The definitional symmetric cubical structure of types in type theory with equality defined by abstraction over an interval

Hugo Herbelin INRIA - IRIF - University Paris Diderot

Abstract

Cohen, Coquand, Huber and Mörtberg [CCHM18] introduced a type theory whose equality type is defined as a (dependent) product over a formal notion of interval. This approach directly endows the tower of nested equalities over a type with a symmetric cubical structure whose equations over the operations of the structure hold definitionally.

We study a few properties of this structure from a typed perspective.

We consider a type theory with a universe U and a heterogeneous equality defined by dependent product over an interval ([CCHM18, Section 9]). We start with an interval with no particular structure, besides supporting variables i, j, k, ... and formal endpoints 0 and 1 (i.e. interval expressions are defined by $\tau ::= i \mid 0 \mid 1$). Typing contexts include declaration of interval variables. The rules for equality, essentially taken from [CCHM18], are the following ones:

$$\frac{\Gamma \vdash \xi : A =_{\widehat{U}} B \qquad \Gamma \vdash t : A \qquad \Gamma \vdash u : B}{\Gamma \vdash t =_{\xi} u : U} \qquad \qquad \frac{\Gamma \vdash p : t =_{\xi} u}{\Gamma \vdash p \circ \equiv t} \qquad \frac{\Gamma \vdash p : t =_{\xi} u}{\Gamma \vdash p \circ \equiv t} \qquad \frac{\Gamma \vdash p : t =_{\xi} u}{\Gamma \vdash p \circ \equiv t} \qquad \frac{\Gamma \vdash p : t =_{\xi} u}{\Gamma \vdash p \circ \equiv t}$$

where we write \hat{t} to abbreviate $\lambda i.t$ for i not occurring in t (if t is of type A, \hat{t} is a proof of $t =_{\hat{A}} t$ where \hat{A} , this time with A of type U, is itself a proof of $A =_{\widehat{U}} A$).

The type $A =_{\widehat{U}} B$ can be seen as the type of lines connecting the types A and B. Let us call its inhabitants line types. For ξ a line type between A and B and for t of type A and u of type B, the type $t =_{\xi} u$ can be seen as the type of lines between t of type A and u of type B. An inhabitant of such a type is called a line and we say that it has line type ξ .

Let us then consider types A, B, C, and D, as well as lines ξ , ζ , ϕ and ψ relating these types as in the square drawn on the left below:

$$\begin{array}{cccc} A & \stackrel{\phi}{\longrightarrow} C & & t & \stackrel{r}{\longrightarrow} v \\ \xi \downarrow & \Rightarrow & \downarrow \zeta & & p \downarrow & \Rightarrow & \downarrow q \\ B & \stackrel{\psi}{\longrightarrow} D & & u & \stackrel{s}{\longrightarrow} w \\ & & & & & & & \\ \end{array}$$

This square can be identified with the type $\xi = \zeta_{\phi \cong_{\widehat{U}}^{\widehat{U}} \psi}$ where $\phi \cong_{\xi} \psi$ abbreviates $\lambda j.(\phi j =_{\xi j} \psi j)$. Its inhabitants we call square types.

Let us next consider t, u, v, and w of type A, B, C, and D respectively, and p, q, r and s lines between these points as drawn in the square above on the right, and E a square type, i.e. a proof of type $\begin{cases} \xi = \zeta \\ \phi \cong_{\widehat{U}} \psi \end{cases}$ for some ξ, ζ, ϕ and ψ connecting A, B, C and D as in the figure. One can consider the type $p = q \\ r \cong_{E} s \end{cases}$, where $r \cong_{E} s$ again abbreviates $\lambda j.(r j =_{Ej} s j)$. This can be seen as the type of squares with edges p, q, r and s and square type E. We use the abbreviation $t \cong_{\xi}^{n} u \triangleq \lambda i_{1}...i_{n}.(t i_{1}...i_{n} =_{\xi i_{1}...i_{n}} u i_{1}...i_{n})$ and define 3-dimensional cube types as inhabitant of types of the form E = F $G \cong H$ $I = \sum_{\substack{\{i = 2 \\ i \} \\ i \in \mathbb{Q}}} I$ An inhabitant of $\gamma \cong \delta$ is called $\eta = 2$ $\eta = 2$

a 3-dimensional cube, for α , β , γ , δ , η , θ squares with appropriate conditions on their boundaries, and \mathcal{E} a cube type.

Calling points 0-cubes, lines 1-cubes and squares 2-cubes, we can more generally define *n*-cube types and *n*-cubes: given 2(n + 1) *n*-cubes α_i and β_i for $0 \le i \le n$ and appropriate conditions on their boundaries, the previous nesting process allows to define a type of (n + 1)-cubes over α_i and β_i and of *n*-cube type \mathcal{E} that we shall abbreviate $[\alpha_0, ..., \alpha_n] =_{\mathcal{E}} [\beta_0, ..., \beta_n]$.

Let us now consider a general form of operations on (typed) *n*-cubes. An operation of dimension *n* to *p* is given by a triple (Φ, Ψ_0, Ψ_1) satisfying the following properties: (i) for any well-typed *n*-cube \aleph of cube type \mathcal{E} (i.e. \aleph of some type $[\alpha_1, ..., \alpha_n] =_{\mathcal{E}} [\beta_1, ..., \beta_n]$), $\Psi_0(\aleph)$ and $\Psi_1(\aleph)$ are sequences of *p* faces such that $\Psi_0(\aleph) =_{\Phi(\mathcal{E})} \Psi_1(\aleph)$ is a well-typed type (ii) $\Phi(\aleph)$ is of this type (iii) $\Phi(t \cong_{\xi}^n u) \equiv \Phi(t) \cong_{\Phi(\xi)}^p \Phi(u)$ (together with similar rules for every other connective of the language). Examples of operations include:

- faces: $\partial^+(p) \triangleq p_0$ and $\partial^-(p) \triangleq p_1$, both of dimension 1 to 0 and both with $\Psi_0(p)$ and $\Psi_1(p)$ returning the empty list of faces;
- degeneracies/reflexivity: $\epsilon(t) \triangleq \hat{t}$, of dimension 0 to 1 with both $\Psi_0(t)$ and $\Psi_1(t)$ returning the singleton list of faces [t];
- transpositions/interchange: $\sigma(\alpha) \triangleq \lambda i j . \alpha j i$, of dimension 2 to 2, with $\Psi_0(\alpha) \triangleq [\lambda i . \alpha 0 i, \lambda i . \alpha i 0]$ and $\Psi_1(\alpha) \triangleq [\lambda i . \alpha 1 i, \lambda i . \alpha i 1];$
- left (resp. right) connections: $\Gamma^+(p)$ (resp. $\Gamma^-(p)$) which can be taken as axioms, of dimension 1 to 2, with both $\Psi_0(p)$ and $\Psi_1(p)$ being $[p, \widehat{p1}]$ (resp. $[\widehat{p0}, p]$);
- reversals/inverses: p^{-1} which can be taken as an axiom, of dimension 1 to 1 with $\Psi_0(p) \triangleq p_1$ and $\Psi_1(p) \triangleq p_0$;
- diagonals: $\Delta(\alpha) \triangleq \lambda i . \alpha i i$, of dimension 2 to 1 with $\Psi_0(p) \triangleq \alpha 00$ and $\Psi_1(p) \triangleq \alpha 11$.

Operations from dimension 1 to some dimension p can be internalized as algebraic operations of arity p on the interval. For instance, reversal and connections can be obtained, as in [CCHM18], by extending the interval with $\tau ::= \dots | -\tau | \tau \wedge \tau | \tau \vee \tau$ and defining $p^{-1} \triangleq \lambda i.p(-i)$, as well as $\Gamma^+(p) \triangleq \lambda ij.p(i \wedge j)$ and $\Gamma^-(p) \triangleq \lambda ij.p(i \vee j)$. Using iterated congruence, as defined by:

$$\widetilde{\Phi}^{0}(t) \triangleq \Phi(t) \qquad \widetilde{\Phi}^{m+1}(t) \triangleq \lambda i. \widetilde{\Phi}^{m}(ti) \qquad i \text{ taken fresh}$$

any operation Φ from dimension n can be extended into an operation Φ_m acting on cubes of dimension at least m+n. For instance, for \aleph of dimension $q \ge 1$ and $0 \le m < q$, $\partial_m^+(\aleph) \triangleq \widetilde{\partial^+}^m(\aleph)$ is the *m*-th left face operation of the cubical structure.

Note in passing that any *n*-cube of type $[\alpha_1, ..., \alpha_n] =_{\mathcal{E}} [\beta_1, ..., \beta_n]$ can alternatively be seen as a *p*-cube of type $[\alpha_1, ..., \alpha_p] =_{[\alpha_{p+1}, ..., \alpha_n]} \cong_{\mathcal{E}}^p [\beta_{p+1}, ..., \beta_n] [\beta_1, ..., \beta_p]$ for $0 \le p \le n$. Hence, any operation acting on a *p*-cube directly acts also on an (p+q)-cube.

Operations can also be extended to take several arguments, with composition or tensor product as examples.

References

[CCHM18] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical Type Theory: A Constructive Interpretation of the Univalence Axiom. In Tarmo Uustalu, editor, TYPES 2015, volume 69 of LIPIcs, pages 5:1–5:34. Schloss Dagstuhl, 2018.