞ from the parallel composition as a whole, provided the parallel
process does not abort. Aborting behaviour of one process of a parallel aborts the whole
parallel (36) and aborting behaviour allows any behaviour, including ε∞. Fair execution
of c ‖ d can be implemented by fair execution of c (or by symmetry d).

Lemma 20 (fair-distrib-par-one). (c ‖ d) e fair v (c e fair) ‖ d

Proof. The proof uses Lemma 19 (fair-par-chaos), then interchanges weak conjunction
and parallel (45) and finally uses the fact that chaos is the identity of weak conjunction.

(c ‖ d) e (fair ‖ chaos) v (c e fair) ‖ (d e chaos) = (c e fair) ‖ d ut

Encoding fairness in a synchronous concurrent program algebra 13

6 Properties of fair parallel

This section examines the properties of the fair-parallel operator (16), such as com-
mutativity, distribution over nondeterministic choice and associativity. The first three
results derive readily from the equivalent properties for parallel.

Theorem 2 (fair-parallel-commutes). c ‖f d = d ‖f c

Proof. The proof is straightforward from definition (16) of fair-parallel because (unfair)
parallel is commutative. ut

Theorem 3 (fair-parallel-distrib). D 6= ∅ ⇒ c ‖f (
d
D) =

d
d∈D(c ‖f d)

Proof. Let D be non-empty.

c ‖f (
d
D)

= by the definition of ‖f (16)
(c e fair) skip ‖ ((

d
D) e fair) skip

= as non-empty choice distributes over e, sequential composition and paralleld
d∈D(c e fair) skip ‖ (d e fair) skip

= by the definition of ‖f (16)d
d∈D(c ‖f d) ut

Theorem 4 (fair-par-monotonic). If d1 v d2, then c ‖f d1 v c ‖f d2.

Proof. The refinement d1 v d2 holds if and only if d1ud2 = d1 and hence, by Theorem
3 (fair-parallel-distrib),

c ‖f d1 v c ‖f d2
⇔ c ‖f d1 u c ‖f d2 = c ‖f d1
⇔ c ‖f (d1 u d2) = c ‖f d1

because d1 u d2 = d1 follows from the assumption. ut

Fair-parallel retains fairness for its component processes with respect to the overall
environment even when one component process terminates.

Theorem 5 (fair-parallel-nil). c ‖f nil = (c e fair) skip

Proof. The proof uses the definition of fair parallel (16), the facts that nile fair = nil
and skip is the identity of parallel composition.

(c e fair) skip ‖ (nil e fair) skip = (c e fair) skip ‖ skip = (c e fair) skip ut

While properties such as commutativity and distributivity are relatively straightfor-
ward to verify, associativity of fair-parallel is more involved. A property that is essential
to the associativity proof is that fair-parallel execution of two commands not only en-
sures that each of its commands are executed fairly until program termination, but also
that the whole parallel composition is executed fairly until program termination; this is
encapsulated in Theorem 6 (absorb-fair-skip), but first we show the easy direction of
this proof in Lemma 21 (introduce-fair-skip) and then give lemmas for the finite and
infinite cases for Theorem 6 (absorb-fair-skip).

14 Ian J. Hayes, Larissa A. Meinicke

Lemma 21 (introduce-fair-skip). c ‖f d v ((c ‖f d) e fair) skip

Proof.

c ‖f d
= by Lemma 8 (par-skip) using the definition of fair parallel (16)

(c ‖f d) skip
v by Lemma 10 (introduce-fair)

((c ‖f d) e fair) skip ut

Lemma 22 (finite-absorb-fair-skip).

(((c e α?) ‖f (d e α?)) e fair) skip = (c e α?) ‖f (d e α?)

Proof. The refinement from right to left follows by Lemma 21 (introduce-fair-skip).
The refinement from left to right follows.

(((c e α?) ‖f (d e α?)) e fair) skip

= by the definition of ‖f (16)
(((c e α? e fair) skip ‖ (d e α? e fair) skip) e fair) skip
v by Lemma 17 (fair-distrib-par-both)
((((c e α? e fair) skip) e fair) ‖ (((d e α? e fair) skip) e fair)) skip
v by Lemma 12 (fair-distrib-seq) and e idempotent (38)
((c e α? e fair) (skip e fair) ‖ (d e α? e fair) (skip e fair)) skip
v as skip e fair = ε? by Lemma 13 (skip-fair)
((c e α? e fair) ε? ‖ (d e α? e fair) ε?) skip
v by Lemma 7 (sync-termination) as skip ‖ skip = skip and skip = εω

(c e α? e fair) skip ‖ (d e α? e fair) skip
= by the definition of ‖f (16)
(c e α?) ‖f (d e α?) ut

Lemma 23 (infinite-absorb-fair-skip).

(((c e α∞) ‖f d) e fair) skip = (c e α∞) ‖f d

Proof. The refinement from right to left follows by Lemma 21 (introduce-fair-skip).
The refinement from left to right follows.

(((c e α∞) ‖f d) e fair) skip

= by the definition of ‖f (16)
(((c e α∞ e fair) skip ‖ (d e fair) skip) e fair) skip

= by Lemma 6 (infinite-annihilates)
(((c e α∞ e fair) ‖ (d e fair) skip) e fair) skip

v by Lemma 20 (fair-distrib-par-one) and e is idempotent (38)
((c e α∞ e fair) ‖ (d e fair) skip) skip

= by Lemma 6 (infinite-annihilates)
((c e α∞ e fair) skip ‖ (d e fair) skip) skip

= by Lemma 8 (par-skip)
(c e α∞ e fair) skip ‖ (d e fair) skip

= by the definition of ‖f (16)
(c e α∞) ‖f d ut

Encoding fairness in a synchronous concurrent program algebra 15

Theorem 6 (absorb-fair-skip). ((c ‖f d) e fair) skip = c ‖f d

Proof. The proof decomposes c and d into their finite and infinite components based on
the observation that the identity of “e” is chaos, which equals α? u α∞.

((c ‖f d) e fair) skip

= combine α? u α∞ with each of c and d and distribute
((((c e α?) u (c e α∞)) ‖f ((d e α?) u (d e α∞))) e fair) skip

= by repeated application of Theorem 3 (fair-parallel-distrib)
(((c e α?) ‖f (d e α?)) e fair) skip u (((c e α?) ‖f (d e α∞)) e fair) skip u
(((c e α∞) ‖f (d e α?)) e fair) skip u (((c e α∞) ‖f (d e α∞)) e fair) skip

= by Lemma 22 (finite-absorb-fair-skip) and Lemma 23 (infinite-absorb-fair-skip)
(c e α?) ‖f (d e α?) u (c e α?) ‖f (d e α∞) u
(c e α∞) ‖f (d e α?) u (c e α∞) ‖f (d e α∞)

= by Theorem 3 (fair-parallel-distrib)
((c e α?) u (c e α∞)) ‖f ((d e α?) u (d e α∞))

= distributing
(c e (α? u α∞)) ‖f (d e (α? u α∞))

= as α? u α∞ = chaos, the identity of e
c ‖f d ut

With these results we can now verify associativity of fair parallel.

Theorem 7 (fair-parallel-associative). (c ‖f d) ‖f e = c ‖f (d ‖f e)

Proof.

(c ‖f d) ‖f e
= by definition of ‖f (16)
((c ‖f d) e fair) skip ‖ (e e fair) skip

= by Theorem 6 (absorb-fair-skip)
(c ‖f d) ‖ (e e fair) skip

= by definition of ‖f (16)
((c e fair) skip ‖ (d e fair) skip) ‖ (e e fair) skip

= by associativity of parallel
(c e fair) skip ‖ ((d e fair) skip ‖ (e e fair) skip)

= by definition of ‖f (16)
(c e fair) skip ‖ (d ‖f e)

= by Theorem 6 (absorb-fair-skip)
(c e fair) skip ‖ ((d ‖f e) e fair) skip

= by definition of ‖f (16)
c ‖f (d ‖f e) ut

Other properties of fair parallel can be proven in a similar manner, for example, the
equivalent of the interchange law (45) with parallel replaced by fair parallel.

16 Ian J. Hayes, Larissa A. Meinicke

7 Conclusions

Earlier work on fairness [16,13] focused on defining fairness as part of a fair-parallel
operator. The main contribution of this paper is to separate the concerns of fairness and
the parallel operator. That allows us to (i) reason about the fair execution of a single
process in isolation, for example, via Theorem 1 (fair-termination); (ii) start from a
basis of the (unfair) parallel operator, which has simpler algebraic properties; and (iii)
define the fair-parallel operator in terms of the more basic (unfair) parallel operator and
hence prove properties of the fair-parallel operator in terms of its definition.

The first point is important for devising a compositional approach to reasoning about
the fairness properties of concurrent systems in terms of the fairness properties of their
components. The second point allows us to utilise the synchronous concurrent refine-
ment algebra [3,8,9] (which has similarities to Milner’s SCCS [15,14]) to encode fair-
ness in an existing theory with no built-in fair-parallel operator. The third point shows
that no expressive power is lost compared to starting with a fair-parallel operator, in
fact, there is a gain in expressiveness as one can define a parallel composition which
imposes fairness on only one of its components: ((c e fair) skip) ‖ d.

Overall, these results indicate that a suitable foundation of handling concurrency
and fairness can start from a theory in which the parallel operator has no built-in fair-
ness assumptions. The ability to do this derives from the use of a synchronous parallel
operator motivated by the rely/guarantee approach of Jones [10,11,12] and Aczel’s trace
model for that approach [2,3,4,5], in which environment steps are made explicit.

Acknowledgements. This research was supported Australian Research Council Discov-
ery Grant DP130102901. Thanks are due to Robert Colvin, Rob Van Glabbeek, Peter
Höfner, Cliff Jones, and Kirsten Winter, for feedback on ideas presented here. This re-
search has benefited greatly from feedback members of IFIP Working Group 2.3 on
Programming Methodology, in particular, at the meeting in Villebrumier.

References

1. Chritiene Aarts, Roland Backhouse, Eerke Boiten, Henk Doombos, Netty van Gasteren, Rik
van Geldrop, Paul Hoogendijk, Ed Voermans, and Jaap van der Woude. Fixed-point calculus.
Information Processing Letters, 53:131–136, 1995. Mathematics of Program Construction
Group.

2. P. H. G. Aczel. On an inference rule for parallel composition, 1983. Private com-
munication to Cliff Jones http://homepages.cs.ncl.ac.uk/cliff.jones/
publications/MSs/PHGA-traces.pdf.

3. R. J. Colvin, I. J. Hayes, and L. A. Meinicke. Designing a semantic model for a wide-
spectrum language with concurrency. Formal Aspects of Computing, 29:853–875, 2016.

4. F.S. de Boer, U. Hannemann, and W.-P. de Roever. Formal justification of the rely-guarantee
paradigm for shared-variable concurrency: a semantic approach. In Jeannette Wing, Jim
Woodcock, and Jim Davies, editors, FM’99 – Formal Methods, volume 1709 of Lecture
Notes in Computer Science, pages 1245–1265. Springer Berlin / Heidelberg, 1999.

5. W.-P. de Roever. Concurrency Verification: Introduction to Compositional and Noncompo-
sitional Methods. Cambridge University Press, 2001.

http://homepages.cs.ncl.ac.uk/cliff.jones/publications/MSs/PHGA-traces.pdf
http://homepages.cs.ncl.ac.uk/cliff.jones/publications/MSs/PHGA-traces.pdf

Encoding fairness in a synchronous concurrent program algebra 17

6. I. J. Hayes. Generalised rely-guarantee concurrency: An algebraic foundation. Formal As-
pects of Computing, 28(6):1057–1078, November 2016.

7. I. J. Hayes and L. A. Meinicke. Encoding fairness in a synchronous concurrent program
algebra: extended version with proofs. arXiv:1805.01681 [cs.LO], 2018.

8. I.J. Hayes, R.J. Colvin, L.A. Meinicke, K. Winter, and A. Velykis. An algebra of synchronous
atomic steps. In J. Fitzgerald, C. Heitmeyer, S. Gnesi, and A. Philippou, editors, FM 2016:
Formal Methods: 21st International Symposium, Proceedings, volume 9995 of LNCS, pages
352–369, Cham, November 2016. Springer International Publishing.

9. I.J. Hayes, L.A. Meinicke, K. Winter, and R.J. Colvin. A synchronous program algebra:
a basis for reasoning about shared-memory and event-based concurrency. Ext. report at
arXiv:1710.03352, 2017.

10. C. B. Jones. Development Methods for Computer Programs including a Notion of Interfer-
ence. PhD thesis, Oxford University, June 1981. Available as: Oxford University Computing
Laboratory (now Computer Science) Technical Monograph PRG-25.

11. C. B. Jones. Specification and design of (parallel) programs. In Proceedings of IFIP’83,
pages 321–332. North-Holland, 1983.

12. C. B. Jones. Tentative steps toward a development method for interfering programs. ACM
ToPLaS, 5(4):596–619, 1983.

13. D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, justice and fairness: The ethics of con-
current termination. In Shimon Even and Oded Kariv, editors, Automata, Languages and
Programming: Eighth Colloquium Acre (Akko), Israel July 13–17, 1981, pages 264–277,
Berlin, Heidelberg, 1981. Springer Berlin Heidelberg.

14. A.J.R.G. Milner. Communication and Concurrency. Prentice-Hall, 1989.
15. R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25(3):267–

310, 1983.
16. David Park. On the semantics of fair parallelism. In Dines Bjørner, editor, Abstract Software

Specifications, volume 86 of Lecture Notes in Computer Science, pages 504–526. Springer
Berlin Heidelberg, 1980.

17. Rob J. van Glabbeek. Ensuring livenes properties of distributed systems (a research agenda).
Technical report, NICTA, March 2016. Position paper.

https://arxiv.org/abs/1805.01681
http://arxiv.org/abs/1710.03352

	Encoding fairness in a synchronous concurrent program algebra

