
Producing Explanations for Rich Logics

Simon Busard and Charles Pecheur

Université catholique de Louvain, Louvain-la-Neuve, Belgium,
{simon.busard,charles.pecheur}@uclouvain.be

Abstract. One of the claimed advantages of model checking is its capabil-
ity to provide a counter-example explaining why a property is violated by
a given system. Nevertheless, branching logics such as Computation Tree
Logic and its extensions have complex branching counter-examples, and
standard model checkers such as NuSMV do not produce complete counter-
examples—that is, counter-examples providing all information needed to
understand the verification outcome—and are limited to single executions.
Many branching logics can be translated into the µ-calculus. To solve
this problem of producing complete and complex counter-examples for
branching logics, we propose a µ-calculus-based framework with rich
explanations. It integrates a µ-calculus model checker that produces com-
plete explanations, and several functionalities to translate them back to
the original logic. In addition to the framework itself, we describe its
implementation in Python and illustrate its applicability with Alternating
Temporal Logic.

1 Introduction

Model checking is a verification technique that performs an exhaustive search
among the behaviors of a system to determine if it satisfies a given property, usu-
ally expressed in a logic [10,2]. Branching logics, such as CTL, express properties
about the branching structure of the system [12]. Many extensions of CTL have
been proposed to take into account other aspects of the verified systems, such as
knowledge—with CTLK [28]—, or strategic abilities—with ATL [1]. Such logics
can be translated into the propositional µ-calculus, a logic based on fixpoint and
modal operators [22].

Producing an explanation of the verification outcome is one of the claimed
advantages of model checking. But, in the case of branching logics, the ex-
planations can be very rich as, in general, branching logics need branching
counter-examples [3]. They have to show different branches of the execution tree
of the system to fully explain the truth value of the property. However, current
state-of-the-art tools such as NuSMV only produce single executions of the model
when explaining why a property is violated [9].

The goal of this paper is to propose techniques and tools to generate, visualize
and manipulate explanations for µ-calculus-based logics such as CTL, CTLK and
ATL. Let us suppose that someone—the designer—uses some logic—the top-level
logic—to express and verify facts about some system, and wants to develop a

model checker for it. She can either develop the tool from scratch, or she can
translate the models and formulas into another logic—the base logic—and use
existing tools to solve the model-checking problem.

Many logics can be translated into the µ-calculus, making it a good candidate
for a base logic. Nevertheless, when translating her model-checking problem into
µ-calculus, the designer has no help to facilitate this translation, in particular,
the counter-examples returned by the model checker (if any) are expressed
in terms of µ-calculus primitives instead of top-level logic ones. To overcome
this limitation and to help designers to quickly develop a model checker with
rich counter-examples, this paper proposes a µ-calculus-based framework with
rich explanations. The framework provides a µ-calculus model checker that
generates rich explanations and functionalities to define how top-level logic
formulas are translated into µ-calculus, to control how the µ-calculus explanations
are generated, and to translate µ-calculus explanations into top-level logic ones.
These functionalities are the following:

1. Formula aliases link the formulas stored in the obligations to the top-level
logic formulas they represent.

2. The relational graph algebra of Dong et al. [15] is provided to transform
explanations into the part of the original model they represent.

3. Obligation and edge attributors add information to individual nodes and
edges of the explanation graph.

4. Local translation focuses on the small part that explains a given alias without
having to deal with the whole graph at once.

5. Choosers can be used to perform interactive or guided generation of explana-
tions. They also introduce the notion of partial explanations.

6. Formula markers are tags on formulas. Points of interest and points of
decision are provided, but other markers can be defined by the designer.

All these functionalities work together to help the designer to produce useful
explanations. Figure 1 illustrates the structure of the framework.

model formula explanation

µ-calculus
model

µ-calculus
formula

enriched
µ-calculus

explanation

aliases

markers

attributors

local translators

choosers

relational graph algebra

model
translation

formula
translation

explanation
translation

model
checker

Fig. 1. The structure of the framework. In gray, the parts that the designer has to
define; in white, the elements provided by the framework.

The designer first translates the original model and formula into µ-calculus.
She can decorate the translated formulas with aliases and markers, and she can
also attach attributors, local translators and choosers. The aliases and markers will
be present in the obligations in the generated enriched µ-calculus explanation to
help the designer with their translation. The attributors and local translators are
used by the model checker to add extra information to the generated explanations.
The choosers allow the model checker to make the right choices. Finally, the
designer translates the enriched explanation back into the top-level logic language
thanks to the relational graph algebra.

The features are generic and complement each other: (1) the relational algebra,
attributors and local translators manipulate the explanation at different scales;
(2) points of decision and choosers work together to produce smaller partial
strategies and to select the explanations of interest; (3) points of interest and
aliases add information to important formulas.

The remainder of this paper is structured as follows: Sect. 2 presents the
propositional µ-calculus. Section 3 describes the framework for µ-calculus-based
logics explanations, and Sect. 4 its implementation in Python. Section 5 applies
the framework to the case of ATL model checking. Section 6 briefly compares
the framework with related work, and Sect. 7 draws conclusions.

2 The Propositional µ-Calculus

The µ-calculus is a logic based on fixpoints [22]. Its formulas follow the grammar

φ ∶∶= true ∣ p ∣ v ∣ ¬φ ∣ φ ∨ φ ∣◇i φ ∣ µv. φ

where p ∈ AP are atomic propositions and v ∈ Var are variables. For instance,
◇i φ means that there exists a successor through the transition relation i that
satisfies φ, that is, a state satisfying φ can be reached in one step through the
transition relation i.

We write Lµ for the set of µ-calculus formulas. Other operators can be defined
in terms of the ones above, such as ◻i φ ≡ ¬◇i ¬φ and νv. φ ≡ ¬µv. ¬φ(¬v).

A variable v is bound in φ if it is enclosed in a sub-formula µv. ψ or νv. ψ;
otherwise, it is free. We sometimes note µv. ψ(v), νv. ψ(v), and ψ(v) to stress
the fact that ψ contains free occurrences of variable v. We write ψ[χ/v]—or
equivalently ψ(χ) when v is clear from the context—for the µ-calculus formula ψ
where every free occurrence of v is replaced by χ. We write ψk(χ) for k nestings
of ψ around χ, that is, ψ0(χ) = χ and ψk+1(χ) = ψ(ψk(χ)).

Any formula µv. ψ or νv. ψ, must be syntactically monotone, that is, all
occurrences of v in ψ must fall under an even number of negations. A formula
is in positive normal form if negations are only applied to atomic propositions
and variables. Any syntactically monotone formula can be transformed into an
equivalent syntactically monotone formula in positive normal form.

µ-calculus models are Kripke structures S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩ where (1) Q
is a finite set of states; (2) Ri ⊆ Q×Q are ∣Σ∣ transition relations; (3) V ∶ Q→ 2AP

labels the states with atomic propositions. We write q →i q′ for ⟨q, q′⟩ ∈ Ri.

µ-calculus formulas are interpreted as sets of states under a given environment.
An environment is a function e ∶ Var → 2Q associating sets of states to variables.
The set of environments is noted E . We write e[Q′/v], for Q′ ⊆ Q and v ∈ Var ,
for the function e′ such that e′(v) = Q′ and e′ agrees with e for all other
variables. The semantics of formulas is given by the function JφKSe. It takes
a formula φ and an environment e defined at least for the free variables of
φ, and returns the corresponding set of states. This function is defined as:

JtrueKSe = Q,
JvKSe = e(v),
JpKSe = {q ∈ Q ∣ p ∈ V (q)},

J◇i φKSe = {q ∈ Q ∣ ∃q′ ∈ Q s.t. q →i q′ ∧ q′ ∈ JφKSe},

J¬φKSe = Q/JφKSe,

Jφ ∨ ψKSe = JφKSe ∪ JψKSe,

Jµv. φKSe =⋂{Q′ ⊆ Q ∣ JφKSe[Q′/v] ⊆ Q′}.

3 A µ-Calculus-based Framework for Rich Explanations

This section presents the µ-calculus-based framework we propose. To illustrate
the concepts, we will use the case of ATL model checking, presented in Sect. 3.1.
Section 3.2 describes µ-calculus explanations, and Sect. 3.3 presents the function-
alities to translate these explanations back to the original logic.

3.1 Translation of ATL models and formulas to µ-calculus

ATL formulas are built with atomic propositions and Boolean connectives, as
well as coalition modalities ⟪⟫ and JK reasoning about the strategies of groups of
agents to enforce temporal objectives specified with the standard X, F, G and U
temporal operators [1]. For instance, the formula ⟪Γ⟫F p expresses the fact that
agents Γ have a strategy to reach, within a finite number of steps, some goal p,
and JΓ KG q that they have no strategy to maintain some other goal q forever.

ATL formulas are interpreted over the states of concurrent game structures
(CGS) S = ⟨Ag,Q,Q0,Act, e, δ, V ⟩ defining the states (Q) and agents (Ag) of the
system, what they can do (e ∶ Ag → (Q→ (2Act/∅))), and how the system evolves
according to their choices (δ ∶ Q ×ActAg → Q).

Given a CGS S, a state q of S, and an ATL formula φ, we can translate S
into a Kripke structure S′, q into a state q′ of S′, and φ into a µ-calculus formula
φ′ such that q satisfies φ if and only if q′ satisfies φ′. To avoid technical details,
this section only presents the intuition of the translation and focuses on a small
subset of ATL operators. The full translation can be found in [4].

The idea of the translation from a CGS S = ⟨Ag,Q,Q0,Act, e, δ, V ⟩ to a
structure S′ = ⟨Q′,{R′

i ∣ i ∈ Σ}, V ′⟩ is to derive, from each state q ∈ Q, each group
of agents Γ ⊆ Ag, and each joint action aΓ of Γ , a new state qaΓ representing the
fact that Γ chose to play aΓ in q. For each group Γ ⊆ Ag, two transition relations
are derived from δ: RΓchoose links any state q ∈ Q to the derived states qaΓ for all
possible actions aΓ of Γ ; RΓfollow links any derived state qaΓ to the successors of

q restricted to the ones reached if Γ choose aΓ . Intuitively, the derived structure

S′ encodes in two steps (q → qaΓ → q′) the one-step transitions of S (q
aÐ→ q′).

The set Σ of relations names is Σ = {Γchoose ∣ Γ ⊆ Ag} ∪ {Γfollow ∣ Γ ⊆ Ag},
that is, two transition relations for each group of agents.

Figure 2 presents the CGS of a simple one-bit transmission problem in which
a sender tries to send a value through an unreliable link. The sender can send
the value or wait, and the transmitter can transmit the message (if any), or block
the transmission. In this context, we ask whether the transmitter has a strategy
to never transmit the value, that is, if q0 satisfies ⟪transmitter⟫G ¬sent.

q0

¬sent

q1

sent

⟨∗, block⟩

⟨wait,∗⟩
⟨send, transmit⟩

⟨∗,∗⟩

Fig. 2. The CGS of the bit transmission problem. The action pairs are the actions of
the sender and the transmitter, respectively. ∗ means any action of the agent.

The CGS of this bit transmission problem can be translated into a µ-calculus
Kripke structure. Figure 3 presents a part of the translation, focusing on the
states derived from q0; the part about q1 is not shown. For instance, in q0, the
sender can choose the action send to transition to q0send . The transmitter’s
following action can either be block, which transitions back to q0, or transmit,
which transitions to q1.

q0

¬sent
q0send

¬sent

q0wait

¬sent

q0block

¬sent

q0transmit

¬sent q1

sent

sc

sc

tc

tc

sf

sf

sf

tf
tf

tf

Fig. 3. A part of the translation of the bit transmission CGS. sc and sf mean
sender chooses and sender follows, tc and tf mean transmitter chooses and
transmitter follows. Transition relations for the two other groups of agents (no agent,
and both agents) are not shown.

ATL formulas can also be translated into µ-calculus formulas. The formula
⟪transmitter⟫G ¬sent is translated as

φns = νv. ¬sent ∧◇trans chooses (◇trans follows true ∧ ◻trans follows v). (1)

The main idea behind this translation is that a state satisfies the second term
◇trans chooses (◇trans follows true ∧◻trans follows v) if there exists an action for
transmitter that is enabled and such that all choices of the other agents lead to
v, that is, if the transmitter can enforce to reach v in one step. Then, a state
satisfies φns if the transmitter can enforce to stay in states satisfying ¬sent
forever, that is, if the transmitter has a strategy to enforce G ¬sent.

To explain why an ATL formula φ is satisfied by a state q of some CGS
S, we want to extract the part of the model starting at q that is responsible
for the satisfaction. Furthermore, as such part can be complex and difficult to
understand, we want to annotate each state with the sub-formulas of φ that are
true in that state. For instance, Fig. 4 gives an explanation for why q0 satisfies
⟪transmitter⟫G ¬sent. The explanation shows that, in q0, the block action of
the transmitter allows it to prevent the message to be sent.

q0

¬sent

⟪transmitter⟫G ¬sent
⟪transmitter⟫X ⟪transmitter⟫G ¬sent

⟨∗, block⟩

Fig. 4. An explanation for why the transmitter can prevent the value to be sent.

3.2 µ-Calculus Explanations

A µ-calculus explanation is a graph where nodes are triplets—called obligations—
composed of a state q of S, a µ-calculus formula φ, and an environment e. An
edge ⟨⟨q, φ, e⟩, ⟨q′, φ′, e′⟩⟩ encodes the fact that q ∈ JφKSe because q′ ∈ Jφ′KSe′. In
this section, all µ-calculus formulas are considered in positive normal form, that
is, all negations are applied to atomic propositions or variables only.

More formally, given a Kripke structure S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩, an explana-
tion is a graph E = ⟨O,T ⟩ such that the nodes O ⊆ Q×Lµ×E are triplets of states
of S, µ-formulas and environments, and the edges T ⊆ O × O link obligations
together. The set of successors of o is noted succ(o) = {o′ ∣ ⟨o, o′⟩ ∈ T}.

We are interested in explanations that are adequate, that is, that effectively
show why q satisfies φ in environment e. An explanation E is adequate for
explaining why q ∈ JφKSe if it is consistent, matches S—that is, is composed of
elements of S—and ⟨q, φ, e⟩ ∈ O.

An explanation is consistent if it exhibits the different parts needed to
explain its elements. More formally, let E = ⟨O,T ⟩ be an explanation and let
o = ⟨q, φ, e⟩ ∈ O. o is said to be locally consistent in E iff

– φ ≠ false;
– if φ = true, then succ(o) = ∅;
– if φ = p or φ = ¬p, for p ∈ AP , then succ(o) = ∅;
– if φ = v or φ = ¬v, for v ∈ Var , then q ∈ e(v) (resp. q /∈ e(v)) and succ(o) = ∅;
– if φ = φ1 ∧ φ2 then succ(o) = {⟨q, φ1, e⟩, ⟨q, φ2, e⟩};

– if φ = φ1 ∨ φ2 then succ(o) = {⟨q, φj , e⟩} for some j ∈ {1,2};
– if φ =◇iφ

′ then succ(o) = {⟨q′, φ′, e⟩} for some state q′;
– if φ = ◻iφ′ then, for all o′ ∈ succ(o), o′ = ⟨q′, φ′, e⟩ for some state q′;
– if φ = µv.ψ(v), then succ(o) = {⟨q,ψk(false), e⟩} for some k ≥ 0;
– if φ = νv.ψ(v), then succ(o) = {⟨q,ψ(φ), e⟩}.

E is then consistent iff all obligations o ∈ O are locally consistent in E. Intuitively,
if φ = µv. ψ, then q ∈ JφKSe because q belongs to a finite number of applications
of ψ on false, that is, q ∈ Jψk(false)KSe for some k ≥ 0. On the other hand, this
idea cannot be applied for φ = νv. ψ. In this case, q ∈ JφKSe because it belongs to
any number of applications of ψ on true. Thus, to explain it, E simply shows
that q ∈ Jψ(φ)KSe and relies on the fact that the structure has a finite number of
states to ensure that the explanation is finite as well.

Furthermore, E matches S iff

1. for all ⟨q′, φ′, e′⟩ ∈ O, q′ ∈ Q;
2. for all ⟨q′, p, e′⟩ ∈ O, p ∈ V (q′) and for all ⟨q′,¬p, e′⟩ ∈ O, p /∈ V (q′);
3. for all ⟨⟨q′, φ′, e′⟩, ⟨q′′, φ′′, e′′⟩⟩ ∈ T , either q′ = q′′, or φ′ belongs to {◇iφ

′′,◻iφ′′}
and ⟨q′, q′′⟩ ∈ Ri;

4. for all o′ = ⟨q′,◻iφ′, e′⟩ ∈ O, ⟨q′, q′′⟩ ∈ Ri iff ∃o′′ ∈ succ(o′) s.t. o′′ = ⟨q′′, φ′′, e′′⟩.

E matches S if E is part of S: (1) the states of E are states of S; (2) atomic
propositions of E are coherent with labels of S; (3) successor states in E are
successors in S; (4) the explanation for the ◻i operator exhibits all successors
through Ri.

For instance, Figure 5 gives an adequate explanation for φns (of Equation 1)
holding in state q0 of the µ-calculus structure of the bit transmission problem.

q0, φns, e

q0,¬sent ∧◇tc (◇tf true ∧ ◻tf φns), e

q0,¬sent, e q0,◇tc (◇tf true ∧ ◻tf φns), e

q0block ,◇tf true ∧ ◻tf φns, e

q0block ,◇tf true, e q0block ,◻tf φns, e

q0, true, e

Fig. 5. An explanation for why q0 ∈ JφnsKSe in the bit transmission problem. tc and tf
mean transmitter chooses and transmitter follows, respectively.

Adequate explanations are necessary and sufficient proofs for why q ∈ JφKSe,
captured by the following property.

Property 1. Given a Kripke structure S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩, a state q ∈ Q, a
µ-calculus formula φ and an environment e, q ∈ JφKSe if and only if there exists
an adequate explanation E for q ∈ JφKSe.

Proof (Proof Sketch). The left-to-right direction is proved by the generating
algorithm of this paper: if q ∈ JφKSe, then it generates an adequate explanation
for q ∈ JφKSe. The other direction can be shown by induction over the structure of
φ. The main idea is that, if E is adequate for sub-formulas, then local consistency
and matching S are sufficient conditions for the formula to be satisfied. ⊓⊔

Furthermore, we can view adequate explanations as patterns. An explanation
E defines an entire set of Kripke structures K(E) that E matches. E is thus an
explanation for why all structures of K(E) satisfy any formula φ that E contains.
This intuition is formally captured by the following property.

Property 2. Given a consistent explanation E = ⟨O,T ⟩, for all ⟨q, φ, e⟩ ∈ O,
q ∈ JφKSe for all S such that E matches S.

Proof. This property is directly derived from Property 1. If E is consistent, E
matches S and ⟨q, φ, e⟩ ∈ O, then E is adequate for q ∈ JφKSe. By Property 1,
since there exists an adequate explanation for q ∈ JφKSe, q ∈ JφKSe is true. ⊓⊔

Finally, we can define an algorithm to generate adequate explanations for
µ-calculus formulas, presented in Algorithm 1. It takes a Kripke structure S, a
state q of S, a µ-calculus formula φ, and an environment e such that q ∈ JφKSe,
and returns an adequate explanation for q ∈ JφKSe. Intuitively, the algorithm
starts with an empty explanation and the ⟨q, φ, e⟩ obligation in the pending
set. Then it considers each obligation o′ ∈ pending, adding to O and T the
necessary obligations and edges to make o′ locally consistent and matching S,
and adding to pending the newly discovered obligations. It stops the process
when all obligations have been made locally consistent in ⟨O,T ⟩.

3.3 Translating µ-Calculus Explanations

The previous section proposed a structure to explain why a µ-calculus formula
is satisfied by a state of some Kripke structure. Nevertheless, as the µ-calculus
model checker and explanations are used to solve the model-checking problem of
some other top-level logic, the usefulness of such explanations is limited. This
section presents the set of functionalities the framework provides to help the
designer to translate the µ-calculus explanations back into the top-level logic.
They are generic to allow her to easily translate the explanations for logics such
as CTL, CTLK, ATL or PDL [16], as well as fair variants such as Fair CTL [13].

First, aliases allow the designer to hide µ-calculus translations behind top-
level logic formulas. Second, to ease the translation of explanations back into the
original model language, the framework integrates the relational graph algebra
of Dong et al. [15]. This algebra allows the designer to translate the explanation
back into the original model language, but it treats the explanation as a whole.

Algorithm 1: explain(S, q, φ, e)
Data: S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩ a Kripke structure, q ∈ Q a state of S, φ a

µ-calculus formula, and e an environment such that q ∈ JφKSe.
Result: An adequate explanation for q ∈ JφKSe.

O = ∅; T = ∅; pending = {⟨q, φ, e⟩}
while pending ≠ ∅ do

pick o′ = ⟨q′, φ′, e′⟩ ∈ pending
pending = pending/{o′}
O = O ∪ {o′}
case φ′ ∈ {true, p,¬p, v,¬v}: O′ = ∅
case φ′ = φ1 ∧ φ2: O′ = {⟨q′, φ1, e

′
⟩, ⟨q′, φ2, e

′
⟩}

case φ′ = φ1 ∨ φ2

if q′ ∈ Jφ1KSe′ then O′ = {⟨q′, φ1, e
′
⟩} else O′ = {⟨q′, φ2, e

′
⟩}

case φ′ =◇i φ
′′

pick q′′ ∈ {q′′ ∈ Q ∣ ⟨q′, q′′⟩ ∈ Ri ∧ q
′′
∈ Jφ′′KSe′}

O′ = {⟨q′′, φ′′, e′⟩}

case φ′ = ◻i φ
′′: O′ = {⟨q′′, φ′′, e′⟩ ∣ ⟨q′, q′′⟩ ∈ Ri}

case φ′ = µv. ψ

φ′′ = false; sat = Jφ′′KSe′

while q′ /∈ sat do

φ′′ = ψ(φ′′); sat = Jφ′′KSe′

O′ = {⟨q′, φ′′, e′⟩}

case φ′ = νv. ψ: O′ = {⟨q′, ψ(φ′), e′⟩}
T = T ∪ {⟨o′, o′′⟩ ∣ o′′ ∈ O′}
pending = pending ∪ (O′/O)

return ⟨O,T ⟩

To ease the addition of information to individual obligations and edges, the
framework also provides the notion of attributors. Finally, local translators are
proposed to treat small parts of the given graph.

These functionalities help the designer to translate the µ-calculus explanation
into another graph that is closer to the initial model language. Nevertheless, the
designer has no control on the initial explanation the algorithm produces. To
allow the designer to interfere into the choices the explain algorithm makes, the
framework provides choosers.

Aliases An alias α is a syntactic function that takes a set of arguments and
returns an aliased µ-calculus formula. The alias of an aliased formula is then
used to hide the latter behind something more intelligible. For instance, the alias
⟪⟫X(Γ,φ) =◇Γchoose (◇Γfollow true ∧◻Γfollow φ) replaces the formula φns with
νv. ¬sent ∧ ⟪transmitter⟫X v.

Relational Graph Algebra The relational graph algebra of Dong et al. includes
operators such as the union G1 ∪G2 and intersection G1 ∩G2 of two graphs G1

and G2, the selection σfv,fe(G) of nodes and edges satisfying a condition, the
projection πdv,de(G) of nodes and edges on sub-domains dv and de, the grouping
γdv,de(G) of nodes and edges, etc. Thanks to this algebra, the designer can
transform explanations into other graphs.

Obligation and Edge Attributors An attribute is data associated to expla-
nation nodes and edges, and an attributor is a function adding attributes to an
obligation or edge. They work as local decorators, in the sense that they deal
with obligations and edges one at a time. They can be given to the generating
algorithm to be run on every obligation or edge, or they can be attached to
individual aliases to be run only on the obligations with instantiations of the
aliases, or outgoing edges of these obligations. This improves the performances
of decorating the graph when only a few elements must be decorated. In the case
of ATL, we can define an attributor to attach to obligations the original CGS
state their state derives from.

Local Translation A local translator is a function taking a relational graph
and a particular node as arguments, and updating the graph. The part of the
explanation a local translator receives is defined by the alias it is attached to. For
instance, with a local translator, we can add edges to an explanation between an
obligation labelled with a ⟪⟫X alias and all the original successors of its state.
The advantage of such a local translator is that the part of the graph it receives
is the one explaining the ⟪⟫X operator only.

Choosers and Partial Explanations A chooser takes an obligation and a set
of possible successors of this obligation and returns a subset of these successors
depending on the operator of the formula of the given obligation:

– for ∨ and ◇i operators, at most one successor must be chosen, to ensure a
consistent explanation.

– for ∧ and ◻i operators, the full explanation shows all successors, but a subset
can be returned.

– for the other operators, there is no meaningful choice: there is no successor
for true formulas, atomic propositions or variables, and there is only one
successor for least and greatest fixpoint formulas.

Choosers can guide the explanation generation by choosing particular succes-
sors, but also limit the size of the generated explanation by only exploring parts
of it. This introduces the notion of partial explanations, that is, explanations
where some obligations are not fully explained because they lack some successors.
The advantage of partial explanations is that the complete explanation can be
too large to be generated or understood, so getting a part of it is better than
nothing. Furthermore, choosers enable interactive generation of explanations as
they can ask the user to resolve some choices.

Markers They are attached to formulas. The framework provides two types of
markers, points of interest, and points of decision, but new types can be defined
by the designer. Points of interest are intended to mark the formulas that are
important for the designer. On the other hand, the model checker takes points
of decision into account when generating explanations: whenever an obligation
formula is marked with such a point, the model checker does not explain it. This
produces partial explanations that can be later expanded by the user by forcing
the generation of the missing parts.

Thanks to all these features, it is possible to transform the µ-calculus expla-
nation of Fig. 5 for the formula ⟪transmitter⟫G ¬sent and get the explanation
of Fig. 6. For this translation, we used:

– aliases to hide µ-calculus formulas behind their ATL counterparts,
– points of interest for marking the formulas that have an ATL counterpart,
– an obligation attributor to extend each obligation with the original state,
– a local translator to add the edge with the action of the transmitter,
– the relational graph algebra to merge nodes together and gather the formulas

that the state satisfies.

q0,
{⟪transmitter⟫G ¬sent, ¬sent,

⟪transmitter⟫X ⟪transmitter⟫G ¬sent}
⟨block⟩

Fig. 6. A translation of the µ-calculus explanation of Fig. 5 using the translation
features of the framework.

4 Implementation

The framework has been implemented in Python using PyNuSMV for solving the
model-checking problem. PyNuSMV is a library for prototyping symbolic model-
checking algorithms based on NuSMV [6]. The implementation and examples are
available on http://lvl.info.ucl.ac.be/FM2018/FM2018.

First, to be able to use the framework, the designer has to derive, from the
original model, a µ-calculus Kripke structure S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩. Such a
structure is implemented with PyNuSMV as a standard SMV model to which
several transition relations Ri are attached.

Second, the framework provides Python classes to define µ-calculus formulas,
one for each µ-calculus operator: MTrue, MFalse, Atom, Variable, Not, And, Or,
Diamond, Box, Mu, and Nu. With this implementation, µ-calculus formulas do not
have to be declared in positive normal form. Instead, the framework lazily derives
positive normal forms when needed. This allows the formulas that annotate the
obligations to stay as close to the main formula as possible.

http://lvl.info.ucl.ac.be/FM2018/FM2018

Third, most of the features are implemented with Python decorators, that is,
function annotations that change the function behavior. For instance, aliases are
defined as Python functions returning the corresponding µ-calculus formula and
decorated with the @alias decorator. The code of Figure 7 shows a small part of
the ATL model checker built with the framework. The CAX function returns the
translation of the JagentsKX formula formula, marked with points of interest
and decision, and to which is attached the chosen action edge attributor.

@alias("[{ agents }] X {formula}")

def CAX(agents , formula):

return POD(POI(chosen_action(

Box(agents + "_choose",

Or(Box(agents + "_follow", MFalse ()),

Diamond(agents + "_follow", formula)))

)))

@edge_attributor

def chosen_action(edge):

...

return {"action": actions}

Fig. 7. A part of the implementation of the ATL model checker built with the framework.

Relational graphs, and generated explanations in particular, are implemented
with the Graph class. Nodes and edges of these graphs are implemented with the
domaintuple class, a dictionary-like structure where domains of the elements are
identified by a name. Each operator of the relational graph algebra is implemented
by a method of the Graph class.

The framework allows the designer to efficiently translate an explanation back
into the top-level language. Nevertheless, these explanations remain complex
and difficult to understand. To help the user in understanding these complex
explanations, the implementation also provides a graphical visualization tool. A
snapshot of the tool is given in Figure 8.

The top left part presents the explanation: nodes are depicted in ovals, and
edges are depicted as arrows decorated with information in a box. This graph
can be moved with the mouse or automatically re-arranged. The information
displayed in nodes and edge labels come from the explanation elements themselves.
The tool also allows the user to select which keys of the graph elements are
displayed, through a right-click menu on the graph area. To enable interactivity,
the designer can specify a graphical menu that is displayed whenever the user
right-clicks on the element. This can be used, for instance, to expand partial
explanations. The top right part of the tool displays the complete information of
the selected element (the dashed one on Fig. 8). The bottom part of the tool can
display one particular path of the graph, selected by the user.

Fig. 8. A snapshot of the visualization tool.

5 Application to ATL

The objective of this section is to show the usefulness of the framework by
applying it to the ATL logic. It describes how explanations for ATL can be
obtained, displayed and manipulated thanks to the framework implementation.

The implementation represents a CGS with a standard SMV model to which
is attached a set of agents. Each agent has a name and a set of SMV input
variables corresponding to its actions. The SMV model itself defines what the
agents can do, and how the state of the model evolves according to their actions.

The translation of the CGS acts like a dictionary of transition relations, lazily
building these relations when needed. The advantage of this mechanism is that,
even if the CGS contains a lot of agents, its implementation builds the transition
relations only for the groups of agents appearing in the checked formula. The
translation of ATL formulas simply uses the Python classes provided by the
framework to define µ-calculus formulas.

To enrich and translate explanations, one alias is declared for each ATL
operator. All top-level formulas returned by the aliases are marked as points of
interest. Furthermore, both ⟪⟫X and JKX aliases are marked as points of decision,
to be able to generate small partial explanations and to allow the user to expand
them as she wishes.

Two attributors add information to obligations and edges of the explanation.
The first attributor attaches, to each obligation, the original state its state derives
from. This attributor is given to the explain algorithm to enrich all obligations.
The second attributor stores the actions chosen by the group in the outgoing
edge of the obligations labelled with a ⟪⟫X or JKX aliased formula. This way,
the information is more easily accessed by local translators. Figure 7 illustrates
these parts of the implementation.

Two local translators are defined, for ⟪⟫X and JKX. They extract, from the
two steps of the µ-calculus model, the original one-step transitions of the CGS.
The relational graph algebra is used to translate µ-calculus explanations back
into ATL ones. The translation:

1. projects the explanation nodes on formulas and original states;
2. groups nodes by their original state;
3. separates unexplained formulas from explained ones;
4. selects edges that are labelled with some actions;
5. keeps the original state and the formulas in nodes, and the actions in edges.

This translation produces explanations such as the one of Figures 6 and 8.
A chooser is defined to expand partial explanations. When dealing with a ⟪⟫X

alias, it gets the original actions of the group from the given successors and asks
the user to choose one of them through a window. Finally, the visualization tool
is used to display and manipulate the translated explanations, as shown in Fig. 8.
In particular, it provides, through a right-click menu, the list of unexplained
formulas. This menu triggers the expansion of the currently displayed partial
explanation, running through the chooser to select the action to play.

6 Related Work

Several authors already proposed solutions to explain why a CTL formula is
satisfied by some model. First, some authors proposed structures capturing the
part of the model witnessing the satisfaction [29,11,3]. These structures are
defined as hierarchies of paths, fitting the CTL semantics. Jiang and Ciardo
recently proposed a way to generate such hierarchies of paths with a minimal
number of states [19]. Other authors proposed more detailed structures, captur-
ing the part of the model, as well as sub-formulas and logical decomposition
steps [30,18,7,8,31,27,33]. These different solutions vary in terms of details they
provide about the satisfaction—by annotating or not the parts of the counter-
example with the sub-formulas they explain—, the fragments of the logic they
support—either the full logic or its universal fragment—, and the framework
they work in—explicit, game-based, proof-based, BDD-based model checking,
or Boolean Equation Systems (BES). All these solutions can be adapted to a
BDD-based framework and produced with the framework we propose.

Some solutions have also been proposed in the context of multi-modal logics,
adapting and extending the ideas from CTL to richer logics [26,24,25,5,34]. In
this context, MCK, a tool for verification of temporal and knowledge properties,

provides several debugging functionalities [17], such as a debugging game inspired
by Stirling’s games [32] in which the user can try to show why the model-checking
outcome is wrong while the system shows her why it is actually right. Such a
debugging game can be implemented with adequate choosers.

Finally, several solutions have also been proposed to represent and produce
explanations for the µ-calculus [21,20,23,14]. They differ from the ones presented
in this paper either by the way they are generated—such as the explanations of
Kick [21]—or by the actual framework they rely on.

All these solutions work for particular logics such as CTL, CTLK, the µ-
calculus, or are generic solutions with some application to one use case such as
BES and their extensions, games, or proofs. But no work proposes a solution to
produce explanations and to translate them back into the original language, as
the µ-calculus framework of this paper. They either limit themselves to one logic,
or they provide generic structures without giving explicit help for applying and
translating it into something useful for the end user.

7 Conclusion

In this paper, we described a solution for µ-calculus-based logics explanations.
The proposed framework integrates a µ-calculus model checker that generates
rich explanations and provides several functionalities to translate them into
explanations for a top-level logic such as ATL. It has been implemented with
PyNuSMV, taking advantage of Python functionalities such as function decorators
to easily describe the different features. The implementation also integrates a
graphical tool to visualize, manipulate and explore the explanations.

One of the main advantages of the framework is that many logics can be
translated into the µ-calculus, such as CTL, Fair CTL, CTLK, ATL, and PDL. It
is thus generic enough to provide model-checking functionalities for all of them.
Furthermore, thanks to the framework, the designer does not have to worry
about designing and implementing a model checker, nor about generating rich
explanations. Nevertheless, she has to translate the top-level models and formulas
into µ-calculus. Model translation can be difficult—for instance, the translation
from an ATL CGS to a µ-calculus structure is not trivial—and the framework
gives no help to complete this task.

The framework features allow the designer to divide the concerns into smaller
parts, first dealing with formula translations (with aliases and markers), then
with single elements (with attributors), small sub-graphs (with local translation),
and with the whole explanation (with the algebra). Furthermore, all the features
are useful, as illustrated by the ATL case. In particular, local translators are
useless for cases such as CTL, but for ATL, where the model translation is
difficult, they can help treating small parts of the explanation separately, instead
of having to deal with the whole explanation graph at once. The visualization
tool provided by the framework complements the translation features. The latter
help the designer to produce useful explanations while the former helps the user
visualize, manipulate and explore it.

Finally, the framework supports interactive and guided generation of the
explanations through choosers. This can lead to smaller manageable partial
explanations that can be interactively expanded, as illustrated by the ATL case.

One of the main drawbacks of the framework is the fact that it produces one
single explanation at a time. Representing several explanations at once could
help the user to extract the reasons for the satisfaction of the formula more
easily. As future work, it would be interesting to explore how we could represent
several explanations at once by using binary decision diagrams to represent sets
of obligations instead of single ones. Furthermore, translating a CGS and an ATL
formula into a µ-calculus model and a formula is not an easy task compared
to other logics such as CTL and CTLK. One solution to make this particular
translation easier is to use the alternating-time µ-calculus [1] as base logic instead
of the propositional µ-calculus. Finally, it would be interesting to explore solutions
to provide translation functionalities for the model itself. With such translation
functionalities, the translation of explanations back into the original language
could become automatic.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM
49(5), 672–713 (Sep 2002)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
3. Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: On ACTL formulas having linear

counterexamples. Journal of Computer and System Sciences 62(3), 463 – 515 (2001)
4. Busard, S.: Symbolic model checking of multi-modal logics: uniform strategies and

rich explanations. Ph.D. thesis, Université catholique de Louvain (July 2017)
5. Busard, S., Pecheur, C.: Rich counter-examples for temporal-epistemic logic model

checking. In: Proceedings Second International Workshop on Interactions, Games
and Protocols, IWIGP 2012, Tallinn, Estonia, 25th March 2012. pp. 39–53 (2012),
http://dx.doi.org/10.4204/EPTCS.78.4

6. Busard, S., Pecheur, C.: PyNuSMV: NuSMV as a Python library. In: Brat, G.,
Rungta, N., Venet, A. (eds.) Nasa Formal Methods 2013. LNCS, vol. 7871, pp.
453–458. Springer-Verlag (2013)

7. Chechik, M., Gurfinkel, A.: A framework for counterexample generation and ex-
ploration. In: International Conference on Fundamental Approaches to Software
Engineering. pp. 220–236. Springer (2005)

8. Chechik, M., Gurfinkel, A.: A framework for counterexample generation and ex-
ploration. International Journal on Software Tools for Technology Transfer 9(5-6),
429–445 (2007)

9. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) Computer Aided Verification, Lec-
ture Notes in Computer Science, vol. 2404, pp. 359–364. Springer Berlin Heidelberg
(2002), http://dx.doi.org/10.1007/3-540-45657-0_29

10. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
11. Clarke, E.M., Jha, S., Lu, Y., Veith, H.: Tree-like counterexamples in model checking.

In: Proc. of the 17th IEEE Symposium on Logic in Computer Science (LICS 2002).
pp. 19–29 (2002)

http://dx.doi.org/10.4204/EPTCS.78.4
http://dx.doi.org/10.1007/3-540-45657-0_29

12. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
branching-time temporal logic. In: Logics of Programs, Workshop, Yorktown Heights,
New York, May 1981. pp. 52–71 (1981), http://dx.doi.org/10.1007/BFb0025774

13. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst. 8(2), 244–263 (1986), http://doi.acm.org/10.1145/5397.5399

14. Cranen, S., Luttik, B., Willemse, T.A.: Proof graphs for parameterised boolean
equation systems. In: International Conference on Concurrency Theory. pp. 470–484.
Springer (2013)

15. Dong, Y., Ramakrishnan, C.R., Smolka, S.A.: Model checking and evidence ex-
ploration. In: Proc. of the 10th IEEE International Conference on Engineering of
Computer-Based Systems (ECBS 2003). pp. 214–223 (2003)

16. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs.
Journal of computer and system sciences 18(2), 194–211 (1979)

17. Gammie, P., van der Meyden, R.: MCK: Model checking the logic of knowledge.
In: Proceedings of 16th International Conference on Computer Aided Verification
(CAV’04). LNCS, vol. 3114, pp. 479–483. Springer-Verlag (2004)

18. Gurfinkel, A., Chechik, M.: Proof-like counter-examples. In: Garavel, H., Hatcliff, J.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems, Lecture
Notes in Computer Science, vol. 2619, pp. 160–175. Springer Berlin / Heidelberg
(2003)

19. Jiang, C., Ciardo, G.: Generation of minimum tree-like witnesses for existential
CTL. In: Beyer, D., Huisman, M. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems. pp. 328–343. Springer International Publishing, Cham
(2018)

20. Kick, A.: Generation of witnesses for global µ-calculus model checking. Tech. rep.,
Universität Karlsruhe, Germany (1995)

21. Kick, A.: Tableaux and witnesses for the µ-calculus. Tech. rep., Universität Karl-
sruhe, Germany (1995)

22. Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27,
333–354 (1983), http://dx.doi.org/10.1016/0304-3975(82)90125-6

23. Linssen, C.A.: Diagnostics for Model Checking. Master’s thesis, Eindhoven Univer-
sity of Technology (2011)

24. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the verification
of multi-agent systems. In: Proceedings of CAV 2009. LNCS, vol. 5643, pp. 682–688.
Springer (2009)

25. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker
for the verification of multi-agent systems. International Journal on Software
Tools for Technology Transfer pp. 1–22 (2015), http://dx.doi.org/10.1007/

s10009-015-0378-x
26. Lomuscio, A., Raimondi, F.: MCMAS: A model checker for multi-agent systems.

In: International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. pp. 450–454. Springer (2006)

27. Mateescu, R.: Efficient diagnostic generation for boolean equation systems. In:
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. pp. 251–265. Springer (2000)

28. Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems
via bounded model checking. In: Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems. pp. 209–216. AAMAS
’03, ACM, New York, NY, USA (2003), http://doi.acm.org/10.1145/860575.

860609

http://dx.doi.org/10.1007/BFb0025774
http://doi.acm.org/10.1145/5397.5399
http://dx.doi.org/10.1016/0304-3975(82)90125-6
http://dx.doi.org/10.1007/s10009-015-0378-x
http://dx.doi.org/10.1007/s10009-015-0378-x
http://doi.acm.org/10.1145/860575.860609
http://doi.acm.org/10.1145/860575.860609

29. Rasse, A.: Error diagnosis in finite communicating systems. In: Larsen, K., Skou,
A. (eds.) Computer Aided Verification, Lecture Notes in Computer Science, vol.
575, pp. 114–124. Springer Berlin / Heidelberg (1992)

30. Roychoudhury, A., Ramakrishnan, C., Ramakrishnan, I.: Justifying proofs using
memo tables. In: International Conference on Principles and Practice of Declarative
Programming: Proceedings of the 2 nd ACM SIGPLAN international conference
on Principles and practice of declarative programming. pp. 178–189 (2000)

31. Shoham, S., Grumberg, O.: A game-based framework for CTL counterexamples
and 3-valued abstraction-refinement. ACM Transactions on Computational Logic
(TOCL) 9(1), 1 (2007)

32. Stirling, C.: Local model checking games. In: International Conference on Concur-
rency Theory. pp. 1–11. Springer (1995)

33. Tan, L., Cleaveland, R.: Evidence-based model checking. In: International Confer-
ence on Computer Aided Verification. pp. 455–470. Springer (2002)

34. Weitl, F., Nakajima, S., Freitag, B.: Structured counterexamples for the temporal
description logic ALCCTL. In: 2010 8th IEEE International Conference on Software
Engineering and Formal Methods. pp. 232–243. IEEE (2010)

	Producing Explanations for Rich Logics

