Deadlock Detection for Actor-based Coroutines

Keyvan Azadbakht!2, Frank S. de Boer!, and Erik de Vink!-?

L Centrum Wiskunde en Informatica, Amsterdam, The Netherlands
2 Leiden University, Leiden, The Netherlands
3 Eindhoven University of Technology, Eindhoven, The Netherlands
{k.azadbakht,f.s.de.boer}@cwi.nl,evink@win.tue.nl

Abstract. The actor-based language studied in this paper features asyn-
chronous method calls and supports coroutines which allow for the co-
operative scheduling of the method invocations belonging to an actor.
We model the local behavior of an actor as a well-structured transition
system by means of predicate abstraction and derive the decidability of
the occurrence of deadlocks caused by the coroutine mode of method
execution.

Keywords: Deadlock Detection, Predicate Abstraction, Actor, Coop-
erative Scheduling, Transition System

1 Introduction

Actors [1][15] provide an event-driven concurrency model for the analysis and
construction of distributed, large-scale parallel systems. In actor-based modeling
languages, like Rebeca [20], Creol [17], and ABS [16], the events are generated by
asynchronous calls to methods provided by the actors. The resulting integration
with object-orientation allows for new object-oriented models of concurrency,
better suited for the analysis and construction of distributed systems than the
standard model of multi-threading in languages like Java.

The new object-oriented models of concurrency arise from the combination
of different synchronization mechanisms. By design, the basic run-to-completion
mode of execution of asynchronously called methods as for example provided
by the language Rebeca does not provide any synchronization between actors.
Consequently, the resulting concurrent systems of actors do not give rise to un-
desirable consequences of synchronization like deadlock. The languages Creol
and ABS extend the basic model with synchronization on the values returned
by a method. So-called futures [8] provide a general mechanism for actors to
synchronize on return values. Creol and ABS further integrate a model of exe-
cution of methods based on and inspired by coroutines, attributed by D. Knuth
to M. Conway [6]. This model allows for controlled suspension and resumption
of the executing method invocation and so-called cooperative scheduling of an-
other method invocation of the actor. In [4] and [3], this mechanism is used to
implement the well-established algorithms for social network simulation.

Both the synchronization mechanisms of futures and coroutines may give rise
to deadlock. Futures may give rise to global deadlock in a system of actors. Such

a global deadlock consists of a circular dependency between different method
invocations of possibly different actors which are suspended on the generation of
the return value. On the other hand, coroutines may give rise to a local deadlock
which occurs when all method invocations of a single actor are suspended on a
Boolean condition. In this paper we provide the formal foundations of a novel
method for the analysis of such local deadlocks.

To the best of our knowledge, our work provides a first method for deciding
local deadlocks in actor-based languages with coroutines. The method itself is
based on a new technique for predicate abstraction of actor-based programs
with coroutines, which aims at the construction of a well-structured transition
system. In contrast, the usual techniques of predicate abstraction [5] aim at the
construction of a finite abstraction, which allows model checking of properties
in temporal logic. In [9], a restricted class of actor-based programs is modeled as
a well-structured transition system. This class does not support coroutines and
actors do not have a global state specifying the values of the global variables.

Methods that utilize different techniques aiming at detection of global dead-
locks in various actor settings include the following. The work in [19] uses own-
ership to organize CoJava active objects into hierarchies in order to prevent
circular relationships where two or more active objects wait indefinitely for one
another. Also data-races and data-based deadlocks are avoided in CoJava by the
type system that prevents threads from sharing mutable data. In [7], a sound
technique is proposed that translates a system of asynchronously communicating
active objects into a Petri net and applies Petri net reachability analysis for dead-
lock detection. The work that is introduced in [11] and extended in [14] defines
a technique for analyzing deadlocks of stateful active objects that is based on
behavioural type systems. The context is the actor model with wait-by-necessity
synchronizations where futures are not given an explicit ”Future” type. Also, a
framework is proposed in [18] to statically verify communication correctness in
a concurrency model using futures, with the aim that the type system ensures
that interactions among objects are deadlock-free.

A deadlock detection framework for ABS is proposed in [12] which mainly
focuses on deadlocks regarding future variables, i.e., await and get operations on
futures. It also proposes a naive annotation-based approach for detection of local
deadlocks (await on Boolean guards), namely, letting programmers annotate the
statement with the dependencies it creates. However, a comprehensive approach
to investigate local deadlocks is not addressed.

Our approach, and corresponding structure of the paper, consists of the fol-
lowing. First, we introduce the basic programming concepts of asynchronous
method calls, futures and coroutines in Section 2. In Section 3 we introduce
a new operational semantics for the description of the local behavior of a sin-
gle actor. The only external dependencies stem from method calls generated
by other actors and the basic operations on futures corresponding to calls of
methods of other actors. Both kinds of external dependencies are modeled by
non-determinism. Method calls generated by other actors are modeled by the
non-deterministic scheduling of method invocations. The basic operations on

futures are modeled by the corresponding non-deterministic evaluation of the
availability of the return value and random generation of the return value it-
self. Next, we introduce in Section 4 a predicate abstraction [13,5] of the value
assignments to the global variables (“fields”) of an actor as well as the local
variables of the method invocations. The resulting abstraction still gives rise to
an infinite transition system because of the generation of self-calls, that is, calls
of methods of the actor by the actor itself, and the corresponding generation of
“fresh” names of the local variables.
Our main contribution consists of the following technical results.

— a proof of the correctness of the predicate abstraction, in Section 5, and
— decidability of checking for the occurrence of a local deadlock in the abstract
transition system in Section 6.

Correctness of the predicate abstraction is established by a simulation rela-
tion between the concrete and the abstract transition system. Decidability is
established by showing that the abstract system is a so-called well-structured
transition system, cf. [10]. Since the concrete operational semantics of the local
behavior of a single actor is an over-approximation of the local behavior in the
context of an arbitrary system of actors, these technical results together com-
prise a general method for proving absence of local deadlock of an actor. A short
discussion follow-up in Section 7 concludes the paper.

2 The Programming Language

In this section we present, in the context of a class-based language, the ba-
sic statements which describe asynchronous method invocation and cooperative

scheduling.
A class introduces its global variables, also referred to as “fields”, and meth-
ods. We use z,y, z, ... to denote both the fields of a class and the local variables

of the methods (including the formal parameters). Method bodies are defined
as sequential control structures, including the usual conditional and iteration
constructs, over the basic statements listed below.

Dynamic instantiation For x a so-called future variable or a class variable of
type C, for some class name C, the assignment

I = new

creates a new future or a unique reference to a new instance of class C.

Side effect-free assignment In the assignment
x=e

the expression e denotes a side effect-free expression. The evaluation of such an
expression does not affect the values of any global or local variable and also does
not affect the status of the executing process. We do not detail the syntactical
structure of side effect-free expressions.

Asynchronous method invocation A method is called asynchronously by an as-
signment of the form
x=-¢eglmler,...,e,)

Here, x is a future variable which is used as a unique reference to the return value
of the invocation of method m with actual parameters eq, . .., e,. The called actor
is denoted by the expression eg. Without loss of generality we restrict the actual
parameters and the expression eq to side effect-free expressions. Since ey denotes
an actor, this implies that eg is a global or local variable.

The get operation The execution of an assignment
x = y.get

blocks till the future variable y holds the value that is returned by its corre-
sponding method invocation.

Awaiting a future The statement
await x7

releases control and schedules another process in case the future variable x does
not yet hold a value, that is to be returned by its corresponding method invoca-
tion. Otherwise, it proceeds with the execution of the remaining statements of
the executing method invocation.

Awaiting a Boolean condition Similarly, the statement
await e

where e denotes a side effect-free Boolean condition, releases control and sched-
ules another process in case the Boolean condition is false. Otherwise, it proceeds
with the execution of the remaining statements of the executing method invo-
cation.

We describe the possible deadlock behavior of a system of dynamically generated
actors in terms of processes, where a process is a method invocation. A process
is either active (executing), blocked on a get operation, or suspended by a future
or Boolean condition. At run-time, an actor consists of an active process and
a set of suspended processes (when the active method invocation blocks on a
get operation it blocks the entire actor). Actors execute their active processes in
parallel and only interact via asynchronous method calls and futures. When an
active process awaits a future or Boolean condition, the actor can cooperatively
schedule another process instead. A global deadlock involves a circular depen-
dency between processes which are awaiting a future. On the other hand, a local
deadlock appears when all the processes of an actor are awaiting a Boolean con-
dition to become true. In the following sections we present a method for showing
if an initial set of processes of an individual actor does not give rise to a local
deadlock.

3 The Concrete System

In order to formally define local deadlock we introduce a formal operational
semantics of a single actor. Throughout this paper we assume a definition of a
class C to be given. A typical element of its set of methods is denoted by m.
We assume the definition of a class C' to consist of the usual declarations of
global variables and method definitions. Let Var(C) denote all the global and
local variables declared in C'. Without loss of generality we assume that there
are no name clashes between the global and local variables appearing in C, and
no name clashes between the local variables of different methods. To resolve in
the semantics name clashes of the local variables of the different invocations of
a method, we assume a given infinite set Var such that Var(C) C Var. The
set Var\Var(C) is used to generate “fresh” local variables. Further, for each
method m, we introduce an infinite set X'(m) of renamings o such that for every
local variable x of m, o(z) is a fresh variable in Var, i.e. not appearing in Var(C).
We assume that any two distinct o, 0’ € |J,, 2(m) are disjoint (Here m ranges
over the method names introduced by class C.) Renamings ¢ and ¢’ are disjoint
if their ranges are disjoint. Note that by the above assumption the domains of
renamings of different methods are also disjoint.

A process p arising from an invocation of a method m is described formally as
a pair (o, 5), where o € X(m) and S is the sequence of remaining statements to
be executed, also known as continuation. An actor configuration then is a triple
(I,p,Q), where I' is an assignment of values to the variables in Var, p denotes
the active process, and) denotes a set of suspended processes. A configuration
is consistent if for every renaming o there exists at most one statement S such
that (0,5) € {p} U Q.

A computation step of a single actor is formalized by a transition relation
between consistent actor configurations. A structural operational semantics for
the derivation of such transitions is given in Table 1. Here, we assume a given set
Val of values of built-in data types (like Integer and Boolean), and an infinite
set R of references or “pointers”. Further, we assume a global variable refs such
that I'(refs) C R records locally stored references.

We proceed with the explanation of the rules of Table 1. The rule <ASSIGN>
describes a side effect-free assignment. Here, and in the sequel, ec denotes the
result of replacing any local variable x in e by o(x). By I'(e) we denote the
extension of the variable assignment I' to the evaluation of the expression e.
By I'[z = v], for some value v, we denote the result of updating the value of =
in I by v.

The rule <NEW> describes the non-deterministic selection of a fresh reference
not appearing in the set I'(refs). The rule <GET-VALUE> models an assignment
involving a get operation on a future variable y which holds a value of some built-
in data type by an assignment of a random value v € Val (of the appropriate
type). The rule <GET-REF> models an assignment involving a get operation on a
future variable y which holds a reference by first adding a random value € R to

<ASSIGN>
(I (o,z=¢;59),Q) —
(I'xo =TI'(eo)],(0,5),Q)

<GET-VALUE>
v e Val

(I, (o,x = y.get;S),Q) —

(F[ZEO’ = v]v (U’ S)vQ)

<REMOTE-CALL >
I'(yo) # I'(this)

<NEW>
r € R\I'(refs)
(I, (o,x =new; S),Q) —
([[refs = '[refs] U{r}], (c,z =1;5),Q)

<GET-REF>
reR
(I, (0,2 = y.get; 5), Q) —
(L'[refs = I'(refs) U{r}], (o,x = r;5),Q)

<LOCAL-CALL>
I'(yo) = I'(this)

(F7 (0—71' = y!m(é);S),Q) -
(I, (0,2 = new; 5), Q)

<IF-THEN>
I'(eo) = true

(F7 (va = y!m(é);S), Q) -
(I'zo’ = I'(eo)], (0,2 =new; S), QU {(c',5)})

<IF-ELSE>
I'(eo) = false

(I, (o,if e {S'} else {9"};9),Q) —

(F7 (0'7 S/QS)»Q)

<WHILE-TRUE>
I'(eo) = true

(I, (0,if e {S'} else {9"}; 9),Q) —
(I'(0,5";5),Q)

<WHILE-FALSE>
I'(eo) = false

(I, (o,whilee {S'};S),Q) —
(T, (0,8;while e do {S'}; 9), Q)

<AWAITB-TRUE>

(T, (o,whilee {S'};S),Q) — (I, (0,9),Q)

<AWAITB-FALSE>

I'(eo) = true I'(ec) = false (', eqQ
(I, (0, await €;5),Q) — (I, (0,await €;5),Q) —
(I3 (0,9),Q) (I',(0,5"),(Q U {(0,await e; S)})\{(c", 5")})

<AWAITF-SKIP>
([, (0,await 27;5),Q) —
(I',(0,5),Q)

<AWAITF-SCHED>
(0/,58)eQ

(I (o, await 27;5),Q) —

(I, (0', 8", (QU{(0,await true; S)PH\{(¢', 9)})

<RETURN>
(0,5 eq

(T, (o, returne), Q) — (I}, (o', 5"),Q\{(c", S)})

Fig. 1. Concrete transition relation

the set I'(refs) and then assign it to the variable z (note that we do not exclude
that r € I'(refs)) .

It should be observed that we model the local behavior of an actor. The
absence of information about the return values in the semantics of a get operation
is accounted for by a non-deterministic selection of an arbitrary return value.
Further, since we restrict to the analysis of local deadlocks, we also abstract from
the possibility that the get operation blocks and assume that the return value
is generated.

The rules regarding choice and iteration statements are standard. The rule
<REMOTE-CALL> describes an assignment involving an external call (I'(yo) #
I'(this), where yo denotes y, if y is a global variable, otherwise it denotes the
variable o(y)). It is modeled by the creation and storage of a new future reference
uniquely identifying the method invocation. On the other hand, according to the
rule <LOCAL-CALL> a local call (I'(yo) = I'(this)) generates a new process and
future corresponding to the method invocation. Here it is implicitly assumed
that the renaming o’ € X(m) is different from o and all the other renamings in
Q. Further, by I'[zo’ = I'(éc)] we denote the simultaneous update of I" which
assigns to each local variable o/(2;) (i.e., the renamed formal parameter z;) the
value of the corresponding actual parameter e; with its local variables renamed
by o, i.e., the local context of the calling method invocation. For technical con-
venience we omitted the initialization of the local variables that are not formal
parameters. The body of method m is denoted by S’.

The rule <AWAITB-TRUE> describes that when the Boolean condition of the
await statement is true, the active process proceeds with the continuation, and
<AWAITB-FALSE> describes that when the Boolean condition of the await state-
ment is false, a process is selected for execution. This can give rise to the acti-
vation of a disabled process, which is clearly not optimal. The transition system
can be extended to only allow the activation of enabled processes. However, this
does not affect the results of this paper and therefore is omitted for notational
convenience.

The rule <AWAITF-SKIP> formalizes the assumption that the return value
referred to by x has been generated. On the other hand, <AWAITF-SCHED> for-
malizes the assumption that the return value has not (yet) been generated. Note
that we transform the initial await statement into an await on the Boolean con-
dition “true”. Availability of the return value then is modeled by selecting the
process for execution. Finally, in the rule RETURN we assume that the return
statement is the last statement to be executed. Note that here we do not store
the generated return value (see also the discussion in section 7).

In view of the above, we have the following definition of a local deadlock.

Definition 1. A local configuration (I',p, Q) deadlocks if

for all (0,5) € {p} U Q we have that the initial statement of S is an
await statement await e such that I'(ec) = false.

In the sequel we describe a method for establishing that an initial configuration
does not give rise to a local deadlock configuration. Here it is worthwhile to

observe that the above description of the local behavior of a single actor provides
an over-approximation of its actual local behavior as part of any system of actors.
Consequently, absence of a local deadlock of this over-approximation implies
absence of a local deadlock in any system of actors.

4 The Abstract System

Our method of deadlock detection is based on predicate abstraction. This boils
down to using predicates instead of concrete value assignments. For the class C,
the set Pred(m) includes all (the negations of) the Boolean conditions appearing
in the body of m. Further, Pred(m) includes all (negations of) equations =z =y
between reference variables and y, where both = and y are global variables of
the class C' (including this) or local variables of m (a reference variable is either
a future variable or used to refer to an actor.)

An abstract configuration « is of the form (7', p, @), where, as in the previous
section, p is the active process and @ is a set of suspended processes. The set T’
provides for each invocation of a method m a logical description of the relation
between its local variables and the global variables. Formally, T is a set of pairs
(0,u), where u C Pred(m), for some method m, is a set of predicates of m with
fresh local variables as specified by o. We assume that for each process (o,5) €
{p} U Q there exists a corresponding pair (o,u) € T. If for some (o,u) € T there
does not exist a corresponding process (0,5) € {p} U Q then the process has
terminated. Further, we assume that for any o there is at most one (o,u) € T
and at most one (o,5) € {p} UQ.

We next define a transition relation on abstract configurations in terms of a
strongest postcondition calculus. To describe this calculus, we first introduce the
following notation. Let L(T") denote the set { uo|(o,u) € T'}, where uo = { 90|
¢ € u}, and po denotes the result of replacing every local variable x in ¢ with
o(x). Logically, we view each element of L(T) as a conjunction of its predicates.
Therefore, when we write L(T) b ¢, i.e., ¢ is a logical consequence (in first-order
logic) of L(T), the sets of predicates in L(T) are interpreted as conjunctions. (It
is worthwhile to note that in practice the notion of logical consequence will also
involve the first-order theories of the underlying data structures.) The strongest
postcondition, defined below, describes for each basic assignment a and local
context o € X(m), the set sp,(L(T),a) of predicates ¢ € Pred(m) such that po
holds after the assignment, assuming that all predicates in L(T') hold initially.

For an assignment z = e we define the strongest postcondition by

spe(L(T),x =€) ={¢| L(T) F pole/z], ¢ € Pred(m)}

where [e/x] denotes the substitution which replaces occurrences of the variable x
by the side effect-free expression e. For an assignment x = new we define the
strongest postcondition by

$pe(L(T),x =new) = {¢ | L(T) b po[new/z], ¢ € Pred(m) }

The substitution [new/z] replaces every equation & = y, with y distinct from z,
by false, © = x by true. It is worthwhile to note that for every future variable
and variable denoting an actor, these are the only possible logical contexts con-
sistent with the programming language. (Since the language does not support
de-referencing, actors encapsulate their local state.)

For an assignment z = y.get we define the strongest postcondition by

spo (L(T),x =y.get) ={¢ | L(T) - Vx.0o0, ¢ € Pred(m) }

The universal quantification of the variable x models a non-deterministic choice
for the value of x.

Table 2 presents the structural operational semantics of the transition rela-
tion for abstract configurations. In the <ASSIGN> rule the set of predicates u for
each (o/,u) € T, is updated by the strongest postcondition spy (L(T), (z = e)o).
Note that by the substitution theorem of predicate logic, we have for each pred-
icate ¢ of this strongest postcondition that ¢o’ will hold after the assignment
(x = e)o (i.e., xo = eo) because L(T) F ¢ole/x]. Similarly, the rules <GET>
and <NEW> update T of the initial configuration by their corresponding strongest
postcondition as defined above.

In the rule <REMOTE-CALL> we identify a remote call by checking whether
the information this # yo can be added consistently to L(T'). By T U {(o,¢)}
we denote the set {(¢’,u) € T | o/ # o} U{(o,uU{p}) | (o,u) € T}. In
the rule <LOCAL-CALL> the set of predicates u of the generated invocation of
method m consists of all those predicates ¢ € Pred(m) such that L(T) + pleo/z],
where Z denotes the formal parameters of m. By the substitution theorem of
predicate logic, the (simultaneous) substitution [€o/Z] ensures that ¢ holds for
the generated invocation of method m. Note that by definition, L(T') only refers
to fresh local variables, i.e., the local variables of m do not appear in L(T)
because for any (o,u) € T we have that o(x) is a fresh variable not appearing
in the given class C. For technical convenience we omitted the substitution of
the local variables that are not formal parameters. The renaming o', which
is assumed not to appear in T, introduces fresh local variable names for the
generated method invocation. The continuation S’ of the new process is the body
of method m. The generation of a new future in both the rules <REMOTE-CALL>
and <LOCAL-CALL> is simply modeled by the x = new statement.

By <IF-THEN>, the active process transforms to the ”then” block, i.e. S,
followed by S, if the predicate set L(T') is consistent with the guard e of the
if-statement. (Note that as L(T) is in general not complete, it can be consistent
with e as well as with —e.) The other rules regarding choice and iteration state-
ments are defined similarly. By <RETURN> the active process terminates, and is
removed from the configuration. A process is selected from @ for execution. Note
that the pair (o,u) € T is not affected by this removal.

The rules <AWAIT-TRUE> and <AWAIT-FALSE> specify transitions assuming
the predicate set L(T') is consistent with the guard e and with —e, respectively.
In the former case, the await statement is skipped and the active process con-
tinues, whereas in the latter, the active process releases control and a process

<ASSIGN>
T = { (o, 3p5/ (L(T), (z = €))) | (¢/,u) € T}
(71(071 = €§5),QD Aé(jﬂv(avs)ﬂg)

<GET>
T' = { (0,505 (L(T), (x = y.get)o)) | (o', u) € T'}
(T, (va = y.get; S)vQ) - (T/7 (Jv S)aQ)

<NEW>
T' = {(0',8pe' (L(T), (x = new)s)) | (¢/,u) € T}
(T, (0,7 = new; S), Q) — (T", (5, 9),Q)

<REMOTE-CALL>
L(T) U {this # yo} I/ false
(T7 (va = y!m(E);S)’Q) — (TU {(Uv this 7& y)}}v (O',CL’ = new; S),Q)

<LOCAL-CALL>
L(T) U {this = yo} / false u={¢| L(T) " pléec/z], ¢ € Pred(m) }
(T, (0,2 = y'm(e); 5), Q) =
(TU{(o',w)}U{(o,this = y)}, (0,2 = new; S),Q U {(c’,S)})

<IF-THEN> <IF-ELSE>
L(T)u{eo} ¥ false L(T)U{—eo} V/ false
(T, (0, if e {S'} else {S"}; 5), Q) (T, (0, if e {S"} else {5"}; 5), Q)
= (T U{(0.€)}.(0,5:9),Q) = (TU{(0,-e)},(0,5":5),Q)
<WHILE-TRUE> <WHILE-FALSE>
L(T)U{ec} I/ false L(T)U{—ec} I false
(T, (o, while e do {S}’; 9), Q) (T, (o,while edo {S'}; 9), Q)
= (T'U{(0,€)}, (0, 8"; while e do {S'}; 9), Q) = (TU{(0,e)},(0,5),Q)

<AWAIT-TRUE>
L(T)U{ec} I/ false
(T, (0,await € 5), Q) = (T U{(0,€)},(0,5),Q)

<AWAIT-FALSE>
L(T) U{—eoc} V false (¢,8) eq

(T, (0,await ¢;5),Q) — (T U {(a,-e)}, (¢, 5"),(Q U {(0, await e; S)H\{(¢, S)})

<AWAITF-SCHED>

<AWAITF-SKIP> S
(T, (0, await x7; S), Q) (o ,'S)EQ
- (T,(0,5),Q) . (T (oawaita®5),Q) >
(T, (07,5, (QU{(c,await true; S)})\{(c',S)})
<RETURN>
(0,5 e

(T, (o, returne), Q) — (T, (¢',S), Q\{(c",5)})

Fig. 2. Abstract transition system

10

from @ is activated. Similar to the concrete semantics in the previous section, in
<AWAITF-SKIP> and <AWAITF-SCHED>, the active process non-deterministically
continues or cooperatively releases the control. In the latter, a process from @
is activated.

We conclude this section with the counterpart of Definition 1 for the abstract
setting.

Definition 2. A local configuration (T,p,Q) is a (local) deadlock if

for all (0,S) € {p} UQ we have that the initial statement of S is an
await statement await e such that L(T) U {—eo} I/ false.

5 Correctness of Predicate Abstraction

In this section we prove that the concrete system is simulated by the abstract
system. To this end we introduce a simulation relation ~ between concrete and
abstract configurations:

(Iyp, Q) ~ (T',p,Q), if I' = L(T)
where I' |= L(T) denotes that I" satisfies the formulas of L(T).
Theorem 1. The abstract system is a simulation of the concrete system.

Proof. Given (I',p,Q) ~ (T,p,Q) and a transition (I',p,Q) — (I'",p’,Q’), we
need to prove that there exists a transition (T,p,Q) — (T”,p,Q’) such that
(F/’p/’ Q/) ~ (1"/71,)/7 Q/).

For all the rules that involve the evaluation of a guard e, it suffices to observe
that I' = L(T') and I" |= e implies L(T') U {e} I/ false.

We treat the case z = e where e is a side effect-free expression (the others
cases are treated similarly). If p = (0,2 = ¢;.5), where e is a side effect-free
expression, then IV = I'[(x = e)o]. We put T = {(¢/, sp,/ (L(T), (x = €)o)) |
(¢',u) € T'}. Then it follows that (T,p,Q) — (T",p’,Q’). To prove I'" = L(T")
it remains to show for (o,u) € T and ¢ € sp,/ (L(T), (x = e)o) that I = o’
Let (o,u) € T and ¢ € spo(L(T), (x = e)o). By definition of the strongest
postcondition, we have L(T) b po'[(x = e)o]. Since I' = L(T), we have I' =
wo'[(x = e)o]. Since I'" = I'[(z = e)o], we obtain from the substitution theorem
of predicate logic that

I'Epo' < I'Epd(z=e)o]
and hence we are done. O

We conclude this section with the following observation: if the initial abstract
configuration (T, p, Q) does not give rise to a local deadlock then also the config-
uration (I',p, @) does not give rise to a local deadlock, when I' = L(T'). To see
this, by the above theorem it suffices to note that if (I"/,p’, Q') is a local dead-
lock and I'" |= L(T") then (T,p', Q') is a also a local deadlock because for any
(0,await e; S) € {p'} UQ’ we have that I'" |~ eo implies L(T") U {—ec} I/ false.

11

6 Decidability of Deadlock Detection

The abstract local behavior of a single actor, as defined in the previous section,
gives rise, for a given initial configuration, to an infinite transition system be-
cause of dynamic generation of local calls and the corresponding introduction
of fresh local variables. In this section we show how we can model an abstract
system for which the transition relation is computable as well-structured transi-
tion system and obtain the decidability of deadlock detection for such abstract
systems. To this end, we first provide a canonical representation of an abstract
configuration which abstracts from renamings of the local variables by means
of multisets of closures. A closure of a method m is a pair (u,S), where S is a
continuation of the body of m and uw C Pred(m). (Here Pred(m) denotes the
set of predicates associated with m as defined in Section 3). The set of continu-
ations of a statement S is the smallest set Cont(S) such that S € Cont(S) and
€ € Cont(S), where the “empty” statement e denotes termination, and which is
closed under the following conditions

— 58" € Cont(S) implies S” € Cont(S)

— if e {51} else {S2}; S’ € Cont(S) implies S1;5 € Cont(S) and Sy;5 €
Cont(S)

— whilee {S'}; S” € Cont(S) implies S’; while e {S'}; S” € Cont(S).

Note that for a given method the set of all possible closures is finite. We formally
represent a multiset of closures as a function which assigns a natural number f(c)
to each closure ¢ which indicates the number of occurrences of c. For notational
convenience we write ¢ € f in case f(c) > 0.

In preparation of the notion of canonical representation of abstract configu-
rations, we introduce for every abstract configuration a = (7', p, Q) the set & of
triples (o,u,S) for which (o,u) € T and either (0,5) € {p}UQ or S =e.

Definition 3. An abstract configuration (T,p, Q) is canonically represented by
a multiset of closures f, if for every method m and closure (u,S) of m we have

f((w,8)) = o (o,u,5)call
(where |V| denotes the cardinality of the set V).

Note that each abstract configuration has a unique multiset representation. For
any multiset f of closures, let T'(f) denote the set of predicates {Jv | (v, S)" €
f}, where Jv denotes the existential quantification of all the local variables
appearing in the conjunction of the predicates of v. The following lemma states
the equivalence of a set of closures and its canonical representation.

Lemma 1. Let the abstract configuration (T,p,Q) be canonically represented
by the multiset of closures f. Further, let (o,u) € T, where o € X(m), and
@ € Pred(m). It holds that

L(T) F o iff fuy UT(f) ¢

12

Proof. Proof-theoretically we reason, in first-order logic, as follows. For nota-
tional convenience we view a set of predicates as the conjunction over its ele-
ments. By the Deduction Theorem we have

L(T)F o iff HF L(T) — o
From the laws of universal quantification we obtain
FL(T) = o ift FVX(L(T) — o)

and
FVX(L(T) — @o) iff F3XL(T) — ¢o

where X denotes the set of local variables appearing in L(T') \{uc}. Note that
no local variable of X appears in o or uo.

Since any two distinct v,v’ € L(T) have no local variables in common, we
can push the quantification of 3X L(T) inside. That is,

FAIXL(T) = o iff F{3Xv|ve L(T)}— po
No local variable of X appears in uo, therefore we have
F{3Xv|veLl(T)}—=poiff FuocA{3IXv|veL(T)}— po
Again by the Deduction Theorem we then have
FuoA{3IXv|vel(T)} = goiff {uc} F{3IXv|ve L(T)}— po

Clearly uo - Ju and 3Xw is logically equivalent to Jv, for any v € L(T) \{uoc}.
So, we have

{uo} F{3IXv|ve L(T)} - poiff {uct-{Fv|ve L(T)} = o

Since f represents (7', p, Q) we have that T'(f) = {3v | v € L(T) }. Renaming
the local variables of uo and o then finally gives us

{uc}F{Fv|ve ()} = poif {u} -FT(f) — ¢
which proves the lemma. a
We next define an ordering on multisets of closures.
Definition 4. By f < f’ we denote that f(c) < f'(¢) and f'(c) =0 if f(c) = 0.

In other words, f < f’ if all occurrences of f belong to f/ and f’ does not add
occurrences of closures which do not already occur in f. The following result
states that this relation is a well-quasi-ordering.

Lemma 2. The relation f < [’ is a quasi-ordering such that for any infinite
sequence (fn)n there exist indices i < j such that f; < f;.

13

Proof. First observe that for a given class there is only a finite number of closures.
We show that the proof for the standard subset relation for multisets also holds
for this variation. Assume that for some set X of closures we have constructed
an infinite subsequence (f;,)n of (fn)n such that f/(c) < fj(c), for every c € X
and i < j. Suppose that for every ¢ ¢ X the set {k | fi(c) = k,j € N} is
bounded. It follows that there exists an f; which appears infinitely often in
(f!)n, since there exists only a finite number of combinations of occurrences of
closures in X = {¢| ¢ ¢ X }. On the other hand, if there exists a d ¢ X such that
set {k | fJ’»(d) =k, j € N} has no upperbound then we can obtain a subsequence
(f)n of (f},)n such that f/’(c) < fi(c) for every ¢ € X U{d} and i < j. Thus,
both cases lead to the existence of indices ¢ < j such that f; < f;. ad

From the above lemma it follows immediately that the following induced ordering
on abstract configurations is also a well-quasi-ordering.

Definition 5. We put (T, (0,5),Q) < (T",(07,9),Q") iff f < [/, for multisets
of closures f and f' (uniquely) representing (T, (o,S),Q) and (T',(c¢’,S5),Q’),
respectively.

We can now formulate and prove the following theorem which states that this
well-quasi-ordering is preserved by the transition relation of the abstract system.

Theorem 2. For abstract configurations o, o/, and B3, if a« — o' and o < B
then 8 — B, for some abstract configuration 3 such that o/ < f'.

Proof. The proof proceeds by a case analysis of the transition a — «’. Crucial
in this analysis is the observation that o < 8 implies that o = (T, p, Q) and
8= (T,p,Q), for some T and T’ such that

L(T) F po < L(T') F ¢o’

for renamings 0,0’ € X (m), where m is a method defined by the given class C,
such that (o,u,S) € & and (0’,u,S) € 3, for some closure (u, S) and predicate
¢ of the method m. This follows from Lemma 1 and that f < f’ implies T'(f) =
T(f"), where f and f’ represent o and 3, respectively. Note that by definition,
f! does not add occurrences of closures which do not already occur in f. a

It follows that abstract systems for which the transition relation is computable
are well-structured transition systems (see [10] for an excellent explanation and
overview of well-structured transition systems). For such systems the covering
problem is decidable. That is, for any two abstract configurations « and S it is
decidable whether starting from « it is possible to cover §, meaning, whether
there exists a computation oo —* o’ such that 8 < o’. To show that this implies
decidability of absence of deadlock, let « be a basic (abstract) deadlock config-
uration if « is a deadlock configuration according to Definition 2 and for any
closure (u, S) there exists at most one renaming o such that (o,u,S) € a. Note
that thus f(c) = 1, for any closure ¢, where f represents «. Let A denote the
set, of all basic deadlock configurations. Note that this is a finite set. Further, for

14

every (abstract) deadlock configuration « there exists a basic deadlock configura-
tion o’ € A such that f < f/, where f and f’ represent a and o, respectively.
This is because the different renamings of the same closure do not affect the
definition of a deadlock. Given an initial abstract configuration a, we now can
phrase presence of deadlock as the covering problem of deciding whether there
exists a computation starting from « reaching a configuration S that covers a
deadlock configuration in A.

Summarizing the above, we have the following the main technical result of
this paper.

Theorem 3. Given an abstract system with a computable transition relation
and an abstract configuration o, it is decidable whether

{Bla="prn{p|3p eA:p' xB}=0 (1)

Given this result and the correctness of predicate abstraction, to show that an
initial concrete configuration (I',p, Q) does not give rise to a local deadlock,
it suffices to construct an abstract configuration o = (T, p, Q) such that I' |=
L(T) and for which Equation (1) holds. Note that we can construct T' by the
constructing pairs (o, u), where u = {¢ € Pred(m) | I' = ¢o} (assuming that
o € X(m)).

7 Conclusion

For future work we first have to validate our method for detecting local deadlock
in tool-supported case studies. For this we envisage the use of the theorem-prover
KeY [2] for the construction of the abstract transition relation, and its integration
with on-the-fly reachability analysis of the abstract transition system.

Of further interest, in line with the above, is the integration of the method of
predicate abstraction in the theorem-prover KeY for reasoning compositionally
about general safety properties of actor-based programs. For reasoning about
programs in the ABS language this requires an extension of our method to
synchronous method calls and concurrent object groups.

References

1. Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
The MIT Press, 1986.

2. Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hahnle, Peter H.
Schmitt, and Mattias Ulbrich, editors. Deductive Software Verification - The KeY
Book — From Theory to Practice, volume 10001 of Lecture Notes in Computer
Science. Springer, 2016.

3. Keyvan Azadbakht, Nikolaos Bezirgiannis, and Frank S de Boer. Distributed net-
work generation based on preferential attachment in abs. In International Con-
ference on Current Trends in Theory and Practice of Informatics, pages 103—115.
Springer, 2017.

15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Keyvan Azadbakht, Nikolaos Bezirgiannis, Frank S de Boer, and Sadegh Aliakbary.
A high-level and scalable approach for generating scale-free graphs using active
objects. In Proceedings of the 31st Annual ACM Symposium on Applied Computing,
pages 1244-1250. ACM, 2016.

Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani. Auto-
matic predicate abstraction of C programs. In Conference on Programming Lan-
guage Design and Implementation, pages 203—213, 2001.

Melvin E. Conway. Design of a separable transition-diagram compiler. Commu-
nunications of the ACM, 6(7):396—408, 1963.

Frank S. de Boer, Mario Bravetti, Immo Grabe, Matias David Lee, Martin Steffen,
and Gianluigi Zavattaro. A Petri net based analysis of deadlocks for active objects
and futures. In FACS, volume 7684, pages 110-127. Springer, 2012.

Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen. A complete guide to
the future. In 16th Furopean Symposium on Programming, pages 316-330, 2007.
Frank S. de Boer, Mohammad Mahdi Jaghoori, Cosimo Laneve, and Gianluigi
Zavattaro. Decidability problems for actor systems. In CONCUR 2012 - Con-
currency Theory - 23rd International Conference, CONCUR 2012, Newcastle upon
Tyne, UK, September 4-7, 2012. Proceedings, pages 562—577, 2012.

Alain Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1):63-92, 2001.

Elena Giachino, Ludovic Henrio, Cosimo Laneve, and Vincenzo Mastandrea. Ac-
tors may synchronize, safely! In 18th International Symposium on Principles and
Practice of Declarative Programming, pages 118-131, 2016.

Elena Giachino, Cosimo Laneve, and Michael Lienhardt. A framework for deadlock
detection in core ABS. Software & Systems Modeling, 15(4):1013-1048, 2016.
Susanne Graf and Hassen Saidi. Construction of abstract state graphs with PVS. In
International Conference on Computer Aided Verification, pages 72—-83. Springer,
1997.

Ludovic Henrio, Cosimo Laneve, and Vincenzo Mastandrea. Analysis of synchroni-
sations in stateful active objects. In International Conference on Integrated Formal
Methods, pages 195-210, 2017.

Carl Hewitt. Description and theoretical analysis (using schemata) of planner:
A language for proving theorems and manipulating models in a robot. Technical
report, MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL IN-
TELLIGENCE LAB, 1972.

Einar Broch Johnsen, Reiner Hahnle, Jan Schéfer, Rudolf Schlatte, and Martin
Steffen. ABS: A core language for abstract behavioral specification. In Formal
Methods for Components and Objects, pages 142-164, 2011.

Einar Broch Johnsen, Olaf Owe, and Ingrid Chieh Yu. Creol: A type-safe object-
oriented model for distributed concurrent systems. Theoretical Computer Science,
365(1-2):23-66, 2006.

Eduard Kamburjan, Crystal Chang Din, and Tzu-Chun Chen. Session-based com-
positional analysis for actor-based languages using futures. In International Con-
ference on Formal Engineering Methods, pages 296-312, 2016.

Eric Kerfoot, Steve McKeever, and Faraz Torshizi. Deadlock freedom through
object ownership. In 5th International Workshop on Aliasing, Confinement and
Ouwnership in Object-Oriented Programmaing, 2009.

Marjan Sirjani. Rebeca: Theory, applications, and tools. In Formal Methods for
Components and Objects, pages 102—126, 2006.

16

