
The Compound Interest in Relaxing Punctuality?

Thomas Ferrère

IST Austria

Abstract. Imprecision in timing can sometimes be beneficial: Metric
interval temporal logic (MITL), disabling the expression of punctuality
constraints, was shown to translate to timed automata, yielding an
elementary decision procedure. We show how this principle extends to
other forms of dense-time specification using regular expressions. By
providing a clean, automaton-based formal framework for non-punctual
languages, we are able to recover and extend several results in timed
systems. Metric interval regular expressions (MIRE) are introduced,
providing regular expressions with non-singular duration constraints. We
obtain that MIRE are expressively complete relative to a class of one-
clock timed automata, which can be determinized using additional clocks.
Metric interval dynamic logic (MIDL) is then defined using MIRE as
temporal modalities. We show that MIDL generalizes known extensions
of MITL, while translating to timed automata at comparable cost.

1 Introduction

Regular expressions (RE) [20] are a basic notion in computer science. They provide
a simple algebraic way to describe finite-state behaviors. Since their introduction
in verification and testing, alongside linear temporal logic (LTL) [32], regular
expressions have also proven to be a very practical formalism to specify discrete
systems behavior [14,36]. Yet not all applications enjoy the synchronous, discrete-
time style of modeling captured by finite automata. Modern computerized systems
are more asynchronous in nature, calling for a different level of abstraction in
which time may no longer be discrete.

Timed automata (TA) [2] are widely regarded as a natural extension of
finite-state theory to dense-time. This model of computation uses real-valued
variables known as clocks to control delays between events. The strength of timed
automata, beyond the simplicity of their definition, comes from their theoretical
properties: the emptiness problem is solvable in polynomial space, timed regular
languages are closed under positive Boolean operations, and their untiming yields
back regular languages. However the standard, nondeterministic model (NTA) is
not closed under complement, while the deterministic model (DTA) is not closed
under concatenation or Kleene star.

Negation is a desirable operation in any specification language. Metric tem-
poral logic (MTL) [21] is a well-studied, established dense-time specification
? This research was supported by the Austrian Science Fund (FWF) under grants
S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award).

language. Through negation, the set of languages described in MTL is closed
under complement. However satisfiability of MTL is non-elementary under the
hypotheses of [30], and undecidable in general [3,31]. Timed regular expressions
(TRE) [6] constitute an interesting alternative to MTL, both powerful and intu-
itive. The emptiness of TRE is also decidable in polynomial space, since TRE
translate to timed automata in polynomial time [6]. But TRE do not feature a
negation operator, which would render them undecidable.

Virtually all negative results in timed systems, such as the undecidability of
language inclusion for timed automata, rely on the ability to enforce real delays
with infinite precision—some extreme form of punctuality. When no semantic
restriction is placed on the variability or duration of behaviors, a single unit of
time can hold an arbitrary amount of information, which can then be repeatedly
transfered from one time unit to the next, encoding Turing computations. A
standard way to regain decidability is to bound the variability of behaviors [16,28].
Another, less conventional way is to bound their duration [29].

The syntactic restriction of [3] simply bounds the precision timing constraints—
in effect relaxing punctuality. Decidability of the resulting metric interval temporal
logic (MITL) [3] follows, by translation to timed automata. Subsequently, exten-
sions of MITL with finite automata [37,17] and threshold counting [18] have then
been proposed, enjoying special connections with monadic logic [37,19,17]. In this
context, our contribution consists in (a) the definition of RE-based variants of
MITL for specifying timed behaviors; (b) a simple automaton-based framework
in which several results regarding these variants can be derived (Figure 1).

In particular, we show how to adapt the subset construction of [10] to deter-
minize arbitrary control structures, by introducing the notion of metric interval
automaton (MIA, Section 3). These automata, reminiscent of [5], have a single
clock, checked against non-singular timing intervals, and reset after every check.
A simple state-elimination argument demonstrates that this model is equivalent
to the proposed metric interval regular expressions (MIRE, Section 3), which
therefore translate to deterministic timed automata (Section 4). By treating
metric interval automata as modalities, we redefine extended MITL (EMITL,
[37]). Building on our initial results, we propose metric interval dynamic logic
(MIDL, Section 5), equivalent in expressive power, and provide a translation to
non-deterministic timed automata (Section 6). This translation is compositional,
in the style of [26], and does not go through intermediate formalisms such as
monadic logic [37] or event clock automata [17].

MIA?
DTA†

NTA?

MIRE ?

MIDL† EMITL†

Fig. 1. Translations () and inclusions () between formalisms. Closure under Boolean
operations (†) and under regular operations (?) are indicated in exponent.

2 Preliminaries

In this section, we introduce basic definitions and relevant results. We take
the time domain T = R≥0 to be the non-negative reals. Given a set of times
R ⊆ T, we write ch(R) = {t ∈ T | ∃r, r′ ∈ R, r ≤ t ≤ r′} its convex hull and
t ⊕ R = {t + r ∈ T | r ∈ R} its Minkowski sum with some t ∈ T. We define
timed words as sequences alternating delays in T and events in some alphabet
Σ. Given a timed word w = t1a1 . . . tnan we write wi..j its infix ti+1ai+1 . . . tjaj
between positions 0 ≤ i ≤ j ≤ n. We denote by |w| = n the size of w and by
‖w‖ =

∑n
i=1 ti the duration of w. The empty word ε verifies |ε| = ‖ε‖ = 0.

Automata. Following [2], automata are equipped with a set X of clock variables.
A clock constraint is a Boolean combination of inequalities of the form x ./ c,
or x− y ./ c, where c ∈ N is a constant, ./ ∈ {≤, <,>,≥} is a comparison sign,
and x, y ∈ X are clocks. The set of clock constraints over X is denoted Φ(X). A
valuation v associates any clock variable x ∈ X with a delay v(x) ∈ T. We write
v |= φ when the constraint φ is satisfied under clock valuation v.

A timed automaton is a tuple A = (Σ,X,L, S, F,∆) where L is a set of
locations, S ⊆ L is a set of initial locations, F ⊆ L is a set of accepting locations,
and ∆ ⊆ L×Σ × Φ(X)× 2X × L is a set of edges. A state of A is a pair (`, v)
where ` is a location in L and v is a valuation over X. For delays t ∈ T and
events a ∈ Σ, transitions t

 and a−→ in A are defined as the following relations:

– (`, v)
t
 (`′, v′) if ` = `′ and v′ = v + t;

– (`, v)
a−→ (`′, v′) if v |= φ and v′ = v[Z ← 0] for some (`, a, φ, Z, `′) ∈ ∆.

Here v + t stands for the valuation such that (v + t)(x) = v(x) + t for all x ∈ X,
and v[Z ← 0] stands for the valuation such that v[Z ← 0](x) = 0 if x ∈ Z, v(x)
otherwise. A run of automaton A over the word w = t1a1 . . . tnan is a sequence
(`0, v0)

t1 (`0, v
′
0)

a1−→ . . .
tn (`n−1, v

′
n−1)

an−−→ (`n, vn) of transitions labeled by
delays and events in w such that `0 ∈ S, and v0(x) = 0 for all x ∈ X. The
language L(A) is the set of words over which there exists a run of A ending in
an accepting location. We say that A is deterministic when S = {`0} for some
`0, and φ1 ∧ φ2 is unsatisfiable for all (`, a, φ1, Z1, `1) 6= (`, a, φ2, Z2, `2) ∈ ∆.

Expressions. We define timed regular expressions (TRE) following [6], but without
intersection or projection. They are given by the grammar:

ϕ ::= ε | a | ϕ ∪ ϕ | ϕ · ϕ | ϕ∗ | ϕI
where a ∈ Σ, and I ⊆ T is an integer-bounded interval. As customary iterating
an expression ϕ is denoted in exponent, with by convention ϕ+ ≡ ϕ∗ · ϕ, and
ϕk ≡ ε if k = 0, ϕk ≡ ϕk−1 · ϕ otherwise. Any TRE ϕ can be associated with a
language L(ϕ) defined inductively as follows:

L(ε) = {ε} L(ϕ1 · ϕ2) = {w1w2 | w1 ∈ L(ϕ1), w2 ∈ L(ϕ2)}

L(a) = {ta | t ∈ T} L(ϕ∗) =
⋃∞

k=0
L(ϕk)

L(ϕ1 ∪ ϕ2) = L(ϕ1) ∪ L(ϕ2) L(ϕI) = {w | w ∈ L(ϕ), ‖w‖ ∈ I}.

The size of a TRE ϕ is the number of atomic expressions it contains. Its depth
d(ϕ) is the level of nesting of timing constraints in ϕ, defined by d(a) = d(ε) = 0,
d(ϕ · ψ) = d(ϕ ∪ ψ) = max{d(ϕ),d(ψ)}, d(ϕ∗) = d(ϕ), and d(ϕI) = d(ϕ) + 1.
Theorem 1 (TRE ⇒ NTA, [6]). For any TRE of size m and depth n, one
can construct an equivalent timed automaton with n clocks and m+ 1 locations.

Logic. Metric temporal logic (MTL) [21] extends LTL [32] by providing the until
operator with a timing interval. MTL formulas are given by the grammar:

ψ ::= a | ψ ∨ ψ | ¬ψ | ψ UI ψ

where a ∈ Σ and I is an integer-bounded interval. Operators eventually and always
are defined by letting ♦I ϕ ≡ >UI ϕ and �I ϕ ≡ ¬♦I ¬ϕ. The timing interval
[0,∞) is usually omitted as subscript. Metric interval temporal logic (MITL) [3]
is the fragment of MTL where intervals I are non-singular (inf I < sup I).

The semantics |= of MTL and MITL is defined over pointed words, pairs (w, i)
of timed word w and position 0 < i ≤ |w|+ 1, as follows:

(w, i) |= a iff wi−1..i = ta for some t ∈ T
(w, i) |= ¬ψ iff (w, i) 6|= ψ

(w, i) |= ψ1 ∨ ψ2 iff (w, i) |= ψ1 or (w, i) |= ψ2

(w, i) |= ψ1 UI ψ2 iff (w, j) |= ψ2 for some j > i such that ‖wi..j‖ ∈ I
and (w, k) |= ψ1 for all i < k < j.

The language L(ψ) of formula ψ is defined by L(ψ) = {w | (w, 1) |= ψ}. The size of
an MITL formula ψ is the number of temporal operators it contains. Its resolution
r(ψ) is the maximal relative interval width in ψ, defined by r(a) = 0, r(ψ1∨ψ2) =
max{r(ψ1), r(ψ2)}, r(¬ψ) = r(ψ), and r(ψ1 UI ψ2) = max{r(ψ1), r(ψ2), r(UI)},
where r(UI) =

⌊
sup I

sup I−inf I

⌋
+ 2 if sup I <∞, 1 otherwise.

Theorem 2 (MITL ⇒ NTA, [3]). For any MITL formula of size m and
resolution n, one can construct an equivalent timed automaton with 2mn clocks
and 28mn+1 locations.

3 Metric Interval Regular Expressions

We now introduce metric interval regular expressions (MIRE) as TRE of depth 1
and devoid of singular timing intervals. Formally, they are given by the grammar:

ϕ ::= γI | ϕ · ϕ | ϕ ∪ ϕ | ϕ∗

γ ::= ε | a | γ · γ | γ ∪ γ | γ∗

where a ∈ Σ and I is a non-singular, integer-bounded interval. Timing interval
[0,∞) is usually omitted, that is, we write γ in place of γ[0,∞) in MIRE. The
resolution of a MIRE is defined similarly as for MITL.

Example 1. Consider the expression (a ∪ b · (a∗ · b)[2,3])∗. It describes sequences
of events a and b in which every odd occurrence of b is followed by another (even)
occurrence of b within 2 to 3 time units.

Automaton Model. We define metric interval automata (MIA) as timed automata
with a single clock x in which every edge (`, a, φ, Z, `′) is such that either Z = ∅
and φ = >, or Z = {x} and φ ≡ x ∈ I for some non-singular interval I. Here x ∈ I
is the abbreviated notation for constraint x ≥ c when I = [c,∞), x ≥ c ∧ x ≤ d
when I = [c, d], and similar when I is a (semi-)open interval.
Proposition 1 (MIRE ⇔ MIA). Every MIRE language is recognizable by
MIA, and every MIA language is expressible as MIRE.

Direction ⇒ is a refinement of Theorem 1, and will be proved in Section 4.
We treat direction ⇐ in two steps. Let A be a MIA. Assume without loss of
generality that locations of A are partitioned into two sets L0 and L1, such that
edges to L0 reset the clock while edges to L1 don’t, and initial and final locations
of A lie in L0. First, we remove all locations in L1, using the state removal
technique in finite automata [35]. This yields an equivalent MIA A′ whose edges
are labeled by regular expressions instead of events. Second, we remove clock
resets and constraints from A′ by replacing every edge (`, γ, x ∈ I, {x}, `′) with
(`, (γ)I ,>, ∅, `′). We obtain a finite automaton with MIRE labels. We perform
again standard state removal to eliminate intermediate locations in L0. The
resulting automaton has only one edge, labeled by a MIRE equivalent to A.

Comparison with MITL. Following Proposition 1, all MIRE properties can be
checked using one clock. In contrast, some MITL properties require more than one
clock, even when using nondeterminism. For instance the formula �(a→ ♦[1,2] b)
requires two clocks [25]. In the other direction MIRE feature untimed modulo-
counting languages, such as (a2)∗, not expressible in MITL. More interestingly,
MIRE also feature additional timed properties.
Example 2. Consider the expression χ ≡ a · ((a+)[1,2])+ over the alphabet {a}.
It describes words w with a subsequence of events a from the first to the last of
w such that pairs of adjacent events are separated by 1 to 2 units of time.
We show similarly as in [18] that the language of χ in Example 2 cannot be
expressed in MITL. For this, define a family of words (wn) as follows: w0 = ε,
and wn = 3

4 awn−1 for all n > 0. Observe that wn ∈ L(χ) iff n > 1 and n is
odd, as illustrated in Figure 2. In contrast for every MITL formula ψ there exist
a bound k such that wn ∈ L(ψ) iff wn+1 ∈ L(ψ), for all n ≥ k. This bound is
straightforward to obtain by structural induction. Thus, L(χ) 6= L(ψ).

s
aaaaaaaaaaaaa

0 1 s3 s3 + 1 s3 + 2 s8 s8 + 1 s8 + 2

Fig. 2. Timed word w13, with events a occurring at absolute times s = s1, s2, . . . , s13.
Expression χ ≡ a · ((a+)[1,2])+ entails only one possible decomposition of w13 as shown.
Events at times si for i even do not appear in this decomposition but are locally
indistinguishable from those at sj for j odd.

4 From MIRE to Deterministic Timed Automata

In this section, we show that MIRE translate to deterministic timed automata.
The first step of the procedure translates a MIRE ϕ into an equivalent MIA Aϕ
in a standard way. The second step performs some kind of subset construction
to turn Aϕ into a deterministic automaton A′ϕ. Because timed automata have a
bounded number of clocks, over a given timed word automaton A′ϕ cannot store
the set of possible states of Aϕ explicitly. To this effect we adapt the notion of
approximation of [10] to group in intervals possible clock values in Aϕ that have
a similar future. We show the soundess of this approximation, and demonstrate
how it can be implemented in a deterministic automaton.

Translation to MIA. Automaton Aϕ = (Σ, {x}, Lϕ, Sϕ, {`ϕ}, ∆ϕ) equivalent to
the MIRE ϕ is obtained by structural induction. We assume that automata given
by induction hypothesis have disjoint sets of locations, but share the same clock.

– Atomic expressions: Aε has its final location `ε marked as initial, and no
edge; Aa further has one edge labeled a from `ε to its final location `a.

– Disjunction: Aϕ∪ψ is obtained by replacing `ϕ and `ψ with `ϕ∪ψ in the
component-wise union of Aϕ and Aψ.

– Concatenation: Aϕ·ψ is defined by letting Lϕ·ψ = Lϕ ∪Lψ \ {`ϕ}, Sϕ·ψ = Sϕ
if `ϕ /∈ Sϕ, Sϕ·ψ = Sϕ ∪ Sψ \ {`ϕ} otherwise, and `ϕ·ψ = `ψ. The set ∆ϕ·ψ
is obtained from ∆ϕ ∪∆ψ by replacing every edge (`, a, φ, Z, `ϕ) with edges
(`, a, φ, Z, `′) for all `′ ∈ Sψ.

– Kleene star: without loss of generality, assume that ϕ+ is primitive and ϕ∗
is derived as ε ∪ ϕ+. Define Aϕ+ by letting Lϕ+ = Lϕ, Sϕ+ = Sϕ, `ϕ+ = `ϕ,
and ∆ϕ+ = ∆ϕ ∪ {(`, a, φ, Z, `′) | (`, a, φ, Z, `ϕ) ∈ ∆ϕ, `

′ ∈ Sϕ}.
– Duration constraint: AγI is defined by LγI = Lγ , SγI = Sγ if 0 ∈ I, SγI =
Sγ \ {`γ} otherwise, and `γI = `γ . The set ∆γI is obtained from ∆γ by
replacing every edge (`, a,>, ∅, `γ) with (`, a, x ∈ I, {x}, `γ).

Example 2 (Continued). Consider the expression χ ≡ a · ((a+)[1,2])+ previously
described. Using the above procedure, it translates into the automaton Aχ
depicted in Figure 3.

`0 `1 `2

x ≥ 0
x← 0

1 ≤ x ≤ 2
x← 0

>

1 ≤ x ≤ 2
x← 0

Fig. 3. Automaton Aχ translating χ (event labels are omitted).

Parallel Runs. Fix A a metric interval automaton with clock x. We now treat
valuations of x as real values t ∈ T, and introduce the following definitions. An
interval state (`, J) pairs a location ` with an interval J , representing the set
of states {(`, t) | t ∈ J}. A configuration is a set of interval states. Transition
functions t

 ,
a−→ between configurations C,D of A are such that C t

 D iff
D = {(`, t⊕ J) | (`, J) ∈ C}, and C a−→ D iff D = {(`′, J ′) | ∃(`, J) ∈ C, (`, J) a−→
(`′, J ′)}. Here, by (`, J)

a−→ (`′, J ′) we mean that A has an edge of the form
(`, a, φ, Z, `′) such that t |= φ for at least one t ∈ J , and J = J ′ if Z = ∅, J = {0}
otherwise. The parallel run of automaton A over some word w = t1a1 . . . tnan is
a sequence of transitions C0

t1 C ′0
a1−→ . . .

tn C ′n−1
an−−→ Cn labeled by w, where

the initial configuration C0 is the set of interval states (`, [0, 0]) for ` initial. All
intervals appearing in a parallel run are singular.

Lemma 1. There exists a run of A over w finishing in a given location ` iff the
final configuration of the parallel run of A over w features `.

C0
0.5

a−→{(`1, [0, 0])} C0
0.5

a−→
≺
99K{(`1, [0, 0])}

1.3

a−→{(`1, [0, 0]),
1.3

a−→
≺
99K{(`1, [0, 0]),

(`1, [1.3, 1.3]), (`2, [0, 0])} (`1, [1.3, 1.3]), (`2, [0, 0])}
0.3

a−→{(`1, [0, 0]), (`1, [0.3, 0.3]),
0.3

a−→
≺
99K{(`1, [0, 0.3]),

(`1, [1.6, 1.6]), (`2, [0, 0])} (`1, [1.6, 1.6]), (`2, [0, 0])}
0.2

a−→{(`1, [0, 0]), (`1, [0.2, 0.2]),
0.2

a−→
≺
99K{(`1, [0, 0.5]),

(`1, [0.5, 0.5]), (`1, [1.8, 1.8]), (`2, [0, 0])} (`1, [1.8, 1.8]), (`2, [0, 0])}
0.9

a−→{(`1, [0, 0]), (`1, [0.9, 0.9]), (`1, [1.1, 1.1]),
0.9

a−→
≺
99K{(`1, [0, 1.4]),

(`1, [1.4, 1.4]), (`1, [2.7, 2.7]), (`2, [0, 0])} (`1, [2.7, 2.7]), (`2, [0, 0])}

Fig. 4. The parallel and ≺-parallel runs of Aχ over w.

Example 2 (Continued). Consider timed word w = 0.5 a 1.3 a 0.3 a 0.2 a 0.9 a and
automaton Aχ. The parallel run of Aχ over w is shown in the left part of Figure 4.
Since `2 appears in the final configuration, we have w ∈ L(Aχ).

Approximation. We now define an approximation relation (to be correct, a
simulation relation) between configurations closely matching the one in [10]. Let
c, d stand respectively for the largest b and smallest b− a across clock constraints
in A of the form x . a ∧ x / b for some . ∈ {>,≥} and / ∈ {<,≤}. In the
absence of such constraints, take c = 0 and d = ∞. Approximation relation
≺ over configurations will be used to merge intervals either less than d apart,
or extend beyond c. It is defined by letting C ≺ D when C \ {(`, I), (`, J)} =
D \ {(`, ch(I ∪ J))} for some (`, I) 6= (`, J) ∈ C, (`, ch(I ∪ J)) ∈ D such that
inf J − sup I < d and inf I − sup J < d, or sup(I ∪ J) > c. When all clock
constraints are strict (resp. non-strict) we can use ≥ c (resp. ≤ d) instead.

Approximate Parallel Runs. Let us now write C
≺
99K D when D is maximal

relative to ≺ such that C ≺∗ D, where ∗ denotes reflexive-transitive closure. A
≺-parallel run of automaton A over some word w = t1a1 . . . tnan is a sequence
of transitions C0

t1 C ′0
a1−→ C ′′0

≺
99K . . .

tn C ′n−1
an−−→ C ′′n−1

≺
99K Cn labeled by w

interleaved with approximations, from the initial configuration C0. Relation ≺
constitutes a faithful abstraction in the sense of the following lemma.

Lemma 2. For any word w, the set of locations that appear in final configurations
of the parallel, and ≺-parallel runs of A over w, are the same.

The approximation behaves deterministically: for any configuration C of A
there is a unique D such that C

≺
99K D. It also ensures the size of configurations

also stays bounded. Let m = |L| be the number of locations of A, and let n
be the resolution of A, defined by n =

⌊
c
d

⌋
+ 2 if d < ∞, 1 otherwise. For any

configurations C
≺
99K D of A, we have |D| ≤ mn.

Example 2 (Continued). The ≺-parallel run of Aχ over w, shown in the right
part of Figure 4, groups clock values stemming from events number 2 to 5 in w.
We check that `2 appears in the final configuration, and w ∈ L(Aχ).

Subset Construction. We translate a given MIA A = (Σ, {x}, L, S, F,∆) to the
deterministic timed automaton A′ = (Σ,X ′, L′, S′, F ′, ∆′) as follows.

– Clocks: X ′ = Y ∪ Y ′ with Y = {y1, y2, . . . , ymn}, Y ′ = {y′1, y′2, . . . , y′mn}.
– Locations: L′ = 2L×Y×Y

′
.

– Initial locations: S′ = {Q0}, where Q0 = S × {y1} × {y′1}.
– Accepting locations: F ′ = {Q ∈ L′ | Q ∩ (F × Y × Y ′) 6= ∅}.
– Edges: ∆′ is built as follows. For every source P ∈ L′, letter a, feasible set of

edges E ⊆ ∆, and potential target Q ∈ L′, we construct:
• constraint θ(P,E) ensuring that E is exactly the set of edges of A that

can be taken from P ;
• configuration R(P,E) reached when taking such edges;
• constraint λ≺(R,Q) ensuring that Q approximates R.

Edges from P to Q are guarded by the conjunction of θ and λ≺, and reset
either no clock, one clock in Y , or a pair of clocks in Y × Y ′.

Given a valuation v, clock pair yy′ ∈ Y × Y ′ represents the interval [v(y), v(y′)],
location Q ∈ L′ represents the configuration v(Q) = {(`, [v(y), v(y′)]) | `yy′ ∈ Q}.

Edges. We now present in detail the construction of ∆′. For yy′ ∈ Y × Y ′ and
φ ∈ Φ({x}) let φ[yy′] stand for the constraint φ in which y (resp. y′) replace x in
lower (resp. upper) bound comparisons. For any valuation v with v(y) < v(y′), we
have v |= φ[yy′] iff there exists t ∈ [v(y), v(y′)] such that t |= φ. Now let P ∈ L′
and a ∈ Σ. Denote by ∆(P, a) ⊆ ∆ the set of edges labeled a and whose source
location appears in P . Given a subset E ⊆ ∆(P, a), we define the constraint
θ(P,E) ensuring that edges fired from P upon event a are precisely those in E:

θ(P,E) ≡
∧

`yy′∈P,(`,a,φ,Z,`′)∈E
φ[yy′] ∧

∧
`yy′∈P,(`,a,φ,Z,`′)∈∆(P,a)\E

¬φ[yy′].

Clock resets are temporarily handled using fresh variables y0 and y′0, extending sets
of clocks to Y0 = Y ∪{y0}, Y ′0 = Y ′∪{y′0} and set of locations to L′0 = 2L×Y0×Y ′0 .
The target configuration R(P,E) ∈ L′0 when firing edges in E from P is defined
by letting

R(P,E) = {`′yy′ | `yy′ ∈ P, (`, a,>, ∅, `′) ∈ E} ∪ {`′y0y′0 | (`, a, φ, {x}, `′) ∈ E}.

When θ(P,E) holds, automaton A′ transits to a configuration that approximates
R(P,E). Given configurations Q,R ∈ L′0, we now define λ≺(R,Q) ensuring that
Q approximates R. We would like that v |= λ≺(R,Q) iff v(R)

≺
99K v(Q), for all

valuations v. But if some clocks share the same value, for a given R there may be
more than one Q such that v(R)

≺
99K v(Q). Priority is given to clocks with lowest

index. Given indices i, i′, j, j′ ∈ {0, . . . ,mn}, k ∈ {i, j} and k′ ∈ {i′, j′}, define

µii′jj′kk′ ≡ ((yi − y′j′ < c ∧ yj − y′i′ < c) ∨ (yi > d ∧ yj > d)) ∧
(yi > yk ∨ (yi = yk ∧ i ≤ k)) ∧ ((yj > yk ∨ yj = yk) ∧ j ≤ k) ∧
(y′i′ < y′k′ ∨ (y′i′ = y′k′ ∧ i′ ≤ k′)) ∧ (y′j′ < y′k′ ∨ (y′j′ = y′k′ ∧ j′ ≤ k′)).

For any ` ∈ L, constraint µii′jj′kk′ ensures that `yiy′i′ and `yjy′j′ should be merged
to `yky′k′ . The constraint λ≺(R,Q) is defined as the conjunction of two parts: (1)
the disjunction over well-formed chains of merges i1i′1j1j′1k1k′1, . . . , ihi′hjhj

′
hkhk

′
h

from R to Q of conjunctions of µ over the chains; (2) the conjunction of ¬µ
over all possible merges in Q. This guarantees that one such chain is (1) correct
and (2) maximal in length. We can now replace temporary variables y0, y′0 with
available clocks in Y ∪ Y ′. Let us define the set of clocks ZQ as follows:

– If both y0 and y′0 occur in Q, let ZQ = {yi, y′i′} for i, i′ ≥ 1 the least indices
such that yi, y′i′ do not occur in Q;

– If y0 occurs in Q but not y′0, let ZQ = {yi} for i ≥ 1 the least index such
that yi does not occur in Q;

– Otherwise, let ZQ = ∅.
We write Q ∈ L to denote the configuration Q in which y0, y′0 are replaced by
clocks in ZQ. The set of edges of A′ is obtained by letting

∆′ = {(P, a, θ(P,E) ∧ λ≺(R(P,E), Q), ZQ, Q) | P ∈ L′, a ∈ Σ,Q ∈ L′0,
E ⊆ ∆(P, a)}.

Theorem 3 (MIRE ⇒ DTA). For any MIRE of size m and resolution n,
one can construct an equivalent deterministic timed automaton with 2mn clocks
and 2m3n2+1 locations.

Example 2 (Continued). Applying the above procedure to Aχ, we obtain au-
tomaton A′χ of Figure 5. We use the following simplifications. In Aχ, any state
in location `1 with clock value above 2 cannot reach `2. We remove interval
states `yy′ from target configurations of A′χ for any y ∈ Y such that y > 2.
Transitions preserve the ordering of non-reset clocks, and we use this to simplify
clock constraints. Locations not (co-)reachable are also removed.

`0yy
′

`1yy
′

`2yy
′

`1yy
′

`1yy
′

`1zz
′

`2yy
′

`1zz
′

`2zz
′

`1zz
′

`1yy
′

`1zz
′

`2zz
′

>
y, y′ ← 0

y′ < 1

y ≤ 1
∧

y′ ≥ 1
y ← 0

1 <
y ≤

2
z, z ′←

0

y ≤ 1
y ← 0

1 <
y ≤

2

z,
z
′ ←

0

y ≤ 2
z ← 0

1 < z ≤ 2
y, y′ ← 0

z′ < 1 ∧ y > 2
z ← 0

z ≤ 1 ∧ z′ ≥ 1
z ← 0

z′ < 1

z ≤ 1
∧

z′ ≥ 1
z ← 0

1 <
z ≤

2

y,
y
′ ←

0

z ≤ 1
z ← 0

1 <
z ≤

2
y, y ′←

0

z ≤ 2
y ← 0

1 < y ≤ 2
z, z′ ← 0

y′ < 1 ∧ z > 2
y ← 0

y ≤ 1 ∧ y′ ≥ 1
y ← 0

Fig. 5. Automaton A′
χ determinizing Aχ (event labels are omitted).

5 Metric Interval Dynamic Logic

We now introduce metric interval dynamic logic (MIDL) as the dynamic logic of
MIRE. It provides linear dynamic logic (LDL) [13,15] with timing constraints.

Syntax. MIDL formulas ψ and expressions ϕ are given by the grammar

ψ ::= a | ¬ψ | ψ ∨ ψ | 〈ϕ〉ψ
ϕ ::= γI | ϕ · ϕ | ϕ ∪ ϕ | ϕ∗

γ ::= ε | ψ? | γ · γ | γ ∪ γ | γ∗

where a ∈ Σ and I is a non-singular integer-bounded interval. The size of
an MIDL formula is the total size of expressions ϕ in its modalities 〈ϕ〉. The
resolution of MIDL formulas is defined inductively as for MITL.

The form 〈ϕ〉ψ is known as suffix conjunction and is satisfied when ψ holds at
some future time instant such that ϕ matches the events from now to that time
instant. When ϕ is of the form γI for simplicity we write 〈γ〉I ψ in place of 〈γI〉ψ.
Observe that 〈ϕ1 · ϕ2〉ψ ⇔ 〈ϕ1〉 〈ϕ2〉ψ and 〈ϕ1 ∪ ϕ2〉ψ ⇔ 〈ϕ1〉ψ ∨ 〈ϕ2〉ψ, hence
when no star is applied to a timed subexpression, formulas can be rewritten using
modalities of the form 〈γ〉I only. The form ψ? is known as a test and matches
any time instant where ψ holds. We also write a in place of a? for any a ∈ Σ.
Using this convention, MIRE are a fragment of MIDL.

Semantics. The semantics |= of MIDL formulas is defined over pointed words,
with the same inductive definitions as MITL in the case of events a ∈ Σ and
Boolean connectives ¬, ∨. The case of suffix implication 〈ϕ〉 is as follows:

(w, i) |= 〈ϕ〉ψ iff (w, i, j) |≡ ϕ and (w, j) |= ψ for some j ≥ i.

The semantics |≡ of MIDL expressions is defined over bi-pointed words, triples
(w, i, j) of timed word w and positions 0 ≤ i ≤ j ≤ |w|, as follows.

(w, i, j) |≡ ε iff j = i

(w, i, j) |≡ ψ? iff j = i+ 1 and (w, j) |= ψ

(w, i, j) |≡ ϕ1 · ϕ2 iff (w, i, k) |≡ ϕ1 and (w, k, j) |≡ ϕ2 for some k
(w, i, j) |≡ ϕ1 ∪ ϕ2 iff (w, i, j) |≡ ϕ1 or (w, i, j) |≡ ϕ2

(w, i, j) |≡ ϕ∗ iff (w, i, j) |≡ ϕk for some k
(w, i, j) |≡ ϕI iff (w, i, j) |≡ ϕ and ‖wi..j‖ ∈ I.

This semantics definition is compatible with that of MIRE and TRE in general.
The language L(ψ) of formula ψ is defined by L(ψ) = {w | (w, 1) |= ψ}.

Temporal Logic. The until operator can be defined in MIDL as the abbreviation
ψ1 UI ψ2 ≡ 〈ψ1?

∗ · >?〉I ψ2. We also use operators always and eventually as
previously. In general MIDL is more expressive than MITL.

Example 3. Consider the formula ξ ≡ � a → 〈>?∗ · b · >?+〉(0,1) c) over the
alphabet {a, b, c, d}. It describes words in which every occurrence of a triggers in
the future within less than one time unit an occurrence of b followed by one of c.

A conjecture of [4], proved in [9], states that formulas similar to the one above
cannot be expressed in MITL. Replacing b, c by arbitrary formulas, we obtain
an instance of so-called Pnueli modality [18]. The simpler threshold counting
modalities 〈(>?∗ · ϕ?)k−1 · >?+〉I ϕ, requiring that ϕ holds k times within I time
units, already cannot be expressed in MITL for k > 1, see [18].

Automata Modalities. Let us define extended MITL (EMITL) by adding to
MITL the syntactic clause ψ ::= A(ψ1, . . . , ψm), where A is a metric interval
automaton over the alphabet 2{ψ1,...,ψm}. The semantics of this clause is such that
(w, i) |= A(ψ1, . . . , ψm) iff the word ti+1 Ψi+1 . . . tn Ψn is accepted by A, where
each tj is the j-th delay in w and each Ψj is the subset of formulas amongst
ψ1, . . . , ψm satisfied at position j.

Proposition 2 (MIDL ⇔ EMITL). Every MIDL translates to an equivalent
EMITL formula, and every EMITL translates to an equivalent MIDL formula.

We translate an MIDL formula into EMITL by recursively replacing every
suffix conjunction 〈ϕ〉ψ with the modality A(ψ1, . . . , ψm, ψ), such that A trans-
lates the expression ϕ · ψ? · (>?)∗ in which atomic expressions ψ1?, . . . , ψm?, ψ?
are replaced by compatible subsets of {ψ1, . . . , ψm, ψ}.

Example 3 (Continued). Formula ξ ≡ �(a→ (>?∗ · b · >?+)(0,1) c) is rewritten
in EMITL as ξ′ ≡ �(a→ B), where B is the MIA given in Figure 6.

Conversely EMITL translate to MIDL replacing automata A(ψ1, . . . , ψm) with
suffix conjunctions 〈ϕ〉 ¬ 〈>?〉>, where ϕ translatesA. Here the role of subformula
¬ 〈>?〉> is to recognize the last position in the word.

`0 `1 `2

>

b;>

>
c; 0 < x < 1
x← 0

>

Fig. 6. Automaton B appearing as subformula in ξ′.

Expressiveness. Supplementing MITL with automata modalities has been pro-
posed by [37] and [17]. The logic of [37] corresponds to the MIDL fragment
where all modalities ϕ are of the form 〈γ〉I , equivalently, where no star is applied
to a timed expression. We call this fragment basic MIDL, and show that it is
strictly less expressive. In particular, the MIRE χ ≡ a · ((a+)[1,2])+ of Example 2
cannot be expressed as a basic MIDL formula. The family (wn) of Section 3 is
not a witness of this fact, since it can be classified for χ using a simple modulo-
2 counter. Instead we consider timed words wkn, with k > 0 events clustered
around the events in wn, as illustrated in Figure 7. Formally, we let wk0 = ε
and wkn = tkn aw

k
n−1 for all n > 0, with delays tkn given by tkn = 1

2 + 1
4k if n ≡ 0

(mod k), tkn = 1
4k otherwise. We claim that for any basic formula ψ there is a k

such that for large enough n either both wkn and wkn+k satisfy ψ, or neither. This
disagrees with χ, which recognizes exactly one of wkn and wkn+k.

s
a a a a a a a a a a a a a a a a a a

0 1
s0 s0 + 1 s0 + 2 s0 + 3 s0 + 4

Fig. 7. Timed word w3
18 with events occurring at absolute times s = s0, . . . , s17. Ex-

pression χ ≡ a · ((a+)[1,2])+ entails several decompositions of w18 as shown. Over words
w3
n the number of events per interval [si + c, si + d] for c < d fixed integers and fixed n

is either constant or periodic with period 3 as a function of i < n− 4d.

6 From MIDL to Nondeterministic Timed Automata

In this section we present a compositional translation of MIDL based on temporal
testers [27,33,26]. The first step of the procedure turns the MIDL formula into
an EMITL formula, and we consider this step implicit. The second step builds
testers for every operator of the formula, and composes them together.

Temporal Testers. We introduce the framework of our translation. Let B be a
set of Boolean variables. Valuations u : B → {0, 1} are identified with elements
of 2B , under the convention that u(p) = 1 iff p ∈ u, for any p ∈ B. In the interest
of simplicity, we assume an alphabet of events of the form Σ = 2A. We call timed
component an automaton over an alphabet Σ′ of the form 2B for some B ⊇ A.
The projection of a timed word w = t1u1 . . . tnun over variables B onto variables

A is defined as w|A = t1(u1 ∩A) . . . tn(un ∩A). The synchronous product T1⊗T2
of timed components T1 and T2, defined in the expected way, is such that a timed
word w is accepted by T1⊗T2 iff w is accepted by both T1 and T2 when projected
onto their respective variables (see [26] for more details). Let ψ be a formula over
Σ = 2A and T a timed component over Σ′ = 2B with output variable p ∈ B \A.
We say that T [p] is a tester of ψ when the following conditions hold:

1. For all timed words w over Σ there exists a timed word w′ accepted by T
such that w is the projection of w′;

2. For all timed words w′ accepted by T , and all positions 0 < i ≤ |w′| it holds
(w′, i) |= p if and only if (w′, i) |= ψ.

Compositionality. The construction of a tester Tψ[p] for formula ψ is inductive
on the structure of ψ. For each subformula ψ′ of ψ, we construct a tester for its
main subformulas, and compose it with a tester associated to its main operator:

T¬ϕ[p] = T¬q[p]⊗ Tϕ[q]
Tϕ∨ψ[p] = Tq∨r[p]⊗ Tϕ[q]⊗ Tψ[r]

TA(ψ1,...,ψm)[p] = TA(q1,...,qm)[p]⊗ Tψ1 [q1]⊗ . . .⊗ Tψm [qm].

Testers for atomic formulas and propositional operators are simple one-state
components, with edges labeled by matching valuations of variables. Testers for
automata modalities are presented in the rest of this section. An acceptor Aψ of
L(ψ) is obtained by product of Tψ[p] with a two-state component enforcing that
p holds at position 1 in the input word, and projection onto Σ = 2A.

Automata Modalities. For a given MIA A = (Σ,X,L, S, F,∆), the tester TA[p]
predicts at each position whether A accepts the corresponding suffix, and outputs
the prediction in p. If TA[p] predicts that A accepts the suffix from i, then it
creates a positive obligation attached to an initial state, and nondeterministically
follows one run of A from this state. If TA[p] predicts that A rejects the suffix
from i, then it creates a negative obligation attached to all initial states, and
deterministically follows all runs of A from those states.

Let c and d be the maximum magnitude and minimum width of clock con-
straints in A, defined as in Section 4. We define 4 as the approximation relation
that verifies C 4 D when C\{(`, I), (`, J)} = D\{(`, ch(I ∪ J))} for some distinct
(`, I), (`, J), (`,K) ∈ C, (`, ch(I∪J)) ∈ D such that sup I∪J∪K−inf I∪J∪K < d
and K ∩ ch(I ∪ J) = ∅, or infK > inf J > c.

Approximation 4 nondeterministically merges two intervals amongst three
within the same window of length d. Assume inf J ≤ infK ≤ infH; after a delay
t ∈ T if t ⊕ K ⊆ I then either t ⊕ J ⊆ I or t ⊕ H ⊆ I. Similar remarks can
be made for intervals above c; this settles the correctness of the approximation
relative to positive obligations. For negative obligations we see that 4 is finer
than ≺ of Section 4. The approximation ≺ merges intervals separated by a period
less than d, while 4 merges intervals lying in a window less than d long.

Let m and n be the number of locations, and resolution of A. Any D such

that C
4
99K D for some C now has at most 2mn interval states.

+`0yy
′

−`0yy′

+`2yy
′

−`0zz′

+`0yy
′

+`0zz
′

+`1yy
′

−`0zz′

. . .

. . .

. . .

p

y, y
′ ← 0

¬p
y, y ′← 0

p ∧ y′ < 1
z, z′ ← 0 p

z, z
′ ← 0

b;¬p
z, z ′← 0

a, c, d;
¬p ∧ z′ < 1
z ← 0

c;¬p∧
0 < y ∧ y′ < 1

z ← 0

Fig. 8. A few locations and edges of component TB[p] (for convenience, the value of p
is handled using additional propositional constraints p and ¬p).

Subset Construction. We transform the MIA A = (Σ,X,L, S, F,∆) into the
tester TA[p] = (Σ′, X ′, L′, S′, F ′, ∆′) defined as follows.

– Clocks: X ′ = Y ∪ Y ′, where Y = {y1, . . . , y2mn} and Y ′ = {y′1, . . . , y′2mn}.
– Locations: L′ = 2{−,+}×L×Y×Y

′
, sets of (negative, positive) obligations.

– Initial locations: E′ = {∅}.
– Accepting locations: F ′ = 2({−}×(L\F)∪{+}×F)×Y×Y ′ , such that all positive
(negative) obligations are attached to accepting (rejecting) states.

– Edges: we define λ4(R,Q), ZQ and Q similarly as in Section 4, and let

∆′ = {(P, u, λ4(R,Q) ∧ θ(P,E), ZQ, Q) | P ∈ L′, u ∈ Σ′, E ∈ ∆(P, u ∩Σ),

R ∈ Ru(p)(P,E), Q ∈ L′0}

where θ(P,E), ∆(P, a) for a ∈ Σ, and Ri(P,E) for i = 0, 1 are defined below.

Given P ∈ L′ and a ∈ Σ, we denote ∆(P, a) the set of subsets E ⊆ ∆ such that
for all +`xx′ ∈ P there exists δ = (`, a, φ, Z, `′) ∈ E, and for all −`xx′ ∈ P and
δ = (`, a, φ, Z, `′), if δ ∈ ∆ then δ ∈ E. The constraint θ(P,E), defined similarly as
in Section 4, ensures E contains all feasible edges from negatively marked locations,
and one feasible edge from each positively marked location. We denote L′0 locations
of L′ with additional variables y0, y′0 as previously. Define the target configuration
R(P,E) ∈ L′0 when taking edges E from P as follows: R(P,E) = {s`′yy′ |
(`, a,>, ∅, `′) ∈ E, s`yy′ ∈ P} ∪ {s`′y0y′0 | (`, a, φ, {x}, `′) ∈ E, s`yy′ ∈ P}. When
the prediction p is false the set of possible target configurations is given by
R0(P,E) = {R(P,E)}, and when the prediction p is true, given by R1(P,E) =
{(R(P,E) ∪ {+`y0y′0}) | ` ∈ S}. This completes the construction of TA[p].
Theorem 4 (MIDL⇒NTA). For any MIDL formula of sizem and resolution
n one can construct an equivalent timed automaton Aϕ with 4mn clocks and
28m3n2+1 locations.

Example 3 (Continued). Consider automaton B of Figure 6. We illustrate the
process of constructing its tester in Figure 8. After constructing TB[p], we obtain
the tester for ξ′ as the product Tξ′ [r] = T� q[r] ⊗ Ta→p[q] ⊗ TB[p]. To get an
acceptor for ξ, we take the product of Tξ′ [r] with some acceptor of r and project
back the result onto alphabet Σ.

7 Discussion

We extended the punctuality relaxation of [3] to timed versions of regular ex-
pressions and dynamic logic, generalizing results of [37,17]. The expressions we
introduced have a direct connection with automata. Their expressiveness is lim-
ited to a small class of one-clock timed automata, also related to perturbed timed
automata [5]. However in the setting of dynamic logic, such expressions yield an
expressive specification language with good decidability properties:
Corollary 1. The satisfiability of MIDL and the model checking of timed au-
tomata against MIDL are EXPSPACE-complete.
The lower bound follows from the discrete-time case, while the upper bound is
obtained by reduction to timed automata language emptiness, see [3]. Decision
procedures for MITL have recently been gaining interest, with implementations
of [8,12] and formalization by [34]. An interesting direction for future work would
be to assess experimentally the efficiency of MIDL decision procedures derived
from Corollary 1.

Metric dynamic logic was independently proposed by [7] in the context
of monitoring. Extensions of metric temporal logic with regular expressions
modalities were also studied by [23]. The logic MITL+URat of [23] is equivalent
to basic MIDL discussed in the present paper. Its modalities ψ1 Uγ,I ψ2 can be
written 〈γ ∩ (ψ1?

∗ · >?)〉I ψ2 (the intersection ∩ of untimed expressions γ and
ψ1?
∗ · >? can be eliminated in polynomial time) and in the other direction 〈γ〉I ψ

rewrites into >Uγ,I ψ. Both logics are equivalent (and translate in polynomial
time) to the EMITL of [37]. Complexity of the satisfiability problem was not
studied by [37], whose proofs can only give non-elementary upper bounds. The
present work improves on the 2EXPSPACE upper bound of [23] by providing
a tight EXPSPACE construction. The more general MITL+Rat [23] has non-
elementary complexity. The position of MIDL in the expressiveness landscape of
decidable MTL variants (see also [22]) is a topic for future research.

The family of languages considered in this paper are all recognizable by
one-clock alternating timed automata (OCATA) [24,30]. Our determinization
procedure uses a timed variant of the classical subset construction inspired from
[10]. The authors of [10,11] consider the dual problem of eliminating universal
non-determinism in OCATA stemming from the translation [30] of MITL formulas.
The transition graph in an MIA has more structure than in OCATA stemming
from MITL translations, requiring additional clocks to follow states moving
to the same location using separate paths. While the emptiness problem for
OCATA is decidable over finite words, its complexity is non-elementary [24,30].
Generalizations of this model with Büchi conditions, two-wayness, or silent
transitions all lead to undecidability [1]. On the contrary our expressions and
logic have elementary decision procedures, which can in principle be extended to
handle ω-words, past operators, and continuous-time Boolean signals.

Acknowledgments. I thank Eugene Asarin, Tom Henzinger, Oded Maler, Dejan
Ničković, and anonymous reviewers of multiple conferences for their helpful
feedback.

References

1. Parosh Aziz Abdulla, Johann Deneux, Joël Ouaknine, Karin Quaas, and James
Worrell. Universality analysis for one-clock timed automata. Fundam. Inform.,
89(4):419–450, 2008.

2. Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer
science, 126(2):183–235, 1994.

3. Rajeev Alur, Tomás Feder, and Thomas A Henzinger. The benefits of relaxing
punctuality. Journal of the ACM, 43(1):116–146, 1996.

4. Rajeev Alur and Thomas A Henzinger. Logics and models of real time: A survey.
In Workshop/School/Symposium of the REX Project, pages 74–106. Springer, 1991.

5. Rajeev Alur, Salvatore La Torre, and Parthasarathy Madhusudan. Perturbed timed
automata. In Hybrid Systems: Computation and Control, pages 70–85. Springer,
2005.

6. Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expressions. Journal
of the ACM, 49(2):172–206, 2002.

7. David Basin, Srđan Krstić, and Dmitriy Traytel. Almost event-rate independent
monitoring of metric dynamic logic. In Runtime Verification, pages 85–102. Springer,
2017.

8. Marcello M Bersani, Matteo Rossi, and Pierluigi San Pietro. A tool for deciding the
satisfiability of continuous-time metric temporal logic. Acta Informatica, 53(2):171–
206, 2016.

9. Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness of
TPTL and MTL. In Foundations of Software Technology and Theoretical Computer
Science, pages 432–443. Springer, 2005.

10. Thomas Brihaye, Morgane Estiévenart, and Gilles Geeraerts. On MITL and
alternating timed automata. In Formal Modeling and Analysis of Timed Systems,
pages 47–61, 2013.

11. Thomas Brihaye, Morgane Estiévenart, and Gilles Geeraerts. On MITL and
alternating timed automata over infinite words. In Formal Modeling and Analysis
of Timed Systems, pages 69–84, 2014.

12. Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Benjamin Monmege. Mightyl:
A compositional translation from MITL to timed automata. In Computer Aided
Verification, pages 421–440, 2017.

13. Giuseppe De Giacomo and Moshe Y Vardi. Linear temporal logic and linear
dynamic logic on finite traces. In IJCAI, volume 13, pages 854–860, 2013.

14. Cindy Eisner and Dana Fisman. A Practical Introduction to PSL (Series on
Integrated Circuits and Systems). Springer-Verlag, 2006.

15. Michael J Fischer and Richard E Ladner. Propositional dynamic logic of regular
programs. Journal of computer and system sciences, 18(2):194–211, 1979.

16. Carlo A. Furia and Matteo Rossi. MTL with bounded variability: Decidability and
complexity. In Formal Modeling and Analysis of Timed Systems, pages 109–123.
Springer-Verlag, 2008.

17. Thomas A Henzinger, J-F Raskin, and P-Y Schobbens. The regular real-time
languages. In Automata, Languages and Programming, pages 580–591. Springer,
1998.

18. Yoram Hirshfeld and Alexander Rabinovich. An expressive temporal logic for real
time. In Mathematical Foundations of Computer Science 2006, pages 492–504.
Springer, 2006.

19. Yoram Hirshfeld and Alexander Rabinovich. Expressiveness of metric modalities
for continuous time. In Computer Science–Theory and Applications, pages 211–220.
Springer, 2006.

20. Stephen Cole Kleene. Representation of events in nerve nets and finite automata.
Automata Studies, pages 3–42, 1956.

21. Ron Koymans. Specifying real-time properties with metric temporal logic. Real-time
systems, 2(4):255–299, 1990.

22. Shankara Narayanan Krishna, Khushraj Madnani, and Paritosh K Pandya. Metric
temporal logic with counting. In Foundations of Software Science and Computation
Structures, pages 335–352. Springer, 2016.

23. Shankara Narayanan Krishna, Khushraj Madnani, and Paritosh K Pandya. Making
metric temporal logic rational. In Mathematical Foundations of Computer Science,
pages 77:1–77:14, 2017.

24. Sławomir Lasota and Igor Walukiewicz. Alternating timed automata. In Foundations
of Software Science and Computation Structures, pages 250–265. Springer, 2005.

25. Oded Maler, Dejan Nickovic, and Amir Pnueli. Real time temporal logic: Past,
present, future. In Formal Modeling and Analysis of Timed Systems, pages 2–16.
Springer, 2005.

26. Oded Maler, Dejan Nickovic, and Amir Pnueli. From MITL to timed automata. In
Formal Modeling and Analysis of Timed Systems, pages 274–289. Springer, 2006.

27. Max Michel. Composition of temporal operators. Logique et Analyse,
28(110/111):137–152, 1985.

28. Dejan Ničković and Nir Piterman. From MTL to deterministic timed automata. In
Formal Modeling and Analysis of Timed Systems, pages 152–167. Springer, 2010.

29. Joël Ouaknine, Alexander Rabinovich, and James Worrell. Time-bounded verifica-
tion. In Concurrency Theory, pages 496–510. Springer, 2009.

30. Joël Ouaknine and James Worrell. On the decidability of metric temporal logic. In
Logic in Computer Science, pages 188–197. IEEE, 2005.

31. Joël Ouaknine and James Worrell. On metric temporal logic and faulty turing
machines. In Foundations of Software Science and Computation Structures, pages
217–230. Springer, 2006.

32. Amir Pnueli. The temporal logic of programs. In Foundations of Computer Science,
pages 46–57. IEEE, 1977.

33. Amir Pnueli and Aleksandr Zaks. On the merits of temporal testers. In 25 Years
of Model Checking, pages 172–195. Springer, 2008.

34. Nima Roohi and Mahesh Viswanathan. Revisiting MITL to fix decision proce-
dures. In Verification, Model Checking, and Abstract Interpretation, pages 474–494.
Springer, 2018.

35. Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson
Course Technology Boston, 2006.

36. Moshe Y. Vardi. From philosophical to industrial logics. In ICLA, volume 5378 of
Lecture Notes in Computer Science, pages 89–115, 2009.

37. Thomas Wilke. Specifying timed state sequences in powerful decidable logics and
timed automata. In Formal Techniques in Real-Time and Fault-Tolerant Systems,
pages 694–715. Springer, 1994.

	The Compound Interest in Relaxing Punctuality

