
IPL: An Integration Property Language for
Multi-Model Cyber-Physical Systems

Ivan Ruchkin, Joshua Sunshine, Grant Iraci,
Bradley Schmerl, and David Garlan

Institute for Software Research, Carnegie Mellon University

Abstract. Design and verification of modern systems requires diverse
models, which often come from a variety of disciplines, and it is chal-
lenging to manage their heterogeneity – especially in the case of cyber-
physical systems. To check consistency between models, recent approaches
map these models to flexible static abstractions, such as architectural
views. This model integration approach, however, comes at a cost of
reduced expressiveness because complex behaviors of the models are ab-
stracted away. As a result, it may be impossible to automatically verify
important behavioral properties across multiple models, leaving systems
vulnerable to subtle bugs. This paper introduces the Integration Property
Language (IPL) that improves integration expressiveness using modular
verification of properties that depend on detailed behavioral semantics
while retaining the ability for static system-wide reasoning. We prove
that the verification algorithm is sound and analyze its termination con-
ditions. Furthermore, we perform a case study on a mobile robot to
demonstrate IPL is practically useful and evaluate its performance.

1 Introduction

Today, complex software systems are often built by multidisciplinary teams us-
ing diverse engineering methods [1,2]. This diversity is particularly apparent in
cyber-physical systems (CPS) where software control interacts with the physical
world. For instance, a mobile robot needs to brake in time to avoid collisions,
compute an efficient long-term plan, and use a power model of its hardware to
ensure it has sufficient energy to complete its missions. To satisfy each of these
requirements, engineers may use heterogeneous models that vary in formalisms,
concepts, and levels of abstraction. Even though these models are separate, in-
terdependencies naturally occur because they represent the same system.

Mismatches between such implicitly dependent models may lead to faults
and system failures. For example, the 2014 GM ignition switch recall was caused
by an unanticipated interaction between electrical and mechanical aspects of the
ignition switch [3]. This interaction led to the switch accidentally turning off mid-
drive and disabling the car’s software along with airbags, power steering, and
power brakes. This mismatch between the electrical, mechanical, and software
designs caused dozens of deaths and large financial losses.

To prevent such issues, inconsistencies or contradictions need to be detected
by integrating the heterogeneous models. This can be done by checking prop-
erties that involve multiple models and formalisms, which we term integration



properties. Model integration is difficult [4] and checking integration properties is
often done informally through inspection, and is limited in rigor and outcomes.
One way to improve this would be to map diverse semantics and property checks
into a single unifying model. Unfortunately, it is hard (and sometimes impossi-
ble) to do so, as in the case of unifying stateful and stateless models [5].

A common way to integrate heterogeneous models is to create and relate sim-
plified abstractions. One such abstraction is architectural views — behaviorless
component models annotated with types and properties [6,7,8]. Since views are
easier to reason about than heterogeneous models, structural consistency checks
can be formalized and automated [9]. However, model integration through views
sacrifices behavioral expressiveness of integration properties, meaning that so-
phisticated interactions become uncheckable.

We perceive a foundational gap between the limited expressiveness of integra-
tion properties and the need to discover complex inconsistencies of several mod-
els. State-of-the-art integration approaches are limited in what is exposed from
models. Exposing too little leads to insufficiently expressive analysis. Exposing
too much leads to limited flexibility and extensibility of integration methods.

To help bridge this gap, this paper introduces the Integration Property Lan-
guage (IPL) – a formal specification and verification method for integration
properties based on architectural views. IPL’s goal is to systematically express
and automatically check properties that combine system behaviors and static
abstractions, enabling end-to-end verification arguments over multiple models.

The main design principle behind IPL is to combine first-order logical reason-
ing across many views with “deep dives” into behavioral structures of individual
models as necessary. IPL syntax interleaves first-order quantification over rigid
constructs (defined by views) and temporal modalities that bind the behavior of
flexible terms (changing according to models). Built upon existing satisfiability
solvers and model checkers, IPL uses a sound reasoning algorithm to modularize
the problem into subproblems that respective tools interpret and solve.

This paper makes three contributions: (1) a formalized modular syntax and
semantics of IPL, instantiated for two modal logics; (2) an algorithm to verify
validity of IPL statements, with a soundness proof and termination conditions;
and (3) a modeling case study of a mobile robot, with several integration prop-
erties to evaluate practical applicability and performance of the IPL prototype.

The paper is organized as follows. Sec. 2 introduces an illustrating scenario
of integration. Sec. 3 describes related work. Sec. 4 gives an overview of the IPL
design, while Sec. 5 provides the details of the IPL syntax, semantics, and the
verification algorithm. Sec. 6 provides a case study and a theoretical analysis of
the algorithm. We conclude the paper with limitations and future work.

2 Motivating Integration Case

Consider an autonomous mobile robot, such as TurtleBot (http://turtlebot.
com), that navigates to a goal location through a physical environment using its
map. The environment contains charging stations for the robot to replenish its
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battery. The robot has an adaptive software layer that monitors and adjusts the
execution to minimize mission time and power consumption.

In the design of this system (more detail in Sec. 6.1), we have two models:
a power prediction model and a planning model. The power prediction model
Mpo is a parameterized set of linear equations that estimates the energy required
for motion tasks, such as driving straight or turning in place. The model is a
statistical generalization of the data collected from the robot’s executions. Given
a description of a motion task, the model produces an estimate of required energy.

The planning model Mpl finds a path to a goal by representing the robot’s
non-deterministic movements on a map, along with their time and power effects,
in a Markov Decision Process (MDP) [10]. The model’s state includes the robot’s
location and battery charge. Whenever (re)planning is required, the PRISM
probabilistic model checker [11] resolves non-determinism with optimal choices,
which are fed to the robot’s motion control. Although inspired by Mpo, Mpl is not
identical to it because of various modeling choices and compromises, for example
it does not explicitly model turns.

These two models interact during execution: Mpo acts as a safeguard against
the plan of Mpl diverging from reality and leading to mission failure. Mpl only
needs to be triggered when the robot is going to miss a deadline or run out of
power. Otherwise, the robot avoids running the planner to conserve power1. If
Mpl has overly conservative energy estimates compared to Mpo, it may miss a
deadline due to excessive recharging or taking a less risky but longer route. With
overly aggressive estimates, the robot may run out of power.

Integrating these two models means ensuring that their estimates of required
energy do not diverge. One threat to integration is the difference in modeling of
turns: Mpl models turns implicitly, combining them with forward motions into
single actions to reduce the state space and planning time. In Mpo however,
turns are explicit tasks, separate from forward motion. This potential inconsis-
tency can be checked with the following integration property: “the difference
in energy estimates between the two models should not be greater than a prede-
fined constant err cons”. The purpose of this property is to enable end-to-end
safety arguments (e.g., not running out of power or arriving before a deadline).
Instead of (inaccurately) assuming equivalence of Mpo and Mpl, this property
would provide a rigorous estimate of err cons,2 which can be used to assert that
the battery cannot run out because its charge is always greater than err cons.

It is far from straightforward to verify this property. First, the abstractions
are different: Mpl describes states and transitions (with turns embedded in them),
whereas Mpo describes a stateless relation. Second, there is no single means to
express such integration properties formally: PCTL (Probabilistic Computation
Tree Logic [11]) is a property language for Mpl, but Mpo does not come with a
reasoning engine. Finally, even if these obstacles are overcome, the models are
often developed by different teams, so they need to stay separate and co-evolve.

1 The planner’s own power consumption is not modeled, contributing to its inaccuracy.
2 As we detail later, we use overlines to mark static entities (not changing over time),

and underlines to mark behavioral entities (changing over time in model states).



The integration property can be checked in several ways. A direct approach is
to develop a “supermodel” containing Mpl and Mpo as sub-models. A supermodel
would query Mpo from each state of Mpl. Although accurately detecting viola-
tions, this method is not tractable for realistic models of hundreds of thousands
of states. Furthermore, the property would be hardcoded in the supermodel
implementation, which would need to be developed anew for other properties.

Another approach relies on abstraction of models through architectural views.
The views are hierarchical arrangements of discrete static instances (architec-
tural elements) with assigned types and properties (defined in Sec. 5.1). Typi-
cally, when views are used to integrate multiple models [12], the verification is
confined to the views to take advantage of their relatively simple semantics (with-
out temporal behaviors or dynamic computation). One could encode all possible
Mpl behaviors (i.e., trajectories of locations, turns, and energies) in views, also
encoding them as atomic motion tasks of Mpo. This approach, again, leads to
either intractability or approximation (e.g., only recording the number of turns
in each path), which in turn would not have soundness guarantees.

In this paper we pursue the integration approach that combines specifications
over behaviors and views as necessary. For now, we provide an informal version
of the integration property, which will be formalized in the end of Sec. 5.2.

Property 1 (Consistency of Mpo and Mpl). For any three sequential Mpo tasks
〈go straight, rotate, go straight〉that do not self-intersect and have sufficient en-
ergy, any execution in Mpl that visits every point of that sequence in the same or-
der, if initialized appropriately, is a power-successful mission (modulo err cons).

It is challenging to systematically express and verify such properties while
holding the models modular and tractable. Notice how missions in Mpo need to
correspond to missions in Mpl; e.g., the initial charge of Mpl needs to be within
err cons of the expected mission energy in Mpo. Specifications like Prop. 1 are
enabled by our solution design and the language syntax (Secs. 4 and 5).

3 Related Work

Model Integration Model-based engineering relies on a variety of formalisms,
including synchronous, timed, and hybrid models [5].When models are similar,
it is easier to find unifying abstractions, like in the case of consistency checking
for software models [13,14,6] or model refinement [15,16,17]. We, however, target
a broader scope of cyber-physical models that were not intended for integration,
leading to more challenging problems [18,4].

Integration approaches for CPS models can be seen along a spectrum from
structural (operating on model syntax) to semantic (operating on behavior)
ones [19]. One structural approach is to use architectural views — abstract com-
ponent models [20,7]. Views have been extended with physical descriptions for
consistency checking via graph mappings [12] and arithmetic constraints [21].
Other recent structural approaches include model transformations [22], ontolo-
gies [23], and metamodels [24]. Model transformations are typically forced to
either map models to the same semantics or abandon one or more in favor of



new meanings. This paper extends the view-based structural approach to write
formalized statements that affect many semantic universes.

On the semantic end, one approach is to relate model behaviors directly [25].
Although theoretically elegant, this approach suffers from limited automation
and creating inter-model dependencies. Other semantic approaches relate model
behaviors through proxy structures. Well-known examples include the Ptolemy II
environment [26] and the GEMOC studio [27]. In contrast to these works on
heterogeneous simulation, we focus on logical verification of multiple models.
Another example is the OpenMETA toolchain for domain-specific language in-
tegration [28]. The toolchain contains automated support for verifying individual
CPS models (e.g., bond graphs) based on their logically-defined interfaces. Open-
META’s integration language (CyPhyML), however, commits to continuous-
trajectory semantics [29], whereas IPL allows arbitrary plug-in behaviors. Our
work builds on a prototype of a FOL/LTL contract formalism [30], which we
extend by providing a full-fledged language (as opposed to a stitching of two
statements) with a sound verification algorithm and a plugin system.
Logics, Satisfiability, Model Checking This paper is related to quantified
Computation Tree Logic (QCTL) [31] and well-researched combinations of first-
order logic (FOL) [32] and linear temporal logic (LTL) [33], going back to the
seminal work of Manna and Pnueli [34] on first-order LTL, which has been instan-
tiated in many contexts [35,36]. Typically, such work focuses classical properties
of logics and algorithms, such as decidability and complexity.We, instead, focus
on expressiveness and modularity — practical concerns for CPS. For example,
IPL differs from the trace language for object models [36] in that we do not
create a full quantification structure in each temporal state. In contrast, IPL is
modular with existing models and delegates behavioral reasoning to them.

An ambitious approach is to directly combine arbitrary logics, at the cost of
high complexity and limited automation (as in fibred semantics [37]). Even when
modular [38], combining logics merges their model structures, which may lead to
tractability challenges in practice. We opt to keep models completely separate,
thus reducing complexity and overhead.

Our algorithm relies on Satisfiability Modulo Theories (SMT) [39] and model
checking [40,11]. To guarantee termination, we limit ourselves to decidable com-
binations of background theories (like uninterpreted functions and linear real
arithmetic) that admit the Nelson-Oppen combination procedure [41]. In prac-
tice, modern SMT solvers (e.g., z3 [42]) heuristically solve instances of undecid-
able theories. In model checking we use the usual conversion of a modal property
to an automaton (Buchi, Rabin, . . . ) and its composition with models [43,11].

4 Integration Property Language: Design

The Integration Property Language (IPL) is intended for model integration,
which informally means that models do not contradict each other. We envision
the following workflow. An engineer creates or obtains system models for inte-
gration. Some of these models will be interfaced through a behavioral property



language. The other models will be accessed through static abstractions (views),
created by the engineer. Then the engineer writes and checks an integration
property over views and behavioral properties using IPL. If the verification fails,
the engineer inspects and corrects the models and/or the property. Whenever the
models change, their respective views are updated, and properties are reverified.

A primary goal of the IPL design is applicability to real-world model integra-
tions. Therefore, our design focuses on these three principles:

1. Expressiveness. To improve expressiveness over state-of-the-art static ab-
stractions, IPL formulas must combine reasoning over views with behavioral
analysis of models (e.g., using modal logics). IPL should combine information
from several models using first-order logic (quantification, custom functions).

2. Modularity. To support diverse CPS models, IPL should neither be tied to a
particular property language or form of model behavior (discrete, continuous, or
probabilistic), require the reengineering of constituent models. Thus, IPL should
enable straightforward incorporation of new models and property languages.

3. Tractability. To enable automation in practice, verification of IPL specifi-
cations must be sound and implementable with practical scalability.

To support these principles, we make the following four design decisions.
A. Model integration by logically co-constraining models. IPL rigorously spec-

ifies integration conditions over several models. Logical reasoning is an expressive
and modular basis for integration because it allows engineers to work with famil-
iar concepts and tools that are specific to their domains/systems. In this paper,
we target two modal logics common in model-based engineering: LTL and PCTL.

B. Separation of structure and behavior. IPL explicitly treats the static (rigid)
and dynamic (flexible) elements of models separately. We accomplish this using
views (defined in Sec. 5.1) that serve as projections of static aspects of behavioral
models. This separation enables tractability because static aspects can be rea-
soned about without the temporal/modal dimension. We support expressiveness
by allowing combinations of rigid and flexible elements to appear in the syntax.

C. Multi-step verification procedure. We combine reasoning over static aspects
in first-order logic with “deep dives” into behavioral models to retrieve only the
necessary values. We preserve tractability by using tools only within individual
well-defined semantics, without direct dependencies between models.

D. Plugin architecture for behavioral models. To create a general framework
for integration, we specify several plugin points — APIs that each behavioral
model has to satisfy. While the model itself can stay unchanged, IPL requires a
plugin to use their formalism for verification. This way, IPL does not make extra
assumptions on models beyond the plugin points, hence enhancing modularity.

To support expression and verification of Prop. 1, we use PCTL with Mpl to
reason about behaviors and a view Vpo for reasoning about the static/stateless
elements of Mpo. Vpo serves as a task library, containing all atomic tasks (going
straight and rotating in the motivating example) in each location/direction in
the given map. Each task is annotated with its properties, such as start/end
locations, distance, required time, and required energy. Each task in Vpo is en-
coded as a component and contains several properties. Thus, this view allows
natural composition of missions as constrained sequences of components.



5 Integration Property Language: Details

This section describes IPL by defining its syntax and formalizing its semantics.
After, we provide an algorithm to check whether an IPL formula is valid.

5.1 Concepts and Preliminaries

The concept of an architectural view originates in the field of software architec-
ture [44]. Recently, views have been adapted to represent non-software elements
such as sensors and transducers in CPS [9]. We use views to extract information
for IPL to analyze without needing to process all the details of models.

Definition 1 (Architectural View). An architectural view V is a hierarchical
collection of architectural elements (i.e., components and connectors). Each ele-
ment has fixed-valued properties, the set of which is determined by its type and
values set individually for each element.

IPL uses views for modeling static, behavior-free projections of models. For
example, Mpo uses a map of locations for its tasks, and it can be exposed in
a view (Vmap) as a set of interconnected components (Locs). Each component
is a location, and connectors indicate direct reachability between them. We use
views as an abstraction because of their composability, typing, and extensible
hierarchical structure. No dynamic information (e.g., the current battery charge)
is put in views so that behavioral semantics are confined to models.

Definition 2 (Formal View). A (formal) view V is a pair of a view signa-
ture (ΣV) and its semantic interpretation (I V). The signature contains a set
of architectural elements (E), their types, properties, sorts/constants, and func-
tions/predicates. The semantic interpretation gives static meaning to the ele-
ments in the view signature, independent of state or time.

We use formal views to define the syntax and semantics of IPL. We establish
an isomorphic relationship between the two definitions by converting architec-
tural models to SMT programs, as in prior work [30]. Both definitions of views
are used throughout the paper: Def. 1 — for applied modeling (e.g., representing
views in the case study), and Def. 2 — for theory behind IPL and verification.

Definition 3 (Model). A (behavioral) model M is a triple of an (interface)
signature, an interpretation (I M

q ), and a structure on which it is interpreted. The
signature defines symbols of state variables, modal functions/predicates, and a
list of name-type pairs for initialization parameters. The parametric structure
determines the model’s set of behavior traces (M.trcs) [43,45].

Definition 4 (Model Property Language). For a class of models, a model prop-
erty language is a language for specifying expressions about a model of that class.
From these expressions I M

q produces a value of a type interpretable by views.

For the rest of this section we consider a fixed set of behavioral models M,
with some of them abstracted by a fixed set of views (V). Each view can be seen
as some (implicit) function of a model. We consider two specific model property
languages: LTL and PCTL, although in principle we are not limited to them.



Shared by models and views, background interpretation IB evaluates com-
mon sorts, constants (e.g., boolean > and ⊥), functions (e.g., addition), and
predicates (e.g., equality) from background theories (e.g., the theory of equality
or linear real arithmetic). Formally, we only allow theories that are decidable [46]
and form decidable combinations [41], but in practice it is acceptable to use un-
decidable combinations for which available heuristics resolve relevant statements.

Formulas will be described over a context of views and models. Syntactically,
IPL formulas are written over a signature (Σ) that contains symbols from V
and M. Semantically, a formula’s context is determined by a structure (Γ) that
contains interpretations I M

q , I V, and IB along with their domains.

Finally, we make additional assumptions: (i) views are pre-computed and stay
up-to-date with models; (ii) views can be translated into finite SMT programs;
(iii) once initialized, any model can check/query any statement in its property
language; and (iv) models and views share the background interpretation.

5.2 Syntax

To support modularity, we keep track of syntactic terms that cannot be inter-
preted by either views or models. So we introduce the rigid/flexible separation:
flexible terms (denoted with underlines, like loc) are interpreted by I M

q , and rigid

terms (denoted with overlines, like Tasks) are interpreted by I V. Terms of IB

are used by both models and views (no special notation; e.g., <).

To embed model property languages into IPL, the syntax allows model-
specific formulas to be defined as “plugins” in the grammar. That is, various
property languages are usable inside IPL formulas. Thus, the syntax is split into
the native (related to views) and plugin (related to property languages) parts.

One challenge is that the relation between IPL and model languages is not
hierarchical: native formulas contain plugin formulas, but native terms can also
appear in plugin formulas. An IPL interpreter should evaluate the native parts
when it prepares a model property to verify. Consider Prop. 1 in Sec. 2 where a
model evaluating Pmax=? requires interpreting native IPL term t2.startloc.

We organize the native/plugin syntax as presented in Fig. 1. We define each
syntax element (box) on top of symbols in Σ and quantified variables (V). We
build two types of subformulas: rigid atomic formulas (ratom) from rigid terms
(rterm), and flexible atomic formulas (matom). Our strategy is to keep flexible
and rigid syntax separate until they merge in formula. In this way, we preserve
modularity: compound formulas can be deconstructed into simpler ones that are
evaluated by either models or views.

A rigid term rterm is either a variable var, a constant const, an architec-
tural element type elem, a property of a rigid term rterm.prop3, a background
function bfunc, or a view function vfunc. A rigid atom ratom is a logical ex-
pression over rigid terms. See the full syntax rules in the online appendix [47].

3 Properties are only applicable to architectural elements, references to which can be
accessed in a variable or a function. We assume all expressions are well-typed.



Fig. 1. IPL abstract syntax. Boxes are syntax elements, arrows — syntactic expansions.

Behavioral Model Plugin Points To integrate multiple model formalisms
into IPL, the syntax defines four plugin points for model-specific constructs.
Each plugin point can be instantiated either with an extensible syntactic form
(e.g., a modal expression) or a reference to an existing form (e.g., rterm). Each
behavioral model provides its own syntactic elements for plugin instances.

At the level of flexible terms (term), two plugin points are state variables
(stvar) and model functions (mfunc). Each state variable (e.g., loc) is declared
as a pair (name, type) to be referenced from IPL. Each model function declares
a name, a type, and a list of arguments, each of which is name-type pair.

The third plugin point is model atom (matom), e.g., the expression Pmax=?.
It requires one or several syntactic forms with production rules. In addition to
model-specific productions (e.g., temporal modalities), matom can use elements
ratom and rterm from the grammar’s rigid side (but not vice versa). A model
can, for example, plug in an LTL modal expression and use rigid terms in it.

Behavioral models often have parameters such as initial conditions. To pro-
vide parameter values, we introduce the fourth and outermost plugin point:

Definition 5 (Model Instantiation Clause). Model instantiation clause binds
rigid terms to model parameters, wrapping matom:

mdlinst ::= matom{|rterm1 . . .rtermn|}.

The values of rtermi are passed as parameters to the behavioral model.
Finally, on top of the flexible syntax above, we can define quantification:

Definition 6 (IPL Formula). IPL formulas are logical formulas with first-order
quantification over an instantiated model formula or a rigid atom.

formula ::=∀var : rterm · formula | mdlinst | ratom |
formula ∧ formula | ¬formula.

Illustrating modularity of the syntax, we give two extensions of the grammar:
first with Linear Temporal Logic (LTL) [33], and second with Probabilistic Com-
putational Tree Logic (PCTL) [11]. Here we highlight the expansion of matom
in both plugins, while their full description is in the online appendix [47].



LTL Plugin Syntax Linear Temporal Logic (LTL) is a logic to express temporal
constraints on traces [33]. We embed the usual modalities: until and next.

tatomu ::= tatom U tatom,tatomx ::= X tatom,

tatoma := tatom ∧ tatom,tatomn := ¬tatom,
matom ::= tatom ::= ratom | term | tatomu |tatomx | tatoma | tatomn.

PCTL Plugin Syntax We use extended PCTL (its variant used in PRISM)
expresses probabilistic constraints over a computation tree, and its models are
MDPs and discrete-time Markov chains (DTMCs) [11]. Flexible terms are as in
the LTL plugin, but matom expands into several layered behavioral atoms.

pathprop ::= ratom | term | pathprop ∧ pathprop | ¬pathprop |

pathprop U≤k pathprop | X pathprop,

pprop ::= Po∼p[pathprop], pquery ::= Po=?[pathprop],

matom ::= pprop | pquery | rwdprop | rwdquery,

where p ∈ [0, 1],∼∈ {<,≤, >,≥} , o ∈ {max,min, ∅} , k ∈ N ∪ {inf}.
With the syntax defined, we encode the motivating property (Prop. 1) in IPL

below. We use quantification to bind constraints on task sequences in Vpo (with
task attributes start, end, and expected energy) and a PCTL query for Mpl.

∀t1, t2, t3 : Tasks · t1.type = t3.type = STR ∧ t2.type = ROT ∧ (1)

t1.end = t2.start = t3.start ∧ t1.start 6= t3.end ∧ Σ3
i=1ti.energy ≤ MaxBat →

Pmax=?[(F loc = t2.startloc) ∧ (F loc = t3.startloc) ∧
((loc = t1.start) U (loc = t2.start U (loc = t3.start U loc = t3.end)))]

{|initloc = t1.start, goal = t3.end, initbat = Σ3
i=1ti.energy + err cons|} = 1.

To summarize, IPL formulas express quantified modal constraints over sym-
bols in Σ. We use quantification outside of flexible atoms to preserve modularity.
Further, we extended the flexible part of IPL with two model property languages.

5.3 Semantics

Here we give the meaning to the IPL syntax in terms of structure Γ by reducing
a formula to either Γ’s model part (I M

q ) or Γ’s the view part (I V), but not both.
Domain Transfer Interpretation is based on semantic domains – collections
of formal objects (e.g., numbers) in terms of which syntax elements can be fully
interpreted. For IPL we define two domains: the model domain (DM) and the
view domain (DV). DM is associated with I M

q , and DV— with I V.

Definition 7 (Belonging to semantic domain). Syntactic element s belongs to
a semantic domain D if there exists an interpretation I such that I (s) ∈ D.

DM and DV are defined in Tab. 1: the first and third columns contain syntax
elements that belong to them. For example, models interpret state variables using
their structures, and views can interpret quantified statements using satisfiability
solvers. Both domains interpret symbols from background theories (IB).



View domain DV Is transferable Model domain DM

var Yes, by value

elem Yes, by reference

prop Yes, by value

vfunc Yes, by value, if all arguments
are transferable. Otherwise, no.

rterm Yes, by value

∀x : X · f No

No stvar

No mfunc

No matom

Yes, by value mdlinst

Constants and bfunc from background theories. Interpretation IB .

Table 1. Semantic domains and transfer in IPL.

The middle column of Tab. 1 indicates if a syntax element, once interpreted,
can be transferred to the other domain, i.e., if a bijection between its evaluations
and some set in the other domain exists. “By value” is mapping to a constant in
the other domain. “By reference” is mapping to an integer ID (e.g., for elem,
unique integer IDs are generated for referencing in the model). Notice that view
domain elements are mostly transferable to the model domain (except quantifi-
cation). To support modularity, models can only transfer values of mdlinst.
Native semantics We interpret IPL formulas in the following context: Γ (V,
Mi with I M

q , I V, and IB), states q , potentially infinite sequences of states ω ≡
〈q1, q2, . . .〉, and mapping µ of variables to values. Starting from the bottom of
Fig. 1 with rigid terms (rterm), we gradually simplify the semantic context (de-
noted as the subscript of [[]] and on the left of |=). The meaning of standard logical
operations from formula and ratom is found in the online appendix [47].

[[const]]Γ = IB(const), [[var]]µ = µ(var), [[stvar]]Γ,q = I M
q (stvar),

[[vfunc(r1, . . . rn)]]Γ,µ = I V(vfunc)([[r1]]V,µ . . . [[rn]]V,µ) if r1 . . . rn ∈ rterm,

[[elem]]Γ,q,µ = I V(elem) = {e} ⊆ E, [[rterm.prop]]Γ,q,µ = I V(prop)([[rterm]]V,µ),

Γ, ω, µ |= ∀x : r · f iff Γ, ω, µ′ |= f, where r ∈ rterm,

f is either formula or ratom, µ′ = µ ∪ {x 7→ v} for all v in [[r]]Γ,µ.

Γ, µ |= (a)[|p1 . . . pn|] iff V,M([[p1]]V,µ . . . [[pn]]V,µ), µ |= a, where a ∈ matom.

We provide a only brief summary of the plugin semantics for LTL and PCTL
due to space limitations; for the full semantics see the online appendix [47].
LTL plugin semantics For LTL the model is a canonical transition system
Mts [40]. We evaluate tatom and formula on a sequence of states (ω). Logical
operations and quantifiers are evaluated the same as natively.

Γ, ω, µ |= f iff Γ, q , µ |= f, where q ∈ ω1,1, f ∈ term.

Γ |= formula iff ∀ω : Mts.trcs · Γ, ω, ∅ |= formula.

PCTL plugin semantics PCTL formulas are evaluated on MDPs (Mmdp), or
a DTMC Mdtmc if we collapse non-determinism [11]. Temporal operators mean
the same as in LTL except the bounded until.



For f ∈ pprop and rwdprop, Probπ(q , f) is a probability of f holding after
q for policy π from Π:

Γ, q , µ |= Po∼p[f ] iff optπ∈Π Probπ(q , [[f ]]Γ,µ) ∼ p,
Γ, q , µ |= Ro∼p[f ] iff optπ∈Π Expπ(q , X[[f ]]Γ,µ) ∼ p,

where f ∈ pathprop;∼∈ {<,≤, >,≥} ; optπ∈Π is supπ∈Π if o ≡ max, infπ∈Π if
o ≡ min, no-op if o ≡ ∅; Xf is a random reward variable, Expπ is its expectation.

Now the semantics of IPL has been fully defined, in a way that formalized
Eq. 1 expresses the intent of informal Prop. 1. Formulas are evaluated modularly,
by their reduction to subformulas, each of which is interpreted by I V, I M

q , or IB .

5.4 Verification Algorithm

Suppose an engineer needs to verify an integration formula f with a signature
Σ against Γ, i.e., check if f is a sentence in the IPL theory for Γ.

Problem 1 (IPL formula validity). Given f ∈ formula in Σ and a corre-
sponding Γ, decide whether Γ |= f .

Below we step through Alg. 1 that solves Prob. 1. The algorithm uses several
transformations, all of which are formally defined in the online appendix [47].
The first step is equivalently transforming f to its prenex normal form (PNF, i.e.,
all quantifiers occurring at the beginning of the formula), denoted ToPNF (f).

Algorithm 1 IPL verification algorithm

1: procedure Verify(f,M)
2: f ← ToPNF (f) . Put the formula into the prenex normal form
3: fFA ← FuncAbst(f̂) . Replace model instances with functional abstractions
4: fCA ← ConstAbst(f̂) . Replace model instances with constant abstractions
5: f̂FA ← RemQuant(fFA) . Remove FA quantifiers
6: f̂CA ← RemQuant(fCA) . Remove CA quantifiers
7: sv ← all µ s.t. ∃I · I , µ |= f̂FA 6⇔ f̂CA . Saturation: find all variable values

that satisfy non-matching abstractions
8: I Fsv(Fi(µ))← [[mdlinsti]]M,µ for each µ ∈ sv . Model checking: run model

instances to interpret functional abstractions on the above values
9: if ∃I · I Fsv ⊆ I ∧ I |= ¬fFA then return ⊥ . If the FA formula’s negation is

satisfiable given the constructed interpretation, return false
10: else return > . Otherwise, return true

The next step is to replace occurrences of instance terms mdlinsti (interpre-
tation of which is yet unknown to views/SMT) with two kinds of abstractions:
1. Functional abstraction (FA). FA replaces mdlinsti with uninterpreted func-
tions Fi. The arguments of these functions are the free variables that are present
in the syntactic subtree of mdlinsti. (Below, x ≡ x1 . . . xn.)

fFA ≡ FuncAbst(f) = Q1x1 : D1 . . . Qnxn : Dn · f̂(x, F1(x) . . . Fm(x)),



2. Constant abstraction (CA). CA replaces mdlinsti with uninterpreted con-
stants.

fCA ≡ C(f) = Q1x1 : D1 . . . Qnxn : Dn · f̂(x, C1 . . . Cm).

Next, we remove all quantifiers (RemQuant(fFA) = f̂FA, RemQuant(fCA)

= f̂CA), replacing all bound quantified variables with free ones.

fFA ≡ Q1x1 : D1 . . . Qnxn : Dn · f̂FA(x), fCA ≡ Q1x1 : D1 . . . Qnxn : Dn · f̂CA(x).

We look for interpretations (I Fsv) of model instances that affect validity of
f . I Fsv are characterized by valuations µ of free variables that are arguments for
Fi. These interpretations are also subsumed by I F— a full interpretation of Fi
on all possible variable assignments that coincides with semantic evaluation of
model atoms: I F (Fi(µ)) = [[mdlinsti]]M,µ for any µ ∈ D1 × . . .Dn, i ∈ [1,m].

Instead of constructing full I F (which requires exhaustive model checking),
we determine I Fsv by looking for µ for that make the values of FA and CA differ. In
other words, such valuations that it is possible to interpret the two abstractions
so that one formula is valid and the other one invalid. That is, we construct a set
sv that contains all µ satisfying the search formula for f : ∃I ·I , µ |= f̂FA 6⇔ f̂CA.

In the process of saturation, the algorithm enumerates all such µ by iteratively
finding and blocking them. With a finite number of µ, it will terminate once the
sv is saturated. To terminate, it is sufficient that each Di is finite, but not
necessary: a constrained formula may have finite sv with infinite Di.

Once variable assignments sv are determined, we can construct I Fsv (a subset
of I F ) by directly executing behavioral checking of mdlinsti on concrete values:

I Fsv(Fi)(µ) = [[mdlinsti]]M,µ for all µ ∈ sv and all i ∈ [1,m]. (2)

Finally, the algorithm performs a validity check by checking satisfiability
of the negation of fFA. f is valid iff the check fails to find an interpretation
that agrees with I Fsv and satisfies ¬fFA. We implemented this algorithm in an
IPL IDE based on Eclipse (https://www.eclipse.org, with its source code
online (https://github.com/bisc/IPL). More information about the IDE and
an illustration of Alg. 1 on the running example is in the online appendix [47].

6 Evaluation

Here we evaluate IPL from a theoretical (soundness and termination of the
algorithm) and practical (checking integration for a mobile robot) standpoint.

To avoid false positives/negatives, IPL verification should produce sound
results. We prove that any answer returned by Alg. 1 is correct with respect to the
semantics (independently of the plugins). To be valuable, the algorithm should
terminate on practical problems. We hence provide the termination conditions.

We show that interpretations of mdlinst over sv determine the formula’s
validity. Correctness and termination follow directly from this result in Cor. 2.

https://www.eclipse.org
https://github.com/bisc/IPL


Theorem 1. Absence of flexible interpretations that agree with I Fsv and satisfy
¬fFA is necessary and sufficient for validity of fFA on I F :

@I · I Fsv ⊆ I ∧ I |= ¬fFA iff I F |= fFA.

Proof Sketch. Soundness follows from straightforward instantiation. For com-
pleteness, we assume for contraction that I F |= fFA and instantiate a µ that
both satisfies fFA and does not, depending on the interpretation. We show that
µ ∈ sv to derive a contradiction. Full proof is in the online appendix [47].

Thm. 1 leads to two corollaries (see their proofs in the online appendix [47]).

Corollary 1. Validity of formula f is equivalent to unsatisfiability I Fsv |= ¬fFA.

M |= f iff @I · I Fsv ⊆ I ∧ I |= ¬fFA.

Corollary 2. Alg. 1 is sound for solving Prob. 1. The algorithm terminates if (i)
satisfiability checking is decidable, (ii) behavioral checking with M is decidable,

and (iii) search formula f̂FA 6⇔ f̂CA has a finite number of satisfying values for
free variables (e.g., when quantification domains Di are finite).

6.1 Case Study: Adaptive Mobile Robot

To assess the practical applicability of IPL, we guided our case study with three
questions: 1. What is the role of integration properties in real systems? 2. Can
we specify them with IPL? 3. Is IPL verification tractable in practice?

To address these questions, we applied IPL to a system in a case study [48].
The system was chosen to meet the following criteria: it must be a running system
to ensure realism, it must be from the CPS domain to ensure fit, it must include
multiple models using different formalisms to evaluate IPL’s expressiveness, and
we had to have access to domain experts to answer questions and assess useful-
ness. A TurtleBot 2 robot (described in Sec. 2) implemented using the Robot
Operating System (ROS) [49] for sensing, localization, and navigation, and a
model-based adaptive system for planning the robot’s mission-related actions
meets all of these criteria. We conducted a historical review with the project’s
artifacts to discover relevant models and integration properties. The case study
models are available online (https://github.com/bisc/IPLProjects).

Our case study focused on a planning model Mpl and a power model Mpo

because power is a prominent concern in the system and these two models have
a complex dependency. Both models co-evolved throughout the project, and we
collected over 10 variants of these models with of varying sophistication.
Integration Properties. An example integration property between Mpl and
Mpo is that they must agree on energy spent in various missions; otherwise
the robot may run out of power. (A mission is made up of different energy-
spending motion tasks such as forward movement, rotation, and charging. A
power-successful mission can be done with a given initial power budget.)
View Modeling and Verification. To formalize the integration properties, we
chose to create a view (Vpo) for Mpo and combine it with a behavioral interface

https://github.com/bisc/IPLProjects


to Mpl. There are many ways to construct an appropriate view, and we took the
route of creating a task library — enumerating all relevant atomic tasks.

Vpo has to agree with Mpl on the task primitives, otherwise the integration
check will always fail. Each motion command is an architectural element with its
own id, startloc, endloc, and energy (which is computed by Mpo given a distance
and a speed, hence making Vpo a correct view for Mpo). The only requirement
for the view is that it contains all the objects of interest (here, atomic tasks).

Another view is a map view (Vmap), containing locations (as components)
and their connections. We discovered 5 maps, organized in two categories. The
first category contains 9 locations (including 1 charging station) and 9-10 edges.
The second category contains 12 locations (including 4) and 13 edges.

Both Vpo and Vmap have been created by automated transformations that
require the same map artifact. Vpo requires equations from Mpo and outputs
a library of tasks encoded in the Architecture Analysis and Design Language
(AADL) [50]. Vmap outputs a list of locations in AADL. In total, we generated
over 30 variants of views to represent relevant combinations of task primitives.

Using the above view abstractions, we specified dozens of integration prop-
erty variants (similar to Eq. 1) for various mission features and lengths. In map-
related properties, quantified variables iterate over locations. In power-related
properties, quantified variable iterate over atomic tasks. Examples of these prop-
erties are highlighted in the online appendix [47].
Outcomes. To answer our first question (see top of Sec. 6.1), we discovered that
complex integration properties appear when several models contain interrelated
data (in our case, locations, connections between them, and energy expenditures
for tasks). These properties serve as steps in safety reasoning that would oth-
erwise use oversimplified and unsupported assumptions (e.g., models agree on
energy). If these assumptions are not satisfied, the system falls short of its goals.
Thus, IPL fills in an important niche of reasoning for multi-model systems.

To answer the second question, we focused on multiple variants of power-
related integration properties for Mpo and Mpl.We were able to represent all rel-
evant point-to-point missions up to a bounded number of recharging actions. The
end-to-end power-safety argument for the robot relies on these integration prop-
erties: if Mpo has worst-case error err pow , Mpl has worst-case error err mdp,
the worst-case consistency error is err cons, then to not run out of power, the
battery has to have at least g(err pow , err mdp, err cons) charge during any ex-
ecution, where g is some function (addition in simple cases). Thus, we observed
that integration properties verify bounds of consistency errors, which are inputs
to end-to-end safety arguments.

We discovered several critical inconsistencies in the models we observed: (1)
the MDP does not check whether the battery was enough for the last step (thus,
in some missions the robot would run out); (2) turn energy was inconsistent
making one turn action add energy to the battery (caused by a bug in the
model generation code); (3) Mpo and Mpl disagreed significantly in their energy
predictions for tasks with near-zero times because of the non-zero y-intersect in
Mpo (recall that it was constructed using regression). We therefore conclude that
IPL is capable of finding model inconsistencies in real-world projects.



Performance. We evaluated the performance of the Eclipse-based IPL imple-
mentation using the power-related property variants. Specifically, we executed
24 verification runs by varying the number of tasks and the map and toggling the
mission features—variable length missions, charging, and rotations. IPL’s per-
formance is reasonable for practical purposes, with a remarkably low overhead.
Although larger missions with more features led to substantially longer times,
IPL finished within several hours. The details are in the online appendix [47].

7 Discussion

This paper makes a significant step towards bridging the semantic gap between
heterogeneous CPS models. The Integration Property Language enables systems
engineers to specify expressive properties over behavioral and static semantics of
multiple models in a way that is both modular and extensible. IPL specifications
are soundly checkable with a combination of SMT solving and model checking.
The case study showed that IPL can encode relevant real-world integration prop-
erties and verify them in reasonable times.

IPL relies on existing views, models, and analysis tools for reasoning. It
also shares their limitations on automation and performance. In practice, extra
automation or manual effort is required for views to remain up-to-date with
models. IPL performance is limited by satisfiability solving for many constraints
and quantified variables. Improvements in the state-of-the-art satisfiability and
model checking should lead to comparable improvements in the IPL performance.

IPL allows behavioral checking to be carried out independently of where its
inputs come from, thereby supporting custom workflows in diverse engineering
disciplines. This freedom, however, comes at a cost of expressiveness: we could
not allow complete transfer of view functions to DM (Tab. 1 allows it only for
transferable arguments), which would need callbacks from model checking to
views to evaluate a view function. This feedback loop would create a dependency
from models to views and negatively impact modularity and extensibility of IPL.

Future work will focus on three areas: (1) incorporating other property lan-
guages into IPL and conducting more case studies, (2) handling models (such as
Simulink) that are widely used in CPS but do not have a rigorous property lan-
guage, and (3) an analysis of scalability and effectiveness with respect to other
integration methods (e.g., the “supermodel” approach).
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