
Cohesive Covering Theory (Extended Abstract)1

Felix Wellen
Carnegie Mellon University

A monadic modality in Homotopy Type Theory is a lot like an idempotent monad
in category theory. The n-truncations and double negation are examples from plain
Homotopy Type Theory. Viewing Homotopy Type Theory as an internal language of
(∞,1)-toposes, which is crucial for the following, special features of a particular topos
may be introduced into the type theory as a modality. Important parts of the coverings
theory for topological spaces hold for a general abstract modality. In the following, this
will be explained for a special type theory which admits recovery of the classic topological
situation.

In [Shu15] Mike Shulman introduces Real Cohesive Homotopy Type Theory, as a
candidate for an internal language of some of the (∞,1)-toposes called cohesive, a higher
analog of Lawvere’s axiomatic cohesion [Law07] developed by Urs Schreiber [Sch13].

In Real Cohesive Homotopy Type Theory, which will just be called Real Cohesion
in the following, some well behaved topological spaces, like, for example, topological
manifolds are supposed to be included in the theory. It is important to note, that the
types corresponding to these topological spaces are 0-types in Real Cohesion. This can
lead to confusion with the common explanation for the Identity types in Homotopy Type
Theory, as paths in a space and care has to be taken to separate concept of equality
and topological paths, i.e. maps 𝛾 ∶ ℝ → 𝑋 from the 0-type ℝ representing the real line
with the euclidean topology. Let 𝕊𝑛 denote the topological sphere and 𝑆𝑛 the higher
inductive type introduced in [Uni13].

For the present work, the shape modality “∫” from Real Cohesion is of special interest.
It maps topological spaces to their homotopy type, so for example ∫ 𝕊1 = 𝑆1 and ∫ ℝ = 1.
In a 1-topos cohesive over Set, the functor Δ ∘ 𝜋0 maps a sheaf to the sheaf constantly
its set of connected components. The ∫ is a higher analog of this functor that extracts
homotopical information on all h-levels, not just level 0. So if 𝑋 represents a topological
space with a point ∗∶𝑋, then ∫ 𝑋 is also pointed and the n-th homotopy group of 𝑋 as
a topological space could be retrieved from its shape as 𝜋𝑛(𝑋) ∶≡ ‖Ω𝑛 ∫ 𝑋‖0.

Like Δ∘𝜋0 reflects into the subcategory of constant sheaves, ∫ reflects into the discrete
types. Note that “discrete” refers to the topological structure of a type, not to a property
of the ∞-groupoid structure given by its identity type.

As all modalities, ∫ comes with a unit-map 𝜎𝑋 ∶ 𝑋 → ∫ 𝑋, for any type 𝑋. For any
two points 𝑥, 𝑦 ∶ 𝑋 that are joined by a topological path, the images 𝜎𝑋(𝑥) and 𝜎𝑋(𝑦)
are equal in ∫ 𝑋.

Contribution. From this point on, let us assume that each type supposed to represent
a topological space comes with a point “∗” and for ∗ ∶ 𝑋 let us abbreviate 𝜎𝑋(∗) with ∗.

For many modalities, the fibers of their units are interesting. For 𝕊1, this fiber

∑
𝑥∶𝕊1

𝜎𝕊1(𝑥) = ∗

1This material is based on research sponsored by The United States Air Force Research Laboratory
under agreement number FA9550-15-1-0053.
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– or more precisely its projection to 𝕊1 – turns out to be the universal cover of 𝕊1. But
this works only for spaces with trivial higher homotopy groups. For the construction of
the universal cover of an arbitrary type, this has to be adjusted:

𝑋 ∶≡ ∑
𝑥 ∶ 𝑋

‖𝜎𝑋(𝑥) = ∗‖0.

Note that this amounts to replacing the modality ∫ with the modality ∫1 ∶≡ ‖_‖1 ∘ ∫.
To justify calling 𝑋 the universal cover of 𝑋, we will define covering spaces relative to
a modality and show a universal property.

For a modality ○ with unit 𝜂, we call a map 𝑓 ∶ 𝑌 → 𝑋 a ○-cover, if the naturality
square

𝑌 ○𝑌

𝑋 ○𝑋
𝑓

𝜂𝑌

○𝑓(pb)

𝜂𝑋

is a pullback square. For ○ ≡ ∫1, covering spaces in topology have the universal property
of this pullback for cones with a topological space as tip.

For a ∫1-cover 𝑓 ∶ 𝑌 → 𝑋 there is always the trivial map 𝑡 ∶ 𝑋 → ∫1 𝑌 . Together with
a 𝑔 ∶ ∗ =∫1 𝑋 ∗ this yields a cone for the universal property of the defining pullback of 𝑓
and therefore a unique map 𝑋 → 𝑌 .

Similarly, the construction of covering spaces corresponding to subgroups of 𝜋1(𝑋)
can be done without using anything beyond the properties of a general modality: Any
subgroup 𝐻 ⊆ 𝜋1(𝑋) can be represented by an action of 𝜋1(𝑋) on a discrete 0-type
1 and therefore a map 𝐵𝐻 → ∫1 𝑋, with discrete 𝐵𝐻. The pullback of this map is a
∫1-cover with the correct fiber type. A calculation on the level of abstract modalities
shows, that this gives the usual one-to-one correspondence. In its most natural abstract
form this correspondence of maps 𝑀 → ∫1 𝑋 for modal 𝑀 and ∫1-covers includes maps
with discrete 1-types as fibers.

For the modality ∫, this correspondence relates ∫-covers with maps 𝑀 → ∫ 𝑋 for
discrete 𝑀 . Since the latter are ∞-actions of ∫ 𝑋 on discrete types, this seems to be a
very natural generalization. The universal cover construction for ∫ yields a “∫-universal
cover” which can have both non-discrete topological structure and non-propositional
identity types. This occurs whenever ∫ 𝑋 is not 1-truncated. For example, if we assume
a type ℂℙ∞ representing the appropriate topological space, the ∫-universal cover will
be a 1-type over ℂℙ∞ with identity types merely 𝑆1. The ∫-universal cover 𝑋 of a
space has always a contractible shape, i.e. ∫ 𝑋 ≃ 1.

Similar generalizations of the classical topological correspondence are known on the
classical side for cohesive ∞-stacks [Sch13, Section 5.2.7] and topological 1-stacks [Noo05].
The author sees one advantage in the clarity of the type theoretic proofs, since the corre-
spondence and some related remarks are all straight forward to prove using one lemma,
which is so far the only formalized part of this work. The statement of this lemma is
a generalization of the fact that modalities preserve products: For any dependent type
𝐵 ∶ ○𝐴 → 𝒰, we have ○ ∑𝑥∶𝐴 𝐵(𝜂𝐴(𝑥)) ≃ ∑𝑥∶○𝐴 ○𝐵(𝑥).

1This means we use the homotopical covering theory of [Hou17, Section 3.1] and [BvR18, Section 7.1]
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