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Abstract

Cohen, Coquand, Huber and Mörtberg [CCHM18] introduced a type theory whose equal-
ity type is defined as a (dependent) product over a formal notion of interval. This approach
directly endows the tower of nested equalities over a type with a symmetric cubical structure
whose equations over the operations of the structure hold definitionally.

We study a few properties of this structure from a typed perspective.

We consider a type theory with a universe U and a heterogeneous equality defined by de-
pendent product over an interval ([CCHM18, Section 9]). We start with an interval with no
particular structure, besides supporting variables i, j, k, ... and formal endpoints 0 and 1 (i.e.
interval expressions are defined by τ ::= i | 0 | 1) . Typing contexts include declaration of interval
variables. The rules for equality, essentially taken from [CCHM18], are the following ones:

Γ ` ξ : A =
Û
B Γ ` t : A Γ ` u : B

Γ ` t =ξ u : U

Γ ` p : t =ξ u

Γ ` p 0 ≡ t

Γ ` p : t =ξ u

Γ ` p 1 ≡ u

Γ, i ` t : A

Γ ` λi.t : t[0/i] =λi.A t[1/i]

Γ ` v : t =ξ u FV (τ) ∈ Γ

Γ ` v τ : ξ τ

where we write t̂ to abbreviate λi.t for i not occurring in t (if t is of type A, t̂ is a proof of t =
Â
t

where Â, this time with A of type U, is itself a proof of A =
Û
A).

The type A =
Û
B can be seen as the type of lines connecting the types A and B. Let us call

its inhabitants line types. For ξ a line type between A and B and for t of type A and u of type
B, the type t =ξ u can be seen as the type of lines between t of type A and u of type B. An
inhabitant of such a type is called a line and we say that it has line type ξ.

Let us then consider types A, B, C, and D, as well as lines ξ, ζ, φ and ψ relating these types
as in the square drawn on the left below:
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This square can be identified with the type ξ = ζ
φ =̃ ̂̂

U
ψ

where φ =̃ξ ψ abbreviates λj.(φj =ξ j ψj).

Its inhabitants we call square types.
Let us next consider t, u, v, and w of type A, B, C, and D respectively, and p, q, r and s

lines between these points as drawn in the square above on the right, and E a square type, i.e.

a proof of type ξ = ζ
φ =̃ ̂̂

U
ψ

for some ξ, ζ, φ and ψ connecting A, B, C and D as in the figure.

One can consider the type p = q
r =̃E s

, where r =̃E s again abbreviates λj.(r j =Ej sj). This can
be seen as the type of squares with edges p, q, r and s and square type E.
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We use the abbreviation t =̃n
ξ u , λi1...in.(t i1...in =ξ i1...in ui1...in) and define 3-dimensional

cube types as inhabitant of types of the form
E = F

G =̃ H

I =̃2̂̂̂
U

J

. An inhabitant of
α = β

γ =̃ δ

η =̃2
E θ

is called

a 3-dimensional cube, for α, β, γ, δ, η, θ squares with appropriate conditions on their boundaries,
and E a cube type.

Calling points 0-cubes, lines 1-cubes and squares 2-cubes, we can more generally define n-cube
types and n-cubes: given 2(n + 1) n-cubes αi and βi for 0 ≤ i ≤ n and appropriate conditions
on their boundaries, the previous nesting process allows to define a type of (n+ 1)-cubes over αi
and βi and of n-cube type E that we shall abbreviate [α0, ..., αn] =E [β0, ..., βn].

Let us now consider a general form of operations on (typed) n-cubes. An operation of
dimension n to p is given by a triple (Φ,Ψ0,Ψ1) satisfying the following properties: (i) for any
well-typed n-cube ℵ of cube type E (i.e. ℵ of some type [α1, ..., αn] =E [β1, ..., βn]), Ψ0(ℵ) and
Ψ1(ℵ) are sequences of p faces such that Ψ0(ℵ) =Φ(E) Ψ1(ℵ) is a well-typed type (ii) Φ(ℵ) is of
this type (iii) Φ(t =̃n

ξ u) ≡ Φ(t) =̃p
Φ(ξ) Φ(u) (together with similar rules for every other connective

of the language). Examples of operations include:

• faces: ∂+(p) , p 0 and ∂−(p) , p 1, both of dimension 1 to 0 and both with Ψ0(p) and Ψ1(p)
returning the empty list of faces;
• degeneracies/reflexivity: ε(t) , t̂, of dimension 0 to 1 with both Ψ0(t) and Ψ1(t) returning the
singleton list of faces [t];
• transpositions/interchange: σ(α) , λij.αji, of dimension 2 to 2, with Ψ0(α) , [λi.α0i, λi.αi0]
and Ψ1(α) , [λi.α1i, λi.αi1];
• left (resp. right) connections: Γ+(p) (resp. Γ−(p)) which can be taken as axioms, of dimension

1 to 2, with both Ψ0(p) and Ψ1(p) being [p, p̂1] (resp. [p̂0, p]);
• reversals/inverses: p−1 which can be taken as an axiom, of dimension 1 to 1 with Ψ0(p) , p 1

and Ψ1(p) , p0;
• diagonals: ∆(α) , λi.αii, of dimension 2 to 1 with Ψ0(p) , α00 and Ψ1(p) , α11.

Operations from dimension 1 to some dimension p can be internalized as algebraic operations
of arity p on the interval. For instance, reversal and connections can be obtained, as in [CCHM18],
by extending the interval with τ ::= . . . | − τ | τ ∧ τ | τ ∨ τ and defining p−1 , λi.p(−i), as well
as Γ+(p) , λij.p(i ∧ j) and Γ−(p) , λij.p(i ∨ j). Using iterated congruence, as defined by:

Φ̃
0
(t) , Φ(t) Φ̃

m+1
(t) , λi.Φ̃

m
(t i) i taken fresh

any operation Φ from dimension n can be extended into an operation Φm acting on cubes of
dimension at leastm+n. For instance, for ℵ of dimension q ≥ 1 and 0 ≤ m < q, ∂+

m(ℵ) , ∂̃+
m

(ℵ)
is the m-th left face operation of the cubical structure.

Note in passing that any n-cube of type [α1, ..., αn] =E [β1, ..., βn] can alternatively be seen
as a p-cube of type [α1, ..., αp] =[αp+1,...,αn] =̃pE [βp+1,...,βn] [β1, ..., βp] for 0 ≤ p ≤ n. Hence, any
operation acting on a p-cube directly acts also on an (p+ q)-cube.

Operations can also be extended to take several arguments, with composition or tensor prod-
uct as examples.
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