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Gradual typing integrates dynamic and static types. Since its introduction, it has been successfully
applied to several extensions of simple types, including subtyping, parametric polymorphism and
substructural types. This work studies its application to intersection type systems. We introduce
a new approach to define a gradual version of the original intersection type system of Coppo and
Dezani. We then present a new operational semantics for terms typed with static and dynamic inter-
section types, which enables dynamic type casts and identifies the causes for type errors in a frame-
work inspired by the blame calculus. Finally we prove several properties of our system including a
correctness criteria and soundness of the extension of the original gradual type system.

1 Introduction

The recent contributions of gradual typing [3, 4], integrating static and dynamic typing in a single pro-
gram, are the basis for several type systems. Gradual typing allows to fine tune the distribution of static
and dynamic checking in a program, thus harnessing the strengths of both typing disciplines. Regard-
ing polymorphism, gradual typing has been sucessfully applied [8] to the well-known and widely used
Hindley-Milner (HM) type system [10, 14], resulting in a gradual type system with polymorphism.

Intersection types [5, 6, 12, 1] were proposed as an alternative to the HM type system. They allow a
different form of polymorphism, discrete polymorphism, in which all the (finite) instances of a type are
explicitly expressed. Thus, type systems based on these types are able to type more programs than the
HM type system, some are able to type all the strongly normalizing terms, and also allow for increased
expressiveness when describing instances of polymorphic types.

In our work, we extend gradual typing with intersection types, resulting in a polymorphic system
that contains all the expressive power of intersection types along with all the advantages of gradual
typing. Our system allows the use of the dynamic type in instances of intersection types, and thus
allows a single expression to be typed with dynamic and static types simultaneously. For example, in
(λx : Int∩Dyn . xInt + xDyn) 1 different instances of the variable x are typed with different (static and
dynamic) types.

In general, our system extends the Gradually Typed Lambda Calculus (GTLC) [3, 4], since besides
a type system and the cast calculus, we also present a cast insertion procedure that inserts casts to test
types at run-time, and an operational semantics to evaluate these casts. These casts are similar to those
of [3], but modified to accomodate intersection types at run-time. This system adheres to the formal
correctness criteria, put forth in [16, 3, 4], that guides the design of gradual languages. We also show
how our system is a generalization of the GTLC, behaving as the GTLC when expressions are typed with
only simple types.

A recent contribution that discussed the use of intersection types in a gradual setting is [2]. This
work focused on extending semantic subtyping [7] with gradual types, where types were interpreted as
sets of values. In [2], intersection types were interpreted as its corresponding set-theoretic intersection
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2 Gradual Intersection Types

operator and typed overloaded functions which run a different code for each different type. Our work is
fundamentally different from [2] in the sense that we follow the original motivation of intersection type
systems, where functions with intersection types may be applied to arguments of different types but they
always execute the same code for all of these types. Thus, in our work, intersection types are finitely
parametric polymorphic types in opposition with the work reported in [2], where intersection types were
used to overload function names which discriminated on the different types of their arguments.

This paper makes the following contributions:

• A gradual type system with intersection types, as well as a cast calculus and cast insertion, thus
combining discrete polymorphism with gradual typing (Section 2).

• An operational semantics for the cast calculus, handling the reduction of run-time checks and with
support for discrete polymorphism granted by the use of intersection types (Section 3).

• We show important properties, namely the correctness criteria for gradual typing, and we also
show how our system is a generalization of the GTLC (Section 4).

2 Gradual Intersection Types

Intersection types add to simple types [9] intersections of types of the form T1 ∩ . . .∩Tn. Intersections
of types are independent of the order and the number of occurrences of each type. We thus consider
intersections of types modulo the following equivalence relations:

T1∩ . . .∩Ti∩Ti+1∩ . . .∩Tn = T1∩ . . .∩Ti+1∩Ti∩ . . .∩Tn commutative

T1∩ . . .∩Ti∩Ti∩ . . .∩Tn = T1∩ . . .∩Ti∩ . . .∩Tn idempotent

(T1→ T )∩ . . .∩ (Tn→ T ) = T1∩ . . .∩Tn→ T distributive

We follow the original definition in [5], so intersections are not allowed in the codomain of the arrow
type, so T1 → (T2 ∩ T3) is not a valid type, but (T1 ∩ T2)→ (T3 ∩ T4)→ T5 is. We do not distinguish
between a singleton intersection of types and its sole element, and we assume that if I1 = T1 ∩ . . .∩Tn

and I2 = T ′1 ∩ . . .∩T ′m then we write I1 ∩ I2 for T1 ∩ . . .∩Tn ∩T ′1 ∩ . . .∩T ′m. We say that T1 ∩ . . .∩Tn ⊆
T ′1 ∩ . . .∩T ′m if and only if {T1, . . . ,Tn} ⊆ {T ′1, . . . ,T ′m}. The intersection ∩ has a higher precedence than
the arrow type, so T1∩T2∩T3→ T4 is equal to (T1∩T2∩T3)→ T4.

2.1 Syntax and Type System

Here we define our Gradual Intersection Type System (`∩G), or GITS for short. Our language is an
explicitly typed λ -calculus with integers and booleans. The syntax and the type system are presented in
Figure 1. Gradual typing uses an explicitly typed system with domain-type declarations in λ -abstractions
to be able to declare them as dynamic. The same happens with our system, where the programmer
controls the type checker behavior with explicit type declarations for function arguments. Rule T-Abs’
restricts to binding just one instance of the intersection to the variable in the context of the (single) type
judgement in the premise of the rule. This allows the programmer to explicitly control the generation
of alternative types for terms (this extra rule goes back to Reynolds in [15]). We say that two types
are consistent if the instances of both types are consistent. Considering the properties of intersection
types, they are consistent with a simple type (Int for example), if all the instances are consistent with
that simple type. Looking at the definition of pattern matching, we see that if the type of the function, in
the application rule, is a function type, then pattern matching gets its domain and codomain. However,
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Syntax

Types T ::= Int | Bool | Dyn | T → T | T ∩ . . .∩T

Expressions e ::= xT | λx : T . e | e e | n | true | false

Γ `∩G e : T Typing

Γ,x : T1∩ . . .∩Tn `∩G e : T

Γ `∩G λx : T1∩ . . .∩Tn . e : T1∩ . . .∩Tn→ T
T-ABS

Γ `∩G e1 : PM PMBT1∩ . . .∩Tn→ T
Γ `∩G e2 : T ′1 ∩ . . .∩T ′n T ′1 ∩ . . .∩T ′n ∼ T1∩ . . .∩Tn

Γ `∩G e1 e2 : T
T-APP

x : T ′ ∈ Γ T ⊆ T ′

Γ `∩G xT : T
T-VAR

Γ,x : Ti `∩G e : T

Γ `∩G λx : T1∩ . . .∩Tn . e : Ti→ T
T-ABS’

Γ `∩G e : T1 · · · Γ `∩G e : Tn

Γ `∩G e : T1∩ . . .∩Tn
T-GEN

Γ `∩G e : T1∩ . . .∩Tn

Γ `∩G e : Ti
T-INST

Γ `∩G n : Int
T-INT

Γ `∩G true : Bool
T-TRUE

Γ `∩G false : Bool
T-FALSE

T ∼ T Consistency

T ∼ T T ∼ Dyn Dyn∼ T

T1 ∼ T3 T2 ∼ T4

T1→ T2 ∼ T3→ T4

T1 ∼ T ′1 · · · Tn ∼ T ′n
T1∩ . . .∩Tn ∼ T ′1 ∩ . . .∩T ′n

T BT Pattern Matching

T1→ T2BT1→ T2 DynBDyn→ Dyn

Figure 1: Gradual Intersection Type System (`∩G)

if the function is typed dynamically, then it must be treated as a function type from dynamic to dynamic.
Finally, if the type of the function is not a functional type and not dynamic then the typing rule for
application is not applicable. Being an explicitly typed calculus we assume that expressions are always
typed with an intersection type. For example, rule T-App assumes that e2 is typed with T ′1 ∩ . . .∩ T ′n .
However, these rules also accept simple types, when n = 1.

In our correctness criteria we will relate our system with a standard statically typed λ -calculus with
intersection types, here called the Static Intersection Type System (`∩S), or SITS for short (presented in
Appendix A for space limitation reasons). The Gradualizer [3] is a methodology to automatically gener-
ate a gradual type system from a given static type system. It accomplishes that purpose by individually
inspecting the typing rules of a type system and transforming those rules into their gradual counterpart.
It also generates the cast calculus typing rules and a cast insertion procedure from the static type sys-
tem. We note that applying the gradualizer to the SITS results in our Gradual Intersection Type System,
however our cast calculus and cast insertion procedure were designed by intuition.

2.2 Cast Calculus

In our system, casts only allow simple types. We are forced to consider how the intersection type is
treated in the scope of the type system, and to rethink the definition of casts, as in [3, 4]. We solve
this difficulty with the following reasoning: each instance of the intersection type generates a different
cast during cast insertion. Therefore, all the instances produce various casts, which during evaluation
are reduced independently. This is the key insight used in designing this system, and to implement it,



4 Gradual Intersection Types

Syntax

Types T ::= Int | Bool | Dyn | T → T

Casts c ::= c : T ⇒l T cl | blame T T l cl | ∅ T cl

`∩CI c : (T,T ) Typing

`∩CI c : (T,T1) T1 ∼ T2

`∩CI c : T1⇒l T2
cl : (T,T2)

T-SINGLECI
`∩CI blame TI TF l cl : (TI,TF)

T-BLAMECI
`∩CI ∅ T cl : (T,T )

T-EMPTYCI

Figure 2: Cast Intersection Type System (`∩CI)

the cast as in the original contribution from [3, 4] is replaced with the cast intersection, e : c1∩ . . .∩ cn,
where ci represents a series of casts that are evaluated independently, and each of these ci are related to an
instance of the intersection type. The need for a system that handles the various casts in cast intersections
gave rise to the Cast Intersection system, with each cast ci being part of the Cast Intersection system.
Therefore, our cast calculus is composed of both the Intersection Cast Calculus (`∩CC), which is the
counterpart to the Cast Calculus from [3], and the Cast Intersection Type System (`∩CI), which types
these casts ci.

Cast Intersection Type System The Cast Intersection Type System (`∩CI), or CITS for short, in Figure
2, is the type system for the sublanguage of casts. The sublanguage is composed of 3 terms: the single
cast c : T1⇒l T2

cl casts a type T1 to a type T2; the blame cast blame TI TF l cl represents a blame with
initial type TI , final type TF and blame label l [3]; and the empty cast ∅ T cl is an identity cast (from T to
T ). No context is required in the typing rules of Figure 2 because there are no variables. The cast label
cl is a mark used to compare casts depending on their origin, its purpose will be explained in Section 3.

A cast c can have many casts (single, blame or empty casts), and therefore, many source and target
types, as defined in [4]. We adapt the concept of source and target type, and rename it as initial and final
type, with initial type refering to the source type of the inner (left) most cast and final type refering to
the target type of the outer (right) most cast. In the typing judgement `∩CI c : (TI,TF), c has initial type
TI and final type TF .

Intersection Cast Calculus The Intersection Cast Calculus (`∩CC), shown in Figure 3, is the counter-
part in our system to the Cast Calculus from [3]. It introduces the cast intersection e : c1 ∩ . . .∩ cn and
its typing rules. In the GTLC, a cast is well typed if the source type of the cast is equal to the type of
the sub expression. In our system, as per rule T-CastIntersection, a cast intersection is well typed if the
intersection of the initial types of all casts ci is equal to the type of the subexpression. The cast intersec-
tion then types with the intersection of the final types of all casts ci. The Intersection Cast Calculus also
introduzes the blame term, blameT l, as described in the original contribution [4].

Rule T-App is not sufficient to type applications, since casts are typed with intersections only appear-
ing in the top level of the type. For example, if Γ `∩CC e1 : (Int→ Int)∩ (Bool→ Int) and Γ `∩CC e2 :
Int∩Bool, then by rule T-App, e1 e2 is not typeable. Rule T-App’ is then required to type applications.
During cast insertion, types are converted such that intersection types only appear in the top level of the
type. Then, rule T-App’ and T-CastIntersection only expect types with this restriction, and don’t allow
intersection types in their type variables.
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Syntax

Types T ::= Int | Bool | Dyn | T → T | T ∩ . . .∩T

Expressions e ::= xT | λx : T . e | e e | n | true | false | e : c∩ . . .∩ c | blameT l

Γ `∩CC e : T Typing

Static Intersection Type System (`∩S) rules and

Γ `∩CC e1 : (T11→ T12)∩ . . .∩ (Tn1→ Tn2) Γ `∩CC e2 : T11∩ . . .∩Tn1

Γ `∩CC e1 e2 : T12∩ . . .∩Tn2
T-APP’

Γ `∩CC e : T ′′1 ∩ . . .∩T ′′n `∩CI c1 : (T ′1,T1) · · · `∩CI cn : (T ′n,Tn)
T ′′1 ∩ . . .∩T ′′n = T ′1 ∩ . . .∩T ′n

Γ `∩CC e : c1∩ . . .∩ cn : T1∩ . . .∩Tn
T-CASTINTERSECTION

Γ `∩CC blameT l : T
T-BLAME

Figure 3: Intersection Cast Calculus (`∩CC)

2.3 Cast Insertion

The compilation of the Gradual Intersection Type System to the Intersection Cast Calculus (also called
cast insertion) is displayed in Figure 4. This compilation to the Cast Calculus is written Γ`∩CC e e′ : T ,
meaning that e is compiled to e′ with type T in the type environment Γ, and it basically inserts run-time
casts in subexpressions where the type system uses consistency to compare types. The cast insertion
rules for the Intersection Cast Calculus are similar to the cast insertion rules for the cast calculus of [3],
with the exception that the rules are adapted to deal with the Gradual Intersection Type System, which
results in 3 aditional rules: C-Abs’, C-Gen and C-Inst. Both compilation systems only insert casts in
the application of terms, therefore rules that deal with other terms are similar. Regarding the rule for
application, the two systems differ mainly due to different casts. Inserting cast intersections follows the
same basic principle as cast insertion in [3]: we add a cast intersection to the expression on the left with
initial types equal to the instances of the type of the expression and final types equal to the instances of
the result of pattern matching, and we add a cast intersection to the expression on the right with initial
types equal to the instances of the type of the expression and final types equal to the instances of the
type given by the consistency relation. As we are dealing with intersection types, we must first retrieve
the simple types that make up all the instances of the intersection type with the instances (E) relation
presented in Figure 4. Then we add the casts with the cast insertion (S, S, e ↪→ e) relation.

Theorem (Instances of Intersection Types). We define the set S of instances of an intersection type T as
the set obtained by T E S. Given a type T , if T E S then every element of S is a simple type.

The proof for this theorem can be found in Appendix B. This allows the system to deal with finite rank
intersection types [11, 12, 13], by inserting as casts all its alternatives.

3 Normalization

Due to the existence of two systems, the Cast Intersection Type System (`∩CI) and the Intersection Cast
Calculus (`∩CC), the reduction rules of our system are divided into two operational semantics: the Cast
Intersection operational semantics (−→∩CI) and the Intersection Cast Calculus operational semantics
(−→∩CC).
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Γ `∩CC e e : T Compilation

Γ,x : T1∩ . . .∩Tn `∩CC e e′ : T

Γ `∩CC λx : T1∩ . . .∩Tn . e λx : T1∩ . . .∩Tn . e′ : T1∩ . . .∩Tn→ T
C-ABS

Γ `∩CC e1 e′1 : PM
PMBT1∩ . . .∩Tn→ T Γ `∩CC e2 e′2 : T ′1 ∩ . . .∩T ′n T ′1 ∩ . . .∩T ′n ∼ T1∩ . . .∩Tn PM E S1

T1∩ . . .∩Tn→ T E S2 T ′1 ∩ . . .∩T ′n E S3 T1∩ . . .∩Tn E S4 S1, S2, e′1 ↪→ e′′1 S3, S4, e′2 ↪→ e′′2
Γ `∩CC e1 e2 e′′1 e′′2 : T

C-APP

x : T ′ ∈ Γ T ⊆ T ′

Γ `∩CC xT  xT : T
C-VAR

Γ,x : Ti `∩CC e e′ : T

Γ `∩CC λx : T1∩ . . .∩Tn . e λx : T1∩ . . .∩Tn . e′ : Ti→ T
C-ABS’

Γ `∩CC e e′ : T1 · · · Γ `∩CC e e′ : Tn

Γ `∩CC e e′ : T1∩ . . .∩Tn
C-GEN

Γ `∩CC e e′ : T1∩ . . .∩Tn

Γ `∩CC e e′ : Ti
C-INST

Γ `∩CC n n : Int
C-INT

Γ `∩CC true true : Bool
C-TRUE

Γ `∩CC false false : Bool
C-FALSE

T E S Instances

Int E {Int} BoolE {Bool} DynE {Dyn}

T1 E {T11, . . . ,T1n}
T1→ T2 E {T11→ T2, . . . ,T1n→ T2}

T1 E {T11, . . . ,T1m} · · · Tn E {Tn1, . . . ,Tn j}
T1∩ . . .∩Tn E {T11, . . . ,T1m, . . . ,Tn1, . . . ,Tn j}

S, S, e ↪→ e Cast Insertion

{T11, . . . ,T1n}, {T21, . . . ,T2n}, e ↪→ e : (∅ T11
0 : T11⇒l1 T21

0)∩ . . .∩ (∅ T1n
0 : T1n⇒ln T2n

0)

{T11, . . . ,T1n}, {T2}, e ↪→ e : (∅ T11
0 : T11⇒l1 T2

0)∩ . . .∩ (∅ T1n
0 : T1n⇒ln T2

0)

{T1}, {T21, . . . ,T2n}, e ↪→ e : (∅ T1
0 : T1⇒l1 T21

0)∩ . . .∩ (∅ T1
0 : T1⇒ln T2n

0)

Figure 4: Compilation to the Intersection Cast Calculus

Cast Intersection Reduction Rules The Cast Intersection operational semantics is presented in Figure
5. These rules are solely responsible for the reduction of casts pertaining a single instance of intersection
types, and as such, casts only contain simple types. Therefore, these rules are very similar to the cast
handler reduction rules in [4]. The original purpose of the rules in [4] was preserved in this system: rule
E-PushBlameCI is responsible for triggering blame to the top level; rules E-IdentityCI, E-SucceedCI
and E-FailCI detect the success or failure of casts; and rules E-GroundCI and E-ExpandCI mediate the
transition between the two disciplines. Note that, as presented in [4], G is a ground type of T if G ∼ T
and G 6= T , and also G is a ground type. Each rule in the Cast Intersection operational semantics has a
counterpart in the cast handler reduction rules.

Due to the existence of the empty cast and the blame cast in this system, cast values remain similar to
the original definition of values pertaining casts of [4], with a few exceptions. Casts from ground types
to the dynamic type and casts from an arrow type to a different arrow type are kept as values, however
we now recursively check if the sub-cast is also a value, or if the recursion stops with the empty cast.
Regarding the new casts of the language, as neither blame casts nor empty casts can be further reduced,
they are also considered values.
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Syntax

Types T ::= Int | Bool | Dyn | T → T

Ground Types G ::= Int | Bool | Dyn→ Dyn

Casts c ::= c : T ⇒l T cl | blame T T l cl | ∅ T cl

Cast Values cv ::= cv1 | blame T T l cl

cv1 ::= ∅ T cl | cv1 : G⇒l Dyn cl | cv1 : T1→ T2⇒l T3→ T4
cl

c−→∩CI c Evaluation

blame TI TF l1 cl1 : T1⇒l2 T2
cl2 −→∩CI blame TI T2 l1 cl1

E-PUSHBLAMECI

¬(is cast value c) c−→∩CI c′

c : T1⇒l T2
cl −→∩CI c′ : T1⇒l T2

cl E-EVALUATECI
cv1 : T ⇒l T cl −→∩CI cv1

E-IDENTITYCI

cv1 : G⇒l1 Dyn cl1 : Dyn⇒l2 G cl2 −→∩CI cv1
E-SUCCEEDCI

¬(same ground G1 G2) `∩CI cv1 : (TI,T )

cv1 : G1⇒l1 Dyn cl1 : Dyn⇒l2 G2
cl2 −→∩CI blame TI G2 l2 cl1

E-FAILCI

G is ground type o f T ¬(is ground type T )

cv1 : T ⇒l Dyn cl −→∩CI cv1 : T ⇒l G cl : G⇒l Dyn cl E-GROUNDCI

G is ground type o f T ¬(is ground type T )

cv1 : Dyn⇒l T cl −→∩CI cv1 : Dyn⇒l G cl : G⇒l T cl E-EXPANDCI

Figure 5: Cast Intersection Operational Semantics (−→∩CI)

Intersection Cast Calculus Reduction Rules The Intersection Cast Calculus operational semantics is
presented in Figure 6. Being the counterpart to the Cast Calculus operational semantics from [4], these
rules specify evaluation of the λ -calculus terms and the remaining terms of the language, including cast
intersections. Updating the definition of casts from [3] to cast intersections (e : c1 ∩ . . .∩ cn) requires
some reduction rules to be adapted as well.

In [4], cast handler reduction rules were a part of the operational semantics. However, with the new
definition of casts, we require a rule to connect the Intersection Cast Calculus with the evaluation rules
for casts, given by the Cast Intersection operational semantics. E-EvaluateCasts then establishes a bridge
between the two operational semantics, by specifying that casts ci in the cast intersection e : c1∩ . . .∩ cn

are reduced in parallel.
The simulation rule for the arrow type, C-BETA in [4], also requires adaptation, resulting in the

rule E-SimulateArrow (we have not included the definition of the function simulateArrow due to space
constraints, but it can be found in Appendix A). The key insight of this rule remains the same, only
extended to deal with multiple casts. Casts that are not compatible with the arrow type are filtered out,
so the only casts that are used in this step are empty casts with an arrow type (∅ T1→ T2

cl) or casts from
arrow types to arrow types, c : T1→ T2⇒l T3→ T4

cl , assuming c also follows these restrictions. Then
we take the outermost cast and divide it, forming two casts and distributing these between the terms.
For example (v : (∅ T1→ T2

cl : T1→ T2⇒l T3→ T4)∩ (∅ T5→ T6
cl)) v2 is evaluated to (v : (∅ T1→

T2
cl)∩ (∅ T5→ T6

cl)) (v2 : (∅ T3
1 : T3⇒l T1

1)∩ (∅ T5
2)) : (∅ T2

1 : T2⇒l T4
1)∩ (∅ T6

2). The main



8 Gradual Intersection Types

Syntax

Types T ::= Int | Bool | Dyn | T → T | T ∩ . . .∩T

Expressions e ::= xT | λx : T . e | e e | n | true | false | e : c∩ . . .∩ c | blameT l

Values v ::= xT | λx : T . e | n | true | false | blameT l | v : cv1∩ . . .∩ cvn such that

¬(∀i∈1..n . cvi = blame T T l cl) ∧ ¬(∀i∈1..n . cvi =∅ T cl)

e−→∩CC e Evaluation

Γ `∩CC (blameT2 l) e2 : T1

(blameT2 l) e2 −→∩CC blameT1 l
E-PUSHBLAME1

Γ `∩CC e1 (blameT2 l) : T1

e1 (blameT2 l)−→∩CC blameT1 l
E-PUSHBLAME2

`∩CI c1 : (T ′1,T1) · · · `∩CI cn : (T ′n,Tn)

blameT l : c1∩ . . .∩ cn −→∩CC blameT1∩...∩Tn l
E-PUSHBLAMECAST

e1 −→∩CC e′1
e1 e2 −→∩CC e′1 e2

E-APP1

e2 −→∩CC e′2
v1 e2 −→∩CC v1 e′2

E-APP2
e−→∩CC e′

e : c1∩ . . .∩ cn −→∩CC e′ : c1∩ . . .∩ cn
E-EVALUATE

(λx : T1∩ . . .∩Tn . e) v−→∩CC [x 7→ v]e
E-APPABS

is value (v1 : cv1∩ . . .∩ cvn) ∃i ∈ 1..n . isArrowCompatible(cvi)
((c11,c12,cs

1), . . . ,(cm1,cm2,cs
m)) = simulateArrow(cv1, . . . ,cvn)

(v1 : cv1∩ . . .∩ cvn) v2 −→∩CC (v1 : cs
1∩ . . .∩ cs

m) (v2 : c11∩ . . .∩ cm1) : c12∩ . . .∩ cm2
E-SIMULATEARROW

is value (v : cv1∩ . . .∩ cvn) v : c′′1 ∩ . . .∩ c′′j = mergeCasts(v : cv1∩ . . .∩ cvn : c′1∩ . . .∩ c′m)

v : cv1∩ . . .∩ cvn : c′1∩ . . .∩ c′m −→∩CC v : c′′1 ∩ . . .∩ c′′j
E-MERGECASTS

¬(∀i ∈ 1..n . is cast value ci) c1 −→∩CI cv1 . . . cn −→∩CI cvn

v : c1∩ . . .∩ cn −→∩CC v : cv1∩ . . .∩ cvn
E-EVALUATECASTS

v : blame I1 F1 l1 cl1 ∩ . . .∩blame In Fn ln cln −→∩CC blame(F1∩...∩Fn) l1
E-PROPAGATEBLAME

v : ∅ T1
cl1 ∩ . . .∩∅ Tn

cln −→∩CC v
E-REMOVEEMPTY

Figure 6: Intersection Cast Calculus Operational Semantics (−→∩CC)

difference with C-BETA from [4] is that E-SimulateArrow applies the same treatment to various casts ci.
The marks cl are used to distinguish casts that originate from different instances, thus preventing these
casts from being merged together. We use integers as marks and we assign marks to casts based on their
index in cast intersections. The neutral mark is 0.

Rule E-MergeCasts merges two cast intersections to allow the evaluation of casts (the definition of
mergeCasts, found in Appendix A, was not included due to space limitations). We take the casts from
the sub expression and merge every cast against every cast in the expression, provided these casts will
be typeable under `∩CI and share a compatible mark cl. For example, merging the cast ∅ T1

cl1 : T1⇒l

T2
cl1 with ∅ T3

cl2 : T3 ⇒l T4
cl2 results in ∅ T1

cl1 : T1 ⇒l T2
cl1 : T3 ⇒l T4

cl2 assuming T2 equals
T3, thus preserving typeability under `∩CI , and cl1 and cl2 are compatible. The two marks cl1 and cl2
are compatible if cl1 = cl2 or either cl1 or cl2 is a neutral mark. As rule E-SimulateArrow filters casts
and rule E-MergeCasts removes casts that do not type check, we are potentially removing instances of
intersection types. Thus our definition of type preservation is a weaker one.
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Substitution We change the standard substitution definition to properly instantiate cast intersections,
here done by the function I(T,e). Substitution is thus the standard one with the following change:

[x 7→ e]xT = I(T,e)

The definition of I(T,e) follows:

I(T,e : c1∩ . . .∩ cn) = e : c′1∩ . . .∩ c′m
where T E S and c′1∩ . . .∩ c′m = {c | c ∈ {c1, . . . ,cn} and `∩CI c : (T ′,T ′′) and T ′′ ∈ S}

I(T,e) = e, i f e is not a cast intersection

One illustrating example of reduction follows:

(λx : Int∩Dyn . xDyn) 1 (cast insertion)

((λx : Int∩Dyn . xDyn) : ((∅ Int→ Dyn 0 : Int→ Dyn⇒l Int→ Dyn 0)∩
(∅ Dyn→ Dyn 0 : Dyn→ Dyn⇒l Dyn→ Dyn0)))

(1 : (∅ Int 0 : Int⇒l Int 0)∩ (∅ Int 0 : Int⇒l Dyn 0))−→∗∩CC (E-EvaluateCasts and E-IdentityCI)

(λx : Int∩Dyn . xDyn) (1 : (∅ Int 0)∩ (∅ Int 0 : Int⇒l Dyn 0))−→∩CC (E-AppAbs)

1 : (∅ Int 0 : Int⇒l Dyn 0)

4 Correctness Criteria

Consider a partial order v [3] meaning that a type, or a term, is less precise than another type, or a term
(the formal definition of v is on Appendix A). We want to ensure that less precise programs behave the
same way as more precise ones. This property, along with other properties such as those related to type
safety, are ensured by correctness criteria, put forth in [16, 3, 4]. Our system observes these correctness
criteria, and as such has the following properties (proofs can be found in Appendix B):

Conservative Extension: If e is fully static and T is a static type, then Γ `∩S e : T ⇐⇒ Γ `∩G e : T .
Monotonicity w.r.t. precision: If Γ `∩G e : T and e′ v e then Γ `∩G e′ : T ′ and T ′ v T .
Type preservation of cast insertion: If Γ `∩G e : T then Γ `∩CC e e′ : T and Γ `∩CC e′ : T .
Monotonicity of cast insertion: If Γ `∩CC e1 e′1 : T1 and Γ `∩CC e2 e′2 : T2 and e1 v e2 then e′1 v e′2.
Conservative Extension: If e is fully static, then e−→∩S e′ ⇐⇒ e−→∩CC e′.
Type preservation: If Γ `∩CC e : T1∩ . . .∩Tn and e−→∩CC e′ then Γ `∩CC e′ : T1∩ . . .∩Tm such that m≤ n.
Progress: If Γ `∩CC e : T then either e is a value or there exists an e′ such that e−→∩CC e′.

In our system, we simulate simple casts [3, 4] as an instance of cast intersections e : c1∩ . . .∩cn, when
n = 1. For example, the expression 1 : Int⇒l Dyn can be represented in our system as 1 : (∅ Int 0 : Int⇒l

Dyn 0). The diferent representations are comparable using the equality relation =c (defined in Appendix
A). In fact, our system is an extension to the GTLC, and each program in the GTLC is typed with the
same type in our system, and its evaluation produces the same result. The proofs for the following
properties are in Appendix B.

Conservative Extension to the GTLC: If e is annotated with only simple types and T is a simple type:
1. then Γ `G e : T ⇐⇒ Γ `∩G e : T .
2. then Γ `CC e e1 : T ⇐⇒ Γ `∩CC e e2 : T and e1 =c e2.
3. if Γ `CC e1 : T , Γ `∩CC e2 : T and e1 =c e2 then e1 −→CC e′1 ⇐⇒ e2 −→∩CC e′2, and e′1 =c e′2.
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A Additional Definitions

Syntax

Types T ::= Int | Bool | T → T | T ∩ . . .∩T

Expressions e ::= xT | λx : T . e | e e | n | true | false

Γ `∩S e : T Typing

Γ,x : T1∩ . . .∩Tn `∩S e : T

Γ `∩S λx : T1∩ . . .∩Tn . e : T1∩ . . .∩Tn→ T
T-ABS

Γ `∩S e1 : T1∩ . . .∩Tn→ T Γ `∩S e2 : T1∩ . . .∩Tn

Γ `∩S e1 e2 : T
T-APP

x : T ′ ∈ Γ T ⊆ T ′

Γ `∩S xT : T
T-VAR

Γ,x : Ti `∩S e : T

Γ `∩S λx : T1∩ . . .∩Tn . e : Ti→ T
T-ABS’

Γ `∩S e : T1 · · · Γ `∩S e : Tn

Γ `∩S e : T1∩ . . .∩Tn
T-GEN

Γ `∩S e : T1∩ . . .∩Tn

Γ `∩S e : Ti
T-INST

Γ `∩S n : Int
T-INT

Γ `∩S true : Bool
T-TRUE

Γ `∩S false : Bool
T-FALSE

Figure 7: Static Intersection Type System (`∩S)
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〈c〉cl = c

〈c : T1⇒l T2
cl〉cl′ = 〈c〉cl′ : T1⇒l T2

cl′

〈blame TI TF l cl′〉cl = blame TI TF l cl

〈∅ T cl′〉cl =∅ T cl

isArrowCompatible(c) = Bool

isArrowCompatible(c : T11→ T12⇒l T21→ T22
cl) = isArrowCompatible(c)

isArrowCompatible(∅ (T1→ T2)
cl) = True

separateIntersectionCast(c) = (c,c)

separateIntersectionCast(c : T1⇒l T2
cl) = (∅ T1

cl : T1⇒l T2
cl,c)

separateIntersectionCast(∅ T cl) = (∅ T cl,∅ T cl)

breakdownArrowType(c) = (c,c)

breakdownArrowType(∅ T11→ T12
cl : T11→ T12⇒l T21→ T22

cl) =

(∅ T21
cl : T21⇒l T11

cl,∅ T12
cl : T12⇒l T22

cl)

breakdownArrowType(∅ T1→ T2
cl) = (∅ T1

cl,∅ T2
cl )

simulateArrow(c1, . . . ,cn) = ((c11,c12,cs
1), . . . ,(cm1,cm2,cs

m))

(c′1, . . . ,c
′
m) = f ilter isArrowCompatible (c1, . . . ,cn)

((c f
1 ,c

s
1), . . . ,(c

f
m,c

s
m)) = map separateIntersectionCast (〈c′1〉0, . . . ,〈c′m〉0)

((c11,c12), . . . ,(cm1,cm2)) = map breakdownArrowType (〈c f
1〉

1, . . . ,〈c f
m〉m)

simulateArrow(c1, . . . ,cn) = ((c11,c12,cs
1), . . . ,(cm1,cm2,cs

m))

Figure 8: Definitions for auxiliary semantic functions
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getCastLabel(c) = cl

getCastLabel(c : T1⇒l T2
cl) = cl

getCastLabel(blame TI TF l cl) = cl

getCastLabel(∅ T cl) = cl

sameCastLabel(c,c) = Bool

sameCastLabel(c1,c2) = getCastLabel(c1) == 0

sameCastLabel(c1,c2) = getCastLabel(c2) == 0

sameCastLabel(c1,c2) = getCastLabel(c1) == getCastLabel(c2)

joinCasts(c,c) = c

joinCasts(c : T1⇒l T2
cl,c′) = joinCasts(c,c′) : T1⇒l T2

cl

joinCasts(blame TI TF l cl,c) = blame TI TF l cl

joinCasts(∅ T cl,c) = 〈c〉cl

mergeCasts(e) = e

(c′1, . . . ,c
′
o) = [ joinCast y x | x← (c11, . . . ,c1m), y← (c21, . . . ,c2n),

sameCastLabel y x && `∩CI y : (TI,TF) && `∩CI x : (T ′I ,T
′

F) && TI == T ′F ]

mergeCasts(e : c11∩ . . .∩ c1m : c21∩ . . .∩ c2n) = e : c′1∩ . . .∩ c′o

Figure 9: Definitions for auxiliary semantic functions
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T v T Type Precision

Dynv T T v T

T1 v T3 T2 v T4

T1→ T2 v T3→ T4

T1 v T ′1 · · · Tn v T ′n
T1∩ . . .∩Tn v T ′1 ∩ . . .∩T ′n

T v T1 · · · T v Tn

T v T1∩ . . .∩Tn

T1 v T · · · Tn v T

T1∩ . . .∩Tn v T

cv c Cast Precision

cv c′ T1 v T ′1 T2 v T ′2
c : T1⇒l T2

cl v c′ : T ′1 ⇒l′ T ′2
cl′

cv c′ `∩CI c′ : (T ′,T ) T1 v T T2 v T

c : T1⇒l T2
cl v c′

cv c′ `∩CI c : (T ′,T ) T v T1 T v T2

cv c′ : T1⇒l T2
cl

`∩CI c : (TI,TF) TI v T ′I TF v T ′F
cv blame T ′I T ′F l′ cl′

T v T ′

∅ T cl v∅ T ′ cl′

ev e Expression Precision

T v T ′

xT v xT ′
T v T ′ ev e′

λx : T . ev λx : T ′ . e′
e1 v e′1 e2 v e′2

e1 e2 v e′1 e′2 nv n truev true

falsev false

ev e′ c1 v c′1 · · · cn v c′n
e : c1∩ . . .∩ cn v e′ : c′1∩ . . .∩ c′n

ev e′ Γ `∩CC e′ : T `∩CI c1 : (T ′1,T1) · · · `∩CI cn : (T ′n,Tn) T1∩ . . .∩Tn v T

e : c1∩ . . .∩ cn v e′

ev e′ Γ `∩CC e : T `∩CI c1 : (T ′1,T1) · · · `∩CI cn : (T ′n,Tn) T v T1∩ . . .∩Tn

ev e′ : c1∩ . . .∩ cn

Γ `∩CC e : T T v T ′

ev blameT ′ l

Figure 10: Precision (v)
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e =c e Equality of Casts

x =c xT n =c n true =c true false =c false blameT l =c blameT l

e =c e′

λx : T . e =c λx : T . e′
e1 =c e′1 e2 =c e′2

e1 e2 =c e′1 e′2

e =c e′

e =c e′ : (∅ T cl)

blameT l =c e : (blame T ′ T l cl)

e =c e′ : c

e : T1⇒l T2 =c e′ : (c : T1⇒l T2
cl)

Figure 11: Equality of Casts
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B Proofs

Lemma B.1 (Consistency reduces to equality when comparing static types). If T1 and T2 are static types
then T1 = T2 ⇐⇒ T1 ∼ T2.

Proof. We proceed by structural induction on T1.

Base cases:

• T1 = Int.

– If Int = Int then by the definition of ∼, Int ∼ Int.
– If Int ∼ Int, then Int = Int.

• T1 = Bool.

– If Bool = Bool then by the definition of ∼, Bool∼ Bool.
– If Bool∼ Bool, then Bool = Bool.

Induction step:

• T1 = T11→ T12.

– If T11→ T12 = T21→ T22, for some T21 and T22, then T11 = T21 and T12 = T22. By the induction
hypothesis, T11∼ T21 and T12∼ T22. Therefore, by the definition of∼, T11→ T12∼ T21→ T22.

– If T11→ T12 ∼ T2, then by the definition of ∼, T2 = T21→ T22 and T11 ∼ T21 and T12 ∼ T22.
By the induction hypothesis, T11 = T21 and T12 = T22. Therefore, T11→ T12 = T21→ T22.

• T1 = T11∩ . . .∩T1n.

– If T11∩ . . .∩T1n = T2, then ∃T21 . . .T2n . T2 = T21∩ . . .∩T2n and T11 = T21 and . . . and T1n = T2n.
By the induction hypothesis, T11 ∼ T21 and . . . and T1n ∼ T2n. Therefore, by the definition of
∼, T11∩ . . .∩T1n ∼ T21∩ . . .∩T2n.

– If T11∩ . . .∩T1n ∼ T2, then either:
∗ ∃T21 . . .T2n . T2 = T21∩ . . .∩T2n and T11 ∼ T21 and . . . and T1n ∼ T2n. By the induction

hypothesis, T11 = T21 and . . . and T1n = T2n. Therefore, T11∩ . . .∩T1n = T21∩ . . .∩T2n.
∗ T11∼ T2 and . . . and T1n∼ T2. By the induction hypothesis, T11 = T2 and . . . and T1n = T2.

As T2∩ . . .∩T2 = T2, then T11∩ . . .∩T1n = T2.

Lemma B.2 (Type preservation of −→∩CI). If c−→∩CI c′ and `∩CI c : (TI,TF) then `∩CI c′ : (TI,TF).

Proof. We proceed by induction on the length of the derivation tree of −→∩CI .

Base cases:

• Rule E-PushBlameCI. If `∩CI blame TI TF l1 cl1 : T1⇒l2 T2
cl2 : (TI,T2) and by rule E-PushBlameCI,

blame TI TF l1 cl1 : T1⇒l2 T2
cl2 −→∩CI blame TI T2 l1 cl1 , then by rule T-BlameCI, `∩CI blame TI T2 l1 cl1 :

(TI,T2).

• Rule E-IdentityCI. If `∩CI cv1 : T ⇒l T cl : (TI,T ), then by rule T-SingleCI, `∩CI cv1 : (TI,T ). By
rule E-IdentityCI, cv1 : T ⇒l T cl −→∩CI cv1.

• Rule E-SucceedCI. If `∩CI cv1 : G⇒l1 Dyn cl1 : Dyn⇒l2 G cl2 : (TI,G), then by rule T-SingleCI,
`∩CI cv1 : (TI,G). By rule E-SucceedCI, cv1 : G⇒l1 Dyn cl1 : Dyn⇒l2 G cl2 −→∩CI cv1.
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• Rule E-FailCI. If `∩CI cv1 : G1 ⇒l1 Dyn cl1 : Dyn ⇒l2 G2
cl2 : (TI,G2), and by rule E-FailCI,

cv1 : G1 ⇒l1 Dyn cl1 : Dyn⇒l2 G2
cl2 −→∩CI blame TI G2 l2 cl1 then by rule T-BlameCI, `∩CI

blame TI G2 l2 cl1 : (TI,G2).

• Rule E-GroundCI. If `∩CI cv1 : T ⇒l Dyn cl : (TI,Dyn) then by rule T-SingleCI, `∩CI cv1 : (TI,T ).
By rule E-GroundCI, cv1 : T ⇒l Dyn cl −→∩CI cv1 : T ⇒l G cl : G⇒l Dyn cl , then by rule T-
SingleCI, `∩CI cv1 : T ⇒l G cl : G⇒l Dyn cl : (TI,Dyn).

• Rule E-ExpandCI. If `∩CI cv1 : Dyn⇒l T cl : (TI,T ) then by rule T-SingleCI, `∩CI cv1 : (TI,Dyn).
By rule E-ExpandCI, cv1 : Dyn⇒l T cl −→∩CI cv1 : Dyn⇒l G cl : G⇒l T cl , then by rule T-
SingleCI, `∩CI cv1 : Dyn⇒l G cl : G⇒l T cl : (TI,T ).

Induction step:

• Rule E-EvaluateCI. If `∩CI c : T1⇒l T2
cl : (TI,T2) then by rule T-SingleCI, `∩CI c : (TI,T1). By rule

E-EvaluateCI, c −→∩CI c′. By the induction hypothesis, `∩CI c′ : (TI,T1). By rule E-EvaluateCI,
c : T1⇒l T2

cl −→∩CI c′ : T1⇒l T2
cl , then by rule T-SingleCI, `∩CI c′ : T1⇒l T2

cl : (TI,T2).

Lemma B.3 (Progress of −→∩CI). If Γ `∩CI c : (TI,TF) then either c is a cast value or there exists a c′

such that c−→∩CI c′.

Proof. We proceed by induction on the length of the derivation tree of `∩CI c : (T,T ).

Base cases:

• Rule T-BlameCI. As `∩CI blame TI TF l cl : (TI,TF) and blame TI TF l cl is a cast value, it is proved.

• Rule T-EmptyCI. As `∩CI ∅ T cl : (T,T ) and ∅ T cl is a cast value, it is proved.

Induction step:

• Rule T-SingleCI. If `∩CI c : T1⇒l T2
cl : (TI,T2) then by rule T-SingleCI, `∩CI c : (TI,T1). By the

induction hypothesis, either c is a cast value or there is a c′ such that c −→∩CI c′. If c is a cast
value, then c can either be of the form blame TI TF l cl , in which case by rule E-PushBlameCI,
blame TI TF l1 cl1 : T1⇒l2 T2

cl2 −→∩CI blame TI T2 l1 cl1 or c is a cast value 1. If c is a cast value
1 then c : T1⇒l T2

cl can be of one of the folowing forms:

– cv1 : T ⇒l T cl . Then by rule E-IdentityCI, cv1 : T ⇒l T cl −→∩CI cv1.
– cv1 : G⇒l1 Dyn cl1 : Dyn⇒l2 G cl2 . Then by rule E-SucceedCI, cv1 : G⇒l1 Dyn cl1 : Dyn⇒l2

G cl2 −→∩CI cv1.
– cv1 : G1⇒l1 Dyn cl1 : Dyn⇒l2 G2

cl2 . Then by rule E-FailCI, cv1 : G1⇒l1 Dyn cl1 : Dyn⇒l2

G2
cl2 −→∩CI blame TI G2 l2 cl1 .

– cv1 : T ⇒l Dyn cl . Then by rule E-GroundCI, cv1 : T ⇒l Dyn cl −→∩CI cv1 : T ⇒l G cl :
G⇒l Dyn cl .

– cv1 : Dyn⇒l T cl . Then by rule E-ExpandCI, cv1 : Dyn⇒l T cl −→∩CI cv1 : Dyn⇒l G cl :
G⇒l T cl .

If there is a c′ such that c−→∩CI c′, then by rule E-EvaluateCI, c : T1⇒l T2
cl−→∩CI c′ : T1⇒l T2

cl.
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Conservative Extension: If e is fully static and T is a static type, then Γ `∩S e : T ⇐⇒ Γ `∩G e : T .
Monotonicity w.r.t. precision: If Γ `∩G e : T and e′ v e then Γ `∩G e′ : T ′ and T ′ v T .
Type preservation of cast insertion: If Γ `∩G e : T then Γ `∩CC e e′ : T and Γ `∩CC e′ : T .
Monotonicity of cast insertion: If Γ `∩CC e1 e′1 : T1 and Γ `∩CC e2 e′2 : T2 and e1 v e2 then e′1 v e′2.
Conservative Extension: If e is fully static, then e−→∩S e′ ⇐⇒ e−→∩CC e′.
Type preservation: If Γ `∩CC e : T1∩ . . .∩Tn and e−→∩CC e′ then Γ `∩CC e′ : T1∩ . . .∩Tm such that m≤ n.
Progress: If Γ `∩CC e : T then either e is a value or there exists an e′ such that e−→∩CC e′.

Theorem B.1 (Conservative Extension). Depends on Lemma B.1. If e is fully static and T is a static
type, then Γ `∩S e : T ⇐⇒ Γ `∩G e : T .

Proof. We proceed by induction on the length of the derivation tree of `∩S and `∩G for the right and left
direction of the implication, respectively.

Base cases:

• Rule T-Var.

– If Γ `∩S xT : T , then x : T ′ ∈ Γ and T ⊆ T ′. Therefore, Γ `∩G xT : T .
– If Γ `∩G xT : T , then x : T ′ ∈ Γ and T ⊆ T ′. Therefore, Γ `∩S eT : T .

• Rule T-Int.

– If Γ `∩S n : Int, then Γ `∩G n : Int.
– If Γ `∩G n : Int, then Γ `∩S n : Int.

• Rule T-True.

– If Γ `∩S true : Bool, then Γ `∩G true : Bool.
– If Γ `∩G true : Bool, then Γ `∩S true : Bool.

• Rule T-False.

– If Γ `∩S false : Bool, then Γ `∩G false : Bool.
– If Γ `∩G false : Bool, then Γ `∩S false : Bool.

Induction step:

• Rule T-Abs.

– If Γ `∩S λx : T1 ∩ . . .∩ Tn . e : T1 ∩ . . .∩ Tn → T , then Γ,x : T1 ∩ . . .∩ Tn `∩S e : T . By the
induction hypothesis, Γ,x : T1 ∩ . . .∩Tn `∩G e : T . Therefore, Γ `∩G λx : T1 ∩ . . .∩Tn . e :
T1∩ . . .∩Tn→ T .

– If Γ `∩G λx : T1 ∩ . . .∩Tn . e : T1 ∩ . . .∩Tn → T , then Γ,x : T1 ∩ . . .∩Tn `∩G e : T . By the
induction hypothesis, Γ,x : T1 ∩ . . .∩ Tn `∩S e : T . Therefore, Γ `∩S λx : T1 ∩ . . .∩ Tn . e :
T1∩ . . .∩Tn→ T .

• Rule T-Abs’.

– If Γ `∩S λx : T1 ∩ . . .∩Tn . e : Ti→ T , then Γ,x : Ti `∩S e : T . By the induction hypothesis,
Γ,x : Ti `∩G e : T . Therefore, Γ `∩G λx : T1∩ . . .∩Tn . e : Ti→ T .

– If Γ `∩G λx : T1∩ . . .∩Tn . e : Ti→ T , then Γ,x : Ti `∩G e : T . By the induction hypothesis,
Γ,x : Ti `∩S e : T . Therefore, Γ `∩S λx : T1∩ . . .∩Tn . e : Ti→ T .

• Rule T-App.
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– If Γ`∩S e1 e2 : T then Γ`∩S e1 : T1∩ . . .∩Tn→ T and Γ`∩S e2 : T1∩ . . .∩Tn. By the induction
hypothesis, Γ `∩G e1 : T1∩ . . .∩Tn→ T and Γ `∩G e2 : T1∩ . . .∩Tn. By the definition of B,
T1 ∩ . . .∩Tn → T BT1 ∩ . . .∩Tn → T . By the definition of ∼, T1 ∩ . . .∩Tn ∼ T1 ∩ . . .∩Tn.
Therefore, Γ `∩G e1 e2 : T .

– If Γ `∩G e1 e2 : T then Γ `∩G e1 : PM, PMB T1 ∩ . . .∩ Tn → T , Γ `∩G e2 : T ′1 ∩ . . .∩ T ′n
and T ′1 ∩ . . .∩T ′n ∼ T1 ∩ . . .∩Tn. By the definition of B, PM = T1 ∩ . . .∩Tn→ T , therefore
Γ `∩G e1 : T1 ∩ . . .∩ Tn → T . By Lemma B.1, T ′1 ∩ . . .∩ T ′n = T1 ∩ . . .∩ Tn, and therefore
Γ `∩G e2 : T1 ∩ . . .∩ Tn. By the induction hypothesis, Γ `∩S e1 : T1 ∩ . . .∩ Tn → T and
Γ `∩S e2 : T1∩ . . .∩Tn. Therefore, Γ `∩S e1 e2 : T .

• Rule T-Gen.

– If Γ `∩S e : T1∩ . . .∩Tn then Γ `∩S e : T1 and . . . and Γ `∩S e : Tn. By the induction hypothesis,
Γ `∩G e : T1 and . . . and Γ `∩G e : Tn. Therefore, Γ `∩G e : T1∩ . . .∩Tn.

– If Γ`∩G e : T1∩ . . .∩Tn then Γ`∩G e : T1 and . . . and Γ`∩G e : Tn. By the induction hypothesis,
Γ `∩S e : T1 and . . . and Γ `∩S e : Tn. Therefore Γ `∩S e : T1∩ . . .∩Tn.

• Rule T-Inst.

– If Γ `∩S e : Ti then Γ `∩S e : T1 ∩ . . .∩ Tn, such that Ti ∈ {T1, . . . ,Tn}. By the induction
hypothesis, Γ `∩G e : T1∩ . . .∩Tn. As Ti ∈ {T1, . . . ,Tn}, then Γ `∩G e : Ti.

– If Γ `∩G e : Ti then Γ `∩G e : T1 ∩ . . .∩ Tn, such that Ti ∈ {T1, . . . ,Tn}. By the induction
hypothesis, Γ `∩S e : T1∩ . . .∩Tn. As Ti ∈ {T1, . . . ,Tn}, then Γ `∩S e : Ti.

Theorem B.2 (Monotonicity w.r.t. precision). If Γ `∩G e : T and e′ v e then Γ `∩G e′ : T ′ and T ′ v T .

Proof. We proceed by induction on the length of the derivation tree of Γ `∩G e : T .

Base cases:

• Rule T-Var. If Γ `∩G xT : T and xT ′ v xT , then Γ `∩G xT ′ : T ′ and T ′ v T .

• Rule T-Int. If Γ `∩G n : Int and nv n, then Γ `∩G n : Int and Int v Int.

• Rule T-True. If Γ `∩G true : Bool and truev true, then Γ `∩G true : Bool and Boolv Bool.

• Rule T-False. If Γ `∩G false : Bool and falsev false, then Γ `∩G false : Bool and Boolv Bool.

Induction step:

• Rule T-Abs. If Γ `∩G λx : T1 ∩ . . .∩ Tn . e : T1 ∩ . . .∩ Tn → T and λx : T ′1 ∩ . . .∩ T ′n . e′ v λx :
T1 ∩ . . .∩ Tn . e, then by rule T-Abs, Γ,x : T1 ∩ . . .∩ Tn `∩G e : T , and by the definition of v,
T ′1 ∩ . . .∩T ′n v T1∩ . . .∩Tn and e′ v e. By the induction hypothesis, Γ,x : T ′1 ∩ . . .∩T ′n `∩G e′ : T ′

and T ′ v T . By rule T-Abs, Γ `∩G λx : T ′1 ∩ . . .∩T ′n . e′ : T ′1 ∩ . . .∩T ′n → T ′, and by the definition
of v, T ′1 ∩ . . .∩T ′n → T ′ v T1∩ . . .∩Tn→ T .

• Rule T-Abs’. If Γ `∩G λx : T1∩ . . .∩Tn . e : Ti→ T and λx : T ′1 ∩ . . .∩T ′n . e′ v λx : T1∩ . . .∩Tn . e,
then by rule T-Abs’, Γ,x : Ti `∩G e : T , and by the definition of v, T ′1 ∩ . . .∩T ′n v T1∩ . . .∩Tn and
e′ v e. By the induction hypothesis, Γ,x : T ′i `∩G e′ : T ′ and T ′ v T . By rule T-Abs’, Γ `∩G λx :
T ′1 ∩ . . .∩T ′n . e′ : T ′i → T ′, and by the definition of v, T ′i → T ′ v Ti→ T .
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• Rule T-App. If Γ`∩G e1 e2 : T and e′1 e′2v e1 e2 then by rule T-App, Γ`∩G e1 : PM, PMBT11∩ . . .∩
T1n→ T , Γ `∩G e2 : T21∩ . . .∩T2n, and T21∩ . . .∩T2n ∼ T11∩ . . .∩T1n, and by the definition of v,
e′1 v e1 and e′2 v e2. By the induction hypothesis, Γ `∩G e′1 : PM′ and PM′ v PM and PM′BT ′11∩
. . .∩T ′1n→ T ′ and Γ `∩G e′2 : T ′21∩ . . .∩T ′2n and T ′21∩ . . .∩T ′2n v T21∩ . . .∩T2n and T ′21∩ . . .∩T ′2n ∼
T ′11 ∩ . . .∩ T ′1n. By the definition of v and B, T ′11 ∩ . . .∩ T ′1n → T ′ v T11 ∩ . . .∩ T1n → T , and
therefore, T ′ v T . As Γ `∩G e′1 e′2 : T ′, it is proved.

• Rule T-Gen. If Γ `∩G e : T1∩ . . .∩Tn and e′ v e, then by rule T-Gen, Γ `∩G e : T1 and . . . and Γ `∩G

e : Tn. By the induction hypothesis, Γ `∩G e′ : T ′1 and T ′1 v T1 and . . . and Γ `∩G e′ : T ′n and T ′n v Tn.
Then by rule T-Gen, Γ `∩G e′ : T ′1 ∩ . . .∩T ′n and by the definition of v, T ′1 ∩ . . .∩T ′n v T1∩ . . .∩Tn.

• Rule T-Inst. If Γ `∩G e : Ti and e′ v e, then by rule T-Inst, Γ `∩G e : T1 ∩ . . .∩Tn such that Ti ∈
{T1, . . . ,Tn}. By the induction hypothesis, Γ `∩G e′ : T ′1 ∩ . . .∩T ′n and T ′1 ∩ . . .∩T ′n v T1∩ . . .∩Tn.
Therefore, by rule T-Inst, Γ `∩G e′ : T ′i and by the definition of v, T ′i v Ti.

Theorem B.3 (Type preservation of cast insertion). If Γ `∩G e : T then Γ `∩CC e e′ : T and Γ `∩CC e′ :
T .

Proof. We proceed by induction on the length of the derivation tree of Γ `∩G e : T .

Base cases:

• Rule T-Var. If Γ `∩G xT : T , then by rule T-Var, x : T ′ ∈ Γ and T ⊆ T ′. By rule C-Var, Γ `∩CC xT  
xT : T and by rule T-Var, Γ `∩CC xT : T .

• Rule T-Int. As Γ `∩G n : Int, then by rule C-Int, Γ `∩CC n n : Int and by rule T-Int, Γ `∩CC n : Int.

• Rule T-True. As Γ `∩G true : Bool, then by rule C-True, Γ `∩CC true true : Bool and by rule
T-True, Γ `∩CC true : Bool.

• Rule T-False. As Γ `∩G false : Bool, then by rule C-False, Γ `∩CC false false : Bool and by rule
T-False, Γ `∩CC false : Bool, it is proved.

Induction step:

• Rule T-Abs. If Γ `∩G λx : T1∩ . . .∩Tn . e : T1∩ . . .∩Tn→ T then by rule T-Abs, Γ,x : T1∩ . . .∩
Tn `∩G e : T . By the induction hypothesis, Γ,x : T1∩ . . .∩Tn `∩CC e e′ : T and Γ,x : T1∩ . . .∩
Tn `∩CC e′ : T . By rule C-Abs, Γ `∩CC λx : T1∩ . . .∩Tn . e λx : T1∩ . . .∩Tn . e′ : T1∩ . . .∩Tn→ T
and by rule T-Abs, Γ `∩CC λx : T1∩ . . .∩Tn . e′ : T1∩ . . .∩Tn→ T .

• Rule T-Abs’. If Γ `∩G λx : T1 ∩ . . .∩ Tn . e : Ti → T then by rule T-Abs’, Γ,x : Ti `∩G e : T .
By the induction hypothesis, Γ,x : Ti `∩CC e e′ : T and Γ,x : Ti `∩CC e′ : T . By rule C-Abs’,
Γ `∩CC λx : T1 ∩ . . .∩ Tn . e λx : T1 ∩ . . .∩ Tn . e′ : Ti → T and by rule T-Abs’, Γ `∩CC λx :
T1∩ . . .∩Tn . e′ : Ti→ T .

• Rule T-App. If Γ `∩G e1 e2 : T then by rule T-App, Γ `∩G e1 : PM, PMBT1∩ . . .∩Tn→ T , Γ `∩G

e2 : T ′1∩ . . .∩T ′n and T ′1∩ . . .∩T ′n ∼ T1∩ . . .∩Tn. By the induction hypothesis, Γ `∩CC e1 e′1 : PM
and Γ `∩CC e′1 : PM, and Γ `∩CC e2  e′2 : T ′1 ∩ . . .∩T ′n and Γ `∩CC e′2 : T ′1 ∩ . . .∩T ′n . Therefore,
by rule C-App, Γ `∩CC e1 e2  e′′1 e′′2 : T . By the definition of E and S, S, e ↪→ e, by rule T-
CastIntersection, Γ `∩CC e′′1 : T1→ T ∩ . . .∩Tn→ T and Γ `∩CC e′′2 : T1∩ . . .∩Tn. By rule T-App’,
Γ `∩CC e′′1 e′′2 : T ∩ . . .∩ T and then by the properties of intersection types (modulo repetitions),
Γ `∩CC e′′1 e′′2 : T .
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• Rule T-Gen. If Γ `∩G e : T1∩ . . .∩Tn then by rule T-Gen, Γ `∩G e : T1 and . . . and Γ `∩G e : Tn. By
the induction hypothesis, Γ `∩CC e e′ : T1 and . . . and Γ `∩CC e e′ : Tn, and Γ `∩CC e′ : T1 and
. . . and Γ `∩CC e′ : Tn. By rule C-Gen, Γ `∩CC e e′ : T1∩ . . .∩Tn and by rule T-Gen, Γ `∩CC e′ :
T1∩ . . .∩Tn.

• Rule T-Inst. If Γ `∩G e : Ti then by rule T-Inst, Γ `∩G e : T1∩ . . .∩Tn, such that Ti ∈ {T1, . . . ,Tn}.
By the induction hypothesis, Γ `∩CC e e′ : T1 ∩ . . .∩ Tn and Γ `∩CC e′ : T1 ∩ . . .∩ Tn. By rule
C-Inst, Γ `∩CC e e′ : Ti and by rule T-Inst, Γ `∩CC e′ : Ti.

Theorem B.4 (Monotonicity w.r.t precision of cast insertion). If Γ `∩CC e1 e′1 : T1 and Γ `∩CC e2 
e′2 : T2 and e1 v e2 then e′1 v e′2 and T1 v T2.

Proof. We proceed by induction on the length of the derivation tree of Γ `∩CC e1 e′1 : T .

Base cases:

• Rule C-Var. If Γ `∩CC xT  xT : T and Γ `∩CC xT ′  xT ′ : T ′, and xT v xT ′ , then xT v xT ′ and
T v T ′.

• Rule C-Int. If Γ `∩CC n n : Int, Γ `∩CC n n : Int and nv n, then nv n and Int v Int.

• Rule C-True. If Γ `∩CC true true : Bool, Γ `∩CC true true : Bool and truev true, then truev
true and Boolv Bool.

• Rule C-False. If Γ `∩CC false false : Bool, Γ `∩CC false false : Bool and false v false, then
falsev false and Boolv Bool.

Induction step:

• Rule C-Abs. If Γ `∩CC λx : T11∩ . . .∩T1n . e1 λx : T11∩ . . .∩T1n . e′1 : T11∩ . . .∩T1n→ T1 and
Γ `∩CC λx : T21∩ . . .∩T2n . e2 λx : T21∩ . . .∩T2n . e′2 : T21∩ . . .∩T2n→ T2 and λx : T11∩ . . .∩
T1n . e1 v λx : T21 ∩ . . .∩T2n . e2 then by rule C-Abs, Γ,x : T11 ∩ . . .∩T1n `∩CC e1  e′1 : T1 and
Γ,x : T21 ∩ . . .∩T2n `∩CC e2  e′2 : T2 and by the definition of v, T11 ∩ . . .∩T1n v T21 ∩ . . .∩T2n

and e1 v e2. By the induction hypothesis, e′1 v e′2 and T1 v T2. Therefore, by the definition of v,
λx : T11∩ . . .∩T1n . e′1 v λx : T21∩ . . .∩T2n . e′2 and T11∩ . . .∩T1n→ T1 v T21∩ . . .∩T2n→ T2.

• Rule C-Abs’. If Γ `∩CC λx : T11 ∩ . . .∩ T1n . e1  λx : T11 ∩ . . .∩ T1n . e′1 : T1i → T1, such that
T1i ∈ {T11, . . . ,T1n}, and Γ `∩CC λx : T21∩ . . .∩T2n . e2 λx : T21∩ . . .∩T2n . e′2 : T2i→ T2, such
that T2i ∈ {T21, . . . ,T2n}, and λx : T11∩ . . .∩T1n . e1 v λx : T21∩ . . .∩T2n . e2 then by the definition
of C-Abs’, Γ,x : T1i `∩CC e1 e′1 : T1 and Γ,x : T2i `∩CC e2 e′2 : T2 and by the definition of v,
T11∩ . . .∩T1nv T21∩ . . .∩T2n and e1v e2 and therefore T1iv T2i. By the induction hypothesis, e′1v
e′2 and T1 v T2. Therefore, by the definition of v, λx : T11∩ . . .∩T1n . e′1 v λx : T21∩ . . .∩T2n . e′2
and T1i→ T1 v T2i→ T2.

• Rule C-App. If Γ `∩CC e11 e12 e′′11 e′′12 : T1 and Γ `∩CC e21 e22 e′′21 e′′22 : T2 and e11 e12 v e21 e22
then by rule C-App, Γ `∩CC e11 e′11 : PM1 and PM1BT11∩ . . .∩T1n→ T1 and Γ `∩CC e12 e′12 :
T ′11∩ . . .∩T ′1n and T ′11∩ . . .∩T ′1n ∼ T11∩ . . .∩T1n and PM1 E S11 and T11∩ . . .∩T1n→ T1 E S12 and
T ′11∩ . . .∩T ′1n E S13 and T11∩ . . .∩T1n E S14 and S11, S12, e′11 ↪→ e′′11 and S13, S14, e′12 ↪→ e′′12 and
Γ `∩CC e21 e′21 : PM2 and PM2BT21∩ . . .∩T2n→ T2 and Γ `∩CC e22 e′22 : T ′21∩ . . .∩T ′2n and
T ′21∩ . . .∩T ′2n∼ T21∩ . . .∩T2n and PM2E S21 and T21∩ . . .∩T2n→ T2E S22 and T ′21∩ . . .∩T ′2nE S23
and T21∩ . . .∩T2nE S24 and S21, S22, e′21 ↪→ e′′21 and S23, S24, e′22 ↪→ e′′22. As, by the definition ofv,
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e11 v e21 and e12 v e22 then by the induction hypothesis, e′11 v e′21 and PM1 v PM2 and e′12 v e′22
and T ′11∩ . . .∩T ′1n v T ′21∩ . . .∩T ′2n. By the definition ofB, we have that PM1 = T11∩ . . .∩T1n→ T1
and PM2 = T21∩ . . .∩T2n→ T2 and so T11∩ . . .∩T1n→ T1 v T21∩ . . .∩T2n→ T2 and therefore by
the definition ofv, T1 v T2. As by the definition ofE, S, S, e ↪→ e andv, e′′11 v e′′21 and e′′12 v e′′22,
then by the definition of v, e′′11 e′′12 v e′′21 e′′22 and T1 v T2.

• Rule C-Gen. If Γ `∩CC e1  e′1 : T11 ∩ . . .∩T1n and Γ `∩CC e2  e′2 : T21 ∩ . . .∩T2n and e1 v e2
then by rule C-Gen, Γ `∩CC e1 e′1 : T11 and . . . and Γ `∩CC e1 e′1 : T1n and Γ `∩CC e2 e′2 : T21
and . . . and Γ `∩CC e2 e′2 : T2n. By the induction hypothesis, e′1 v e′2 and T11 v T21 and . . . and
T1n v T2n, and therefore by the definition of v, T11∩ . . .∩T1n v T21∩ . . .∩T2n.

• Rule C-Inst. If Γ `∩CC e1  e′1 : T1i and Γ `∩CC e2  e′2 : T2i and e1 v e2 then by rule C-Inst,
Γ `∩CC e1 e′1 : T11∩ . . .∩T1n and Γ `∩CC e2 e′2 : T21∩ . . .∩T2n. By the induction hypothesis,
e′1 v e′2 and T11∩ . . .∩T1n v T21∩ . . .∩T2n, and therefore, by the definition of v, T1i v T2i.

Corollary B.4.1 (Monotonicity of cast insertion). Corollary of Theorem B.4. If Γ `∩CC e1 e′1 : T1 and
Γ `∩CC e2 e′2 : T2 and e1 v e2 then e′1 v e′2.

Theorem B.5 (Conservative Extension). If e is fully static, then e−→∩S e′ ⇐⇒ e−→∩CC e′.

Proof. We proceed by induction on the length of the derivation tree of −→∩S and −→∩CC for the right
and left direction of the implication, respectively.

Base cases:

• Rule E-AppAbs. If (λx : T1 ∩ . . .∩Tn . e) v −→∩S [x 7→ v]e and (λx : T1 ∩ . . .∩Tn . e) v −→∩CC

[x 7→ v]e, then it is proved.

Induction step:

• Rule E-App1.

– If e1 e2−→∩S e′1 e2 then by rule E-App1, e1−→∩S e′1. By the induction hypothesis, e1−→∩CC

e′1. Therefore, by rule E-App1, e1 e2 −→∩CC e′1 e2

– If e1 e2 −→∩CC e′1 e2 then by rule E-App1, e1 −→∩CC e′1. By the induction hypothesis,
e1 −→∩S e′1. Therefore, by rule E-App1, e1 e2 −→∩S e′1 e2

• Rule E-App2.

– If v1 e2−→∩S v1 e′2 then by rule E-App2, e2−→∩S e′2. By the induction hypothesis, e2−→∩CC

e′2. Therefore, by rule E-App2, v1 e2 −→∩CC v1 e′2
– If v1 e2 −→∩CC v1 e′2 then by rule E-App2, e2 −→∩CC e′2. By the induction hypothesis,

e2 −→∩S e′2. Therefore, by rule E-App2, v1 e2 −→∩S v1 e′2

Theorem B.6 (Type preservation). Depends on Lemmas B.2 and B.3. If Γ `∩CC e : T1 ∩ . . .∩ Tn and
e−→∩CC e′ then Γ `∩CC e′ : T1∩ . . .∩Tm such that m≤ n.

Proof. We proceed by induction on the length of the derivation tree of −→∩CC.

Base cases:
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• Rule E-PushBlame1. If Γ `∩CC blameT2 l e2 : T1 and blameT2 l e2 −→∩CC blameT1 l then by rule
T-Blame, Γ `∩CC blameT1 l : T1.

• Rule E-PushBlame2. If Γ `∩CC e1 blameT2 l : T1 and e1 blameT2 l −→∩CC blameT1 l then by rule
T-Blame, Γ `∩CC blameT1 l : T1.

• Rule E-PushBlameCast. If Γ `∩CC blameT l : c1 ∩ . . .∩ cn : T1 ∩ . . .∩Tn and blameT l : c1 ∩ . . .∩
cn −→∩CC blameT1∩...∩Tn l then by rule T-Blame, Γ `∩CC blameT1∩...∩Tn l : T1∩ . . .∩Tn.

• Rule E-AppAbs. If Γ `∩CC (λx : T1∩ . . .∩Tn . e) v : T then either by rule T-App, Γ `∩CC λx : T1∩
. . .∩Tn . e : T1∩ . . .∩Tn→ T or by rule T-App’, Γ `∩CC λx : T1∩ . . .∩Tn . e : T1→ T ∩ . . .∩Tn→ T
and Γ`∩CC v : T1∩ . . .∩Tn (x does not occur in Γ). Moreover, by rule T-Abs, Γ,x : T1∩ . . .∩Tn `∩CC

e : T . By rule E-AppAbs, (λx : T1∩ . . .∩Tn . e) v−→∩CC [x 7→ v]e. To obtain Γ `∩CC [x 7→ v]e : T , it
is sufficient to replace, in the proof of Γ,x : T1∩ . . .∩Tn `∩CC e : T , the statements x : Ti (introduzed
by the rules T-Var and T-Inst) by the deductions of Γ `∩CC v : Ti for 1≤ i≤ n. (Proof adapted from
[5])

• Rule E-SimulateArrow. If Γ `∩CC (v1 : cv1 ∩ . . .∩ cvn) v2 : T12 ∩ . . .∩ Tn2, then by rule T-App’,
Γ `∩CC v1 : cv1∩ . . .∩cvn : T1∩ . . .∩Tn such that ∃i∈ 1..n . Ti = Ti1→ Ti2 and Γ `∩CC v2 : T11∩ . . .∩
Tn1. As Γ `∩CC v1 : cv1∩ . . .∩ cvn : T1∩ . . .∩Tn, then by rule T-CastIntersection, Γ `∩CC v1 : T ′′1 ∩
. . .∩T ′′l and `∩CI cv1 : (I1,T1) and . . . and `∩CI cvn : (In,Tn) such that {I1, . . . , In} ⊆ {T ′′1 , . . . ,T ′′l }
and I1∩ . . .∩ In = T ′′1 ∩ . . .∩T ′′n and n≤ l. For the sake of simplicity lets elide cast labels and blame
labels. By the definition of SimulateArrow, we have that c′1 = c′′1 : T ′11→ T ′12⇒ T11→ T12 and . . .
and c′m = c′′m : T ′m1→ T ′m2⇒ Tm1→ Tm2, for some m ≤ n. Also, c11 = ∅ T11 : T11⇒ T ′11 and . . .
and cm1 = ∅ Tm1 : Tm1⇒ T ′m1 and c12 : ∅ T ′12 : T ′12⇒ T12 and . . . and cm2 = ∅ T ′m2 : T ′m2⇒ Tm2
and `∩CI cs

1 : (I1,T ′11 → T ′12) and . . . and `∩CI cs
m : (Im,T ′m1 → T ′m2). As by rule T-Gen and T-

Inst Γ `∩CC v1 : T ′′1 ∩ . . .∩ T ′′m and I1 ∩ . . .∩ Im = T ′′1 ∩ . . .∩ T ′′m , then by rule T-CastIntersection,
Γ `∩CC v1 : cs

1∩ . . .∩cs
m : T ′11→ T ′12∩ . . .∩T ′m1→ T ′m2. As by rule T-Gen and T-Inst Γ `∩CC v2 : T11∩

. . .∩Tm1 and `∩CI c11 : (T11,T ′11) and . . . and `∩CI cm1 : (Tm1,T ′m1) then by rule T-CastIntersection,
Γ`∩CC v2 : c11∩ . . .∩cm1 : T ′11∩ . . .∩T ′m1. Therefore, by rule T-App’, Γ`∩CC (v1 : cs

1∩ . . .∩cs
m) (v2 :

c11∩ . . .∩cm1) : T ′12∩ . . .∩T ′m2. As `∩CI c12 : (T ′12,T12) and . . . and `∩CI cm2 : (T ′m2,Tm2), then by rule
T-CastIntersection, Γ `∩CC (v1 : cs

1∩ . . .∩ cs
m) (v2 : c11∩ . . .∩ cm1) : c12∩ . . .∩ cm2 : T12∩ . . .∩Tm2.

By rule E-SimulateArrow, (v1 : cv1∩ . . .∩ cvn) v2 −→∩CC (v1 : cs
1∩ . . .∩ cs

m) (v2 : c11∩ . . .∩ cm1) :
c12∩ . . .∩ cm2, therefore it is proved.

• Rule E-MergeCasts. If Γ `∩CC v : cv1 ∩ . . .∩ cvn : c′1 ∩ . . .∩ c′m : F ′1 ∩ . . .∩ F ′m then by rule T-
CastIntersections, Γ `∩CC v : cv1 ∩ . . .∩ cvn : F1 ∩ . . .∩Fn and `∩CI c′1 : (I′1,F

′
1) and . . . and `∩CI

c′m : (I′m,F
′

m) such that {I′1, . . . , I′m} ⊆ {F1, . . . ,Fn} and I′1 ∩ . . .∩ I′m = F1 ∩ . . .∩Fm and m ≤ n. As
Γ `∩CC v : cv1 ∩ . . .∩ cvn : F1 ∩ . . .∩Fn then by rule T-CastIntersection, Γ `∩CC v : T1 ∩ . . .∩ Tl
and `∩CI cv1 : (I1,F1) and . . . and `∩CI cvn : (In,Fn) such that {I1, . . . , In} ⊆ {T1, . . . ,Tl} and I1 ∩
. . .∩ In = T1 ∩ . . .∩Tn and n ≤ l. By the definition of mergeCasts, `∩CI c′′1 : (I′′1 ,F

′′
1 ) and . . . and

`∩CI c′′j : (I′′j ,F
′′
j ) and such that {I′′1 , . . . , I′′j } ⊆ {T1, . . . ,Tl} and I′′1 ∩ . . .∩ I′′j = T1 ∩ . . .∩ Tj and

{F ′′1 , . . . ,F ′′j } ⊆ {F ′1, . . . ,F ′m} and F ′′1 ∩ . . .∩F ′′j = F ′1∩ . . .∩F ′j and j ≤ l and j ≤m. By rule T-Gen
and T-Inst, Γ `∩CC v : T1∩ . . .∩Tj and therefore by rule T-CastIntersection, Γ `∩CC v : c′′1∩ . . .∩c′′j :
F ′′1 ∩ . . .∩F ′′j . By rule E-MergeCasts, v : cv1∩ . . .∩ cvn : c′1∩ . . .∩ c′m −→∩CC v : c′′1 ∩ . . .∩ c′′j .

• Rule E-EvaluateCasts. If Γ `∩CC v : c1 ∩ . . .∩ cn : T1 ∩ . . .∩ Tn then by rule T-CastIntersection,
Γ `∩CC v : T ′1 ∩ . . .∩T ′n and `∩CI c1 : (I1,T1) and . . . and `∩CI cn : (In,Tn) and I1 ∩ . . .∩ In = T ′1 ∩
. . .∩T ′n . By rule E-EvaluateCasts, c1 −→∩CI cv1 and . . . and cn −→∩CI cvn. By Lemmas B.2 and
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B.3, `∩CI cv1 : (I1,T1) and . . . and `∩CI cvn : (In,Tn). Therefore by rule T-CastIntersection, Γ `∩CC

v : cv1∩ . . .∩cvn : T1∩ . . .∩Tn. By rule E-EvaluateCasts, v : c1∩ . . .∩cn −→∩CC v : cv1∩ . . .∩cvn.

• Rule E-PropagateBlame. If Γ `∩CC v : blame T ′1 T1 l1 m1 ∩ . . .∩blame T ′n Tn ln mn : T1∩ . . .∩Tn and
by rule E-PropagateBlame v : blame T ′1 T1 l1 m1 ∩ . . .∩blame T ′n Tn ln mn −→∩CC blame(T1∩...∩Tn) l1,
then by rule T-Blame, Γ `∩CC blame(T1∩...∩Tn) l1 : T1∩ . . .∩Tn.

• Rule E-RemoveEmpty. If Γ `∩CC v : ∅ T1
m1 ∩ . . . ∩∅ Tn

mn : T1 ∩ . . . ∩ Tn, then by rule T-
CastIntersection, Γ `∩CC v : T1 ∩ . . .∩ Tn and `∩CI ∅ T1

m1 : (T1,T1) and . . . and `∩CI ∅ Tn
mn :

(Tn,Tn). Therefore, by rule E-RemoveEmpty, v : ∅ T1
m1 ∩ . . .∩∅ Tn

mn −→∩CC v.

Induction step:

• Rule E-App1. There are two possibilities:

– If Γ `∩CC e1 e2 : T , then by rule T-App, Γ `∩CC e1 : T1∩ . . .∩Tn→ T and Γ `∩CC e2 : T1∩ . . .∩
Tn. By rule E-App1, e1 −→∩CI e′1, so by the induction hypothesis, Γ `∩CC e′1 : T1∩ . . .∩Tn→
T . As by rule E-App1, e1 e2 −→∩CI e′1 e2, then by rule T-App, Γ `∩CC e′1 e2 : T .

– If Γ `∩CC e1 e2 : T12∩ . . .∩Tn2, then by rule T-App’, Γ `∩CC e1 : T11→ T12∩ . . .∩Tn1→ Tn2
and Γ `∩CC e2 : T11∩ . . .∩Tn1. By rule E-App1, e1 −→∩CI e′1, so by the induction hypothesis,
Γ `∩CC e′1 : T11→ T12∩ . . .∩Tn1→ Tn2. As by rule E-App1, e1 e2 −→∩CI e′1 e2, then by rule
T-App’, Γ `∩CC e′1 e2 : T12∩·· ·∩Tn2.

• Rule E-App2. There are two possibilities:

– If Γ `∩CC v1 e2 : T , then by rule T-App, Γ `∩CC v1 : T1∩ . . .∩Tn→ T and Γ `∩CC e2 : T1∩ . . .∩
Tn. By rule E-App2, e2 −→∩CI e′2, so by the induction hypothesis, Γ `∩CC e′2 : T1∩ . . .∩Tn.
As by rule E-App2, v1 e2 −→∩CI v1 e′2, then by rule T-App, Γ `∩CC v1 e′2 : T .

– If Γ `∩CC v1 e2 : T12∩ . . .∩Tn2, then by rule T-App’, Γ `∩CC v1 : T11→ T12∩ . . .∩Tn1→ Tn2
and Γ `∩CC e2 : T11∩ . . .∩Tn1. By rule E-App2, e2 −→∩CI e′2, so by the induction hypothesis,
Γ `∩CC e′2 : T11 ∩ . . .∩ Tn1. As by rule E-App1, v1 e2 −→∩CI v1 e′2, then by rule T-App’,
Γ `∩CC v1 e′2 : T12∩·· ·∩Tn2..

• Rule E-Evaluate. If Γ `∩CC e : c1∩ . . .∩ cn : T1∩ . . .∩Tn, then by rule T-CastIntersection, Γ `∩CC

e : T ′1 ∩ . . .∩T ′n , `∩CI c1 : T1 and . . . and `∩CI cn : Tn and initialType(c1)∩ . . .∩ initialType(cn) =
T ′1 ∩ . . .∩ T ′n . By rule E-Evaluate, e −→∩CI e′, so by the induction hypothesis, Γ `∩CC e′ : T .
As by rule E-Evaluate, e : c1 ∩ . . .∩ cn −→∩CI e′ : c1 ∩ . . .∩ cn, then by rule T-CastIntersection,
Γ `∩CC e′ : c1∩ . . .∩ cn : T1∩ . . .∩Tn.

Theorem B.7 (Progress). If Γ`∩CC e : T then either e is a value or there exists an e′ such that e−→∩CC e′.

Proof. We proceed by induction on the length of the derivation tree of Γ `∩CC e : T .

Base cases:

• Rule T-Var. If Γ `∩CC xT : T , then xT is a value.

• Rule T-Int. If Γ `∩CC n : Int then n is a value.

• Rule T-True. If Γ `∩CC true : Bool then true is a value.

• Rule T-False. If Γ `∩CC false : Bool then false is a value.

Induction step:
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• Rule T-Abs. If Γ `∩CC λx : T1∩ . . .∩Tn . e : T1∩ . . .∩Tn→ T then λx : T1∩ . . .∩Tn . e is a value.

• Rule T-Abs’. If Γ `∩CC λx : T1∩ . . .∩Tn . e : Ti→ T then λx : T1∩ . . .∩Tn . e is a value.

• Rule T-App. If Γ `∩CC e1 e2 : T then by rule T-App, Γ `∩CC e1 : T1∩ . . .∩Tn→ T and Γ `∩CC e2 :
T1∩ . . .∩Tn. By the induction hypothesis, e1 is either a value or there is a e′1 such that e1 −→∩CC e′1
and e2 is either a value or there is a e′2 such that e2 −→∩CC e′2. If e1 is a value, then by rule
E-PushBlame1, (blameT2 l) e2 −→∩CC blameT1 l. If e2 is a value, then by rule E-PushBlame2,
e1 (blameT2 l) −→∩CC blameT1 l. If e1 is not a value, then by rule E-App1, e1 e2 −→∩CC e′1 e2.
If e1 is a value and e2 is not a value, then by rule E-App2, v1 e2 −→∩CC v1 e′2. If both e1 and e2
are values then e1 must be a λ -abstraction (λx : T1 ∩ . . .∩ Tn . e), and by rule E-AppAbs (λx :
T1∩ . . .∩Tn . e) v2 −→∩CC [x 7→ v2]e.

• Rule T-Gen. If Γ `∩CC e : T1∩ . . .∩Tn then by rule T-Gen, Γ `∩CC e : T1 and . . . and Γ `∩CC e : Tn.
By the induction hypothesis, either e is a value or there exists an e′ such that e−→∩CC e′.

• Rule T-Inst. If Γ `∩CC e : Ti then by rule T-Inst, Γ `∩CC e : T1∩ . . .∩Tn, such that Ti ∈ {T1, . . . ,Tn}.
By the induction hypothesis, either e is a value or there exists an e′ such that e−→∩CC e′.

• Rule T-App’. If Γ`∩CC e1 e2 : T12∩ . . .∩Tn2 then by rule T-App’, Γ`∩CC e1 : T11→ T12∩ . . .∩Tn1→
Tn2 and Γ `∩CC e2 : T11 ∩ . . .∩Tn1. By the induction hypothesis, e1 is either a value or there is a
e′1 such that e1 −→∩CC e′1 and e2 is either a value or there is a e′2 such that e2 −→∩CC e′2. If e1 is
a value, then by rule E-PushBlame1, (blameT2 l) e2 −→∩CC blameT1 l. If e2 is a value, then by
rule E-PushBlame2, e1 (blameT2 l) −→∩CC blameT1 l. If e1 is not a value, then by rule E-App1,
e1 e2 −→∩CC e′1 e2. If e1 is a value and e2 is not a value, then by rule E-App2, v1 e2 −→∩CC v1 e′2.
If both e1 and e2 are values then e1 must be a λ -abstraction (λx : T11→ T12∩ . . .∩Tn1→ Tn2. e),
and by rule E-AppAbs (λx : T11→ T12∩ . . .∩Tn1→ Tn2 . e) v2 −→∩CC [x 7→ v2]e.

• Rule T-CastIntersection. If Γ `∩CC e : c1 ∩ . . .∩ cn : T1 ∩ . . .∩Tn then by rule T-CastIntersection,
Γ `∩CC e : T ′1 ∩ . . .∩ T ′n . By the induction hypothesis, e is either a value, or there is an e′ such
that e −→∩CC e′. If e is a value, then either by rule E-EvaluateCasts, v : c1 ∩ . . .∩ cn −→∩CC v :
cv1∩ . . .∩cvn, or by rule E-PushBlameCast, blameT ′1∩...∩T ′n l : c1∩ . . .∩cn−→∩CC blameT1∩...∩Tn l. If
there is an e′ such that e−→∩CC e′, then by rule E-Evaluate, e : c1∩ . . .∩cn −→∩CC e′ : c1∩ . . .∩cn.

• Rule T-Blame. If Γ `∩CC blameT l : T then blameT l is a value.
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Theorem B.8 (Instances of Intersection Types). We define the set S of instances of an intersection type
T as the set obtained by T E S. Given a type T , if T E S then every element of S is a simple type.

Proof. We proceed by structural induction on T .

Base cases:

• T = Int. If Int E {Int} then Int is the only instance of Int and Int is a simple type.

• T = Bool. If BoolE {Bool} then Bool is the only instance of Bool and Bool is a simple type.

• T = Dyn. If DynE {Dyn} then Dyn is the only instance of Dyn and Dyn is a simple type.

Induction step:

• T =T1→T2. If T1→T2E {T11→T2, . . . ,T1n→T2} then by the definition ofE, T1E {T11, . . . ,T1n}.
By the induction hypothesis, {T11, . . . ,T1n} is the set of all the instances of T1 and T11 and . . . and
T1n are all simple types. As T2 is a simple type, then T2 is the only instance of T2. Therefore,
{T11 → T2, . . . ,T1n → T2} is the set of all the instances of T1 → T2 and T11 → T2 and . . . and
T1n→ T2 are all simple types.

• T = T1 ∩ . . .∩ Tn. If T1 ∩ . . .∩ Tn E {T11, . . . ,T1m, . . . ,Tn1, . . . ,Tn j} then by the definition of E,
T1 E {T11, . . . ,T1m} and . . . and Tn E {Tn1, . . . ,Tn j}. By the induction hypothesis, {T11, . . . ,T1m}
is the set of all the instances of T1 and T11 and . . . and T1m are all simple types and . . . and
{Tn1, . . . ,Tn j} is the set of all the instances of Tn and Tn1 and . . . and Tn j are all simple types.
Then, {T11, . . . ,T1m, . . . ,Tn1, . . . ,Tn j} is the set of all the instance of T1∩ . . .∩Tn and T11 and . . . and
T1m and . . . and Tn1 and . . . and Tn j are all simple types.

Conservative Extension to the GTLC: If e is annotated with only simple types and T is a simple type:
1. then Γ `G e : T ⇐⇒ Γ `∩G e : T .
2. then Γ `CC e e1 : T ⇐⇒ Γ `∩CC e e2 : T and e1 =c e2.
3. if Γ `CC e1 : T , Γ `∩CC e2 : T and e1 =c e2 then e1 −→CC e′1 ⇐⇒ e2 −→∩CC e′2, and e′1 =c e′2.

Theorem B.9 (Conservative Extension to the GTLC). If e is annotated with only simple types and T is
a simple type, then Γ `G e : T ⇐⇒ Γ `∩G e : T .

Proof. We will first prove the right direction of the implication, that if Γ `G e : T then Γ `∩G e : T . We
proceed by induction on the length of the derivation tree of `G.

Base cases:

• Rule T-Var. If Γ `G x : T , then by rule T-Var, x : T ∈ Γ. As we are dealing with only simple types
T ⊆ T and therefore, Γ `∩G xT : T .

• Rule T-Int. If Γ `G n : Int, then by rule T-Int, Γ `∩G n : Int.

• Rule T-True. If Γ `G true : Bool, then by rule T-True, Γ `∩G true : Bool.

• Rule T-False. If Γ `G false : Bool, then by rule T-False, Γ `∩G false : Bool.

Induction step:

• Rule T-Abs. If Γ `G λx : T1 . e : T1→ T2, then by rule T-Abs, Γ,x : T1 `G e : T2. By the induction
hypothesis, Γ,x : T1 `∩G e : T2. Therefore, by rule T-Abs, Γ `∩G λx : T1 . e : T1→ T2.
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• Rule T-App. If Γ `G e1 e2 : T2 then by rule T-App, Γ `G e1 : PM, PMBT1→ T2, Γ `G e2 : T ′1 and
T ′1 ∼ T1. By the induction hypothesis, Γ `∩G e1 : PM and Γ `∩G e2 : T ′1 . Therefore, by rule T-App,
Γ `∩G e1 e2 : T2.

We will now prove the left direction of the implication, that if Γ `∩G e : T then Γ `G e : T . We proceed
by induction on the length of the derivation tree of `∩G.

Base cases:

• Rule T-Var. If Γ `∩G xT : T , then by rule T-Var, x : T ∈ Γ and T ⊆ T . Therefore, Γ `G x : T .

• Rule T-Int. If Γ `∩G n : Int, then by rule T-Int, Γ `G n : Int.

• Rule T-True. If Γ `∩G true : Bool, then by rule T-True, Γ `G true : Bool.

• Rule T-False. If Γ `∩G false : Bool, then by rule T-False, Γ `G false : Bool.

Induction step:

• Rule T-Abs. If Γ `∩G λx : T1 : e : T1→ T2, then by rule T-Abs, Γ,x : T1 `∩G e : T2. By the induction
hypothesis, Γ,x : T1 `G e : T2. Therefore, by rule T-Abs, Γ `G λx : T1 . e : T1→ T2.

• Rule T-Abs’. If Γ `∩G λx : T1 : e : T1 → T2, then by rule T-Abs’, Γ,x : T1 `∩G e : T2. By the
induction hypothesis, Γ,x : T1 `G e : T2. Therefore, by rule T-Abs, Γ `G λx : T1 . e : T1→ T2.

• Rule T-App. If Γ `∩G e1 e2 : T2 then by rule T-App, Γ `∩G e1 : PM, PMBT1→ T2, Γ `∩G e2 : T ′1
and T ′1 ∼ T1. By the induction hypothesis, Γ `G e1 : PM and Γ `G e2 : T ′1 . Therefore, by rule T-App,
Γ `G e1 e2 : T2.

• Rule T-Gen. If Γ`∩G e : T , then by rule T-Gen, Γ`∩G e : T . By the induction hypothesis, Γ`G e : T .

• Rule T-Inst. If Γ`∩G e : T , then by rule T-Inst, Γ`∩G e : T . By the induction hypothesis, Γ`G e : T .

Theorem B.10 (Conservative Extension to the GTLC). If e is annotated with only simple types and T is
a simple type then Γ `CC e e1 : T ⇐⇒ Γ `∩CC e e2 : T and e1 =c e2.

Proof. We will first prove the right direction of the implication, that if Γ `CC e e1 : T then Γ `∩CC e 
e2 : T and e1 =c e2. We proceed by induction on the length of the derivation tree of Γ `CC e e1 : T .

Base cases:

• Rule C-Var. If Γ `CC x x : T , then by rule C-Var, x : T ∈ Γ. As we are dealing with only simple
types, T ⊆ T , and therefore, by rule C-Var, Γ `∩CC xT  xT : T .

• Rule C-Int. If Γ `CC n n : Int, then by rule C-Int, Γ `∩CC n n : Int.

• Rule C-True. If Γ `CC true true : Bool, then by rule C-True, Γ `∩CC true true : Bool.

• Rule C-False. If Γ `CC false false : Bool, then by rule C-False, Γ `∩CC false false : Bool.

Induction step:

• Rule C-Abs. If Γ `CC λx : T1 . e λx : T1 . e′ : T1 → T2, then by rule C-Abs, Γ,x : T1 `CC

e e′ : T2. By the induction hypothesis, Γ,x : T1 `∩CC e e′ : T2. Therefore, by rule C-Abs,
Γ `∩CC λx : T1 . e λx : T1 . e′ : T1→ T2.
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• Rule C-App. If Γ `CC e1 e2  (e′1 : PM ⇒l T1 → T2) (e′2 : T ′1 ⇒l T1) : T2, then by rule C-App,
Γ `CC e1 e′1 : PM, PMBT1→ T2, Γ `CC e2 e′2 : T ′1 and T ′1 ∼ T1. By the induction hypothesis,
Γ `∩CC e1 e′1 : PM and Γ `∩CC e2 e′2 : T ′1 . By definition ofE, PM E {PM}, T1→ T2 E {T1→
T2}, T ′1 E {T ′1} and T1 E {T1}. By the definition of ↪→, {PM}, {T1 → T2}, e′1 ↪→ e′1 : ∅ PM 0 :
PM⇒l T1→ T2

0 and {T ′1}, {T1}, e′2 ↪→ e′2 : ∅ T ′1
0 : T ′1 ⇒l T1

0. Therefore, Γ `∩CC e1 e2 (e′1 :
∅ PM 0 : PM⇒l T1→ T2

0) (e′2 :∅ T ′1
0 : T ′1⇒l T1

0) : T2. By the definition of =c, (e′1 : PM⇒l T1→
T2) =c (e′1 :∅ PM 0 : PM⇒l T1→ T2

0) and (e′2 : T ′1⇒l T1) =c (e′2 :∅ T ′1
0 : T ′1⇒l T1

0). Therefore,
(e′1 : PM⇒l T1→ T2) (e′2 : T ′1⇒l T1) =c (e′1 :∅ PM 0 : PM⇒l T1→ T2

0) (e′2 :∅ T ′1
0 : T ′1⇒l T1

0).

We will now prove the left direction of the implication, that if Γ `∩CC e e2 : T then Γ `CC e e1 : T
and e1 =c e2. We proceed by induction on the length of the derivation tree of Γ `∩CC e e2 : T .

Base cases:

• Rule C-Var. If Γ `∩CC xT  xT : T , then by rule C-Var, x : T ∈ Γ and T ⊆ T . Therefore, by rule
C-Var, Γ `CC x x : T .

• Rule C-Int. If Γ `∩CC n n : Int, then by rule C-Int, Γ `CC n n : Int.

• Rule C-True. If Γ `∩CC true true : Bool, then by rule C-True, Γ `CC true true : Bool.

• Rule C-False. If Γ `∩CC false false : Bool, then by rule C-False, Γ `CC false false : Bool.

Induction step:

• Rule C-Abs. If Γ `∩CC λx : T1 . e λx : T1 . e′ : T1 → T2, then by rule C-Abs, Γ,x : T1 `∩CC

e e′ : T2. By the induction hypothesis, Γ,x : T1 `CC e e′ : T2. Therefore, by rule C-Abs,
Γ `CC λx : T1 . e λx : T1 . e′ : T1→ T2.

• Rule C-Abs’ If Γ `∩CC λx : T1 . e λx : T1 . e′ : T1 → T2, then by rule C-Abs’, Γ,x : T1 `∩CC

e e′ : T2. By the induction hypothesis, Γ,x : T1 `CC e e′ : T2. Therefore, by rule C-Abs,
Γ `CC λx : T1 . e λx : T1 . e′ : T1→ T2.

• Rule C-App. If Γ `∩CC e1 e2 e′′1 e′′2 : T2 then by rule C-App, Γ `∩CC e1 e′1 : PM, PMBT1→ T2,
Γ `∩CC e2  e′2 : T ′1 , T ′1 ∼ T1, PM E S1, T1 → T2 E S2, T ′1 E S3, T1 E S4, S1, S2, e′1 ↪→ e′′1 and
S3, S4, e′2 ↪→ e′′2 . Since e1 e2 is annotated with only simple types, then by the definition of E,
e′′1 = (e′1 : ∅ PM 0 : PM ⇒l T1 → T2

0) and e′′2 = (e′2 : ∅ T ′1
0 : T ′1 ⇒l T1

0). By the induction
hypothesis, Γ `CC e1 e′1 : PM and Γ `CC e2 e′2 : T ′1 . Therefore, by rule C-App, Γ `CC e1 e2 
(e′1 : PM ⇒l T1 → T2) (e′2 : T ′1 ⇒l T1) : T2. By the definition of =c, (e′1 : PM ⇒l T1 → T2) =c

(e′1 : ∅ PM 0 : PM ⇒l T1 → T2
0) and (e′2 : T ′1 ⇒l T1) =c (e′2 : ∅ T ′1

0 : T ′1 ⇒l T1
0). Therefore,

(e′1 : PM⇒l T1→ T2) (e′2 : T ′1⇒l T1) =c (e′1 :∅ PM 0 : PM⇒l T1→ T2
0) (e′2 :∅ T ′1

0 : T ′1⇒l T1
0).

• Rule C-Gen. If Γ `∩CC e e′ : T then by rule C-Gen, Γ `∩CC e e′ : T . By the induction
hypothesis, Γ `CC e e′ : T .

• Rule C-Inst. If Γ `∩CC e  e′ : T then by rule C-Inst, Γ `∩CC e  e′ : T . By the induction
hypothesis, Γ `CC e e′ : T .

Theorem B.11 (Conservative Extension to the GTLC). Depends on Theorem B.7. If e2 are annotated
with only simple types, T is a simple type, Γ `CC e1 : T , Γ `∩CC e2 : T and e1 =c e2 then e1 −→CC e′1 ⇐⇒
e2 −→∩CC e′2, and e′1 =c e′2.
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Proof. We will first prove the right direction of the implication, that if e1 −→CC e′1 then e2 −→∗∩CC e′2
and e1 =c e2. We proceed by induction on the length of the derivation tree of e1 =c e2.

Base cases:

• x =c xT . As x doesn’t reduce by −→CC, this case is not considered.

• n =c n. As n doesn’t reduce by −→CC, this case is not considered.

• true =c true. As true doesn’t reduce by −→CC, this case is not considered.

• false =c false. As false doesn’t reduce by −→CC, this case is not considered.

• blameT l =c blameT l. As blameT l doesn’t reduce by −→CC, this case is not considered.

• blameT l =c e : (blame T ′ T l cl). As blameT l doesn’t reduce by−→CC, this case is not considered.

Induction step:

• λx : T . e =c λx : T . e′. As λx : T . e doesn’t reduce by −→CC, this case is not considered.

• e1 e2 =c e3 e4. There are six possibilities:

– Rule E-PushBlame1. If blameT ′→T l e2 = e3 e4 and blameT ′→T l e2 −→CC blameT l then by
the definition of =c, blameT ′→T l =c e3. There are two possibilities. By the definition of =c

and by applying rule E-RemoveEmpty zero or more times, either
∗ e3 −→∗∩CC blameT ′→T l. By rule E-App1, e3 e4 −→∗∩CC blameT ′→T l e4. By rule E-

PushBlame1, blameT ′→T l e4 −→∗∩CC blameT l and blameT l =c blameT l.
∗ e3 −→∗∩CC e : (blame T ′′ (T ′→ T ) l cl). By repeated application of rule E-Evaluate and

by Theorem B.7, e : blame T ′′ (T ′→ T ) l cl)−→∗∩CC v : blame T ′′ (T ′→ T ) l cl). By rule
E-PropagateBlame, v : blame T ′′ (T ′→ T ) l cl) −→∗∩CC blameT ′→T l. By rule E-App1,
e3 e4 −→∗∩CC blameT ′→T l e4. By rule E-PushBlame1, blameT ′→T l e4 −→∗∩CC blameT l
and blameT l =c blameT l.

– Rule E-PushBlame2. If e1 blameT ′ l = e3 e4 and e1 blameT ′ l −→CC blameT l then by the
definition of =c, blameT ′ l =c e4. There are two possibilities. By the definition of =c and by
applying rule E-RemoveEmpty zero or more times, either
∗ e4 −→∗∩CC blameT ′ l. By rule E-App2, e3 e4 −→∗∩CC e3 blameT ′ l. By rule E-Push-

Blame2, e3 blameT ′ l −→∗∩CC blameT l and blameT l =c blameT l.
∗ e4 −→∗∩CC e : blame T ′′ T ′ l cl . By repeated application of rule E-Evaluate and by The-

orem B.7, e : blame T ′′ T ′ l cl −→∗∩CC v : blame T ′′ T ′ l cl . By rule E-PropagateBlame,
v : blame T ′′ T ′ l cl −→∗∩CC blameT ′ l. By rule E-App2, e3 e4 −→∗∩CC e3 blameT ′ l. By
rule E-PushBlame2, e3 blameT ′ l −→∗∩CC blameT l and blameT l =c blameT l.

– Rule E-App1. If e1 e2 =c e3 e4 and e1 e2 −→CC e′1 e2 then by the definition of =c, e1 =c e3
and e2 =c e4, and by rule E-App1, e1 −→CC e′1. By the induction hypothesis, e3 −→∩CC e′3
and e′1 =c e′3. Then by rule E-App1, e3 e4 −→∩CC e′3 e4. By definition of =c, e′1 e2 =c e′3 e4.

– Rule E-App2. If v1 e2 =c e3 e4 and v1 e2 −→CC v1 e′2 then by the definition of =c, v1 =c e3
and e2 =c e4, and by rule E-App2, e2 −→CC e′2. By the induction hypothesis, e4 −→∩CC e′4
and e′2 =c e′4. By definition of =c, and by applying rule E-RemoveEmpty zero or more times,
e3 −→∗∩CC v1. If e3 −→∗∩CC v′1 such that v1 =c v′1, by rule E-App1, e3 e4 −→∩CC v′1 e4, and by
rule E-App2, v′1 e4 −→∩CC v′1 e′4. By definition of =c, v1 e′2 =c v′1 e′4.
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– Rule E-AppAbs. If (λx : T ′ . e) v =c e3 e4 and (λx : T ′ . e) v −→CC [x 7→ v]e then by the
definition of =c, (λx : T ′ . e) =c e3 and v =c e4. By the definition of =c and by applying rule
E-RemoveEmpty zero or more times, e3 −→∗∩CC λx : T ′ . e′ and e4 −→∗∩CC v′, such that, by
definition of =c, (λx : T ′ . e) =c (λx : T ′ . e′) and v =c v′ and e =c e′. By rule E-AppAbs,
(λx : T ′ . e′) v′ −→∩CC [x 7→ v′]e′ and by definition of =c, [x 7→ v]e =c [x 7→ v′]e′.

– Rule C-BETA. If (v1 : T1→ T2⇒l T3→ T4) v2 =c e3 e4 and (v1 : T1→ T2⇒l T3→ T4) v2
−→CC (v1 (v2 : T3 ⇒l T1)) : T2 ⇒l T4 then by the definition of =c, v1 : T1 → T2 ⇒l T3 →
T4 =c e3 and v2 =c e4. By definition of =c and by applying rule E-RemoveEmpty zero or
more times, e3 −→∗∩CC v′1 : (∅ T1 → T2

cl : T1 → T2 ⇒l T3 → T4) such that v1 =c v′1, and
e4 −→∗∩CC v′2 such that v2 =c v′2. By rule E-SimulateArrow, (v′1 : (∅ T1→ T2

cl : T1→ T2⇒l

T3→ T4)) v′2 −→∩CC ((v′1 : ∅ T1→ T2
cl) (v′2 : (∅ T3

0 : T3⇒l T1
0))) : (∅ T2

0 : T2⇒l T4
0).

By the definition of =c, (v1 (v2 : T3⇒l T1)) : T2⇒l T4 =c ((v′1 : ∅ T1→ T2
cl) (v′2 : (∅ T3

0 :
T3⇒l T1

0))) : (∅ T2
0 : T2⇒l T4

0).

• e1 =c e2 : (∅ T cl). If e1 =c e2 :∅ T cl and e1−→CC e′1 then by the definition of =c, e1 =c e2. By the
induction hypothesis, e2−→∩CC e′2 and e′1 =c e′2. By rule E-Evaluate, e2 :∅ T cl −→∩CC e′2 :∅ T cl .
As e′1 =c e′2 then by definition of =c, e′1 =c e′2 : ∅ T cl .

• e : T1⇒l T2 =c e′ : (c : T1⇒l T2
cl). There are seven possibilities:

– Rule E-Evaluate. If e1 : T1 ⇒l T2 =c e and e1 : T1 ⇒l T2 −→CC e′1 : T1 ⇒l T2, then by the
definition of =c and by applying rule E-Evaluate zero or more times, e −→∗∩CC e2 : (c :
T1 ⇒l T2

cl) such that e1 =c e2 : c, and by rule E-Evaluate, e1 −→CC e′1. By the induction
hypothesis, e2 : c −→∗∩CC e′2 : c and e′1 =c e′2 : c. If e2 : c −→∗∩CC e′2 : c then by rule E-
Evaluate, e2 −→∗∩CC e′2. By rule E-Evaluate, e2 : (c : T1⇒l T2

cl)−→∩CC e′2 : (c : T1⇒l T2
cl).

As e′1 =c e′2 : c then by the definition of =c, e′1 : T1⇒l T2 =c e′2 : (c : T1⇒l T2
cl).

– Rule CTX-BLAME. If blameT1 l : T1 ⇒l T2 =c e and blameT1 l : T1 ⇒l T2 −→CC blameT2 l
then there are three possibilities. By the definition of =c and by applying rule E-Remove-
Empty zero or more times, either
∗ e −→∗∩CC blameT1 l : (∅ T1

cl : T1 ⇒l T2
cl). By rule E-PushBlameCast, blameT1 l :

(∅ T1
cl : T1⇒l T2

cl)−→∩CC blameT2 l and blameT2 l =c blameT2 l.
∗ e−→∗∩CC e′ : (blame T ′ T1 l cl : T1⇒l T2

cl). By repeated application of rule E-Evaluate
and by Theorem B.7, e′ : (blame T ′ T1 l cl : T1 ⇒l T2

cl) −→∗∩CC v : (blame T ′ T1 l cl :
T1⇒l T2

cl). By rule E-EvaluateCasts and by rule E-PushBlameCI, v : (blame T ′ T1 l cl :
T1⇒l T2

cl)−→∗∩CC v : (blame T ′ T2 l cl). By rule E-PropagateBlame, v : (blame T ′ T2 l cl)
−→∗∩CC blameT2 l and blameT2 l =c blameT2 l.
∗ e −→∗∩CC e′ : (blame T ′ T1 l cl) : (∅ T1

cl : T1 ⇒l T2
cl). By repeated application of

rule E-Evaluate and by Theorem B.7, e′ : (blame T ′ T1 l cl : T1 ⇒l T2
cl) −→∗∩CC v :

(blame T ′ T1 l cl) : (∅ T1
cl : T1⇒l T2

cl). By rule E-MergeCasts, v : (blame T ′ T1 l cl) :
(∅ T1

cl : T1⇒l T2
cl)−→∩CC v : (blame T ′ T1 l cl : T1⇒l T2

cl). By rule E-EvaluateCasts
and by rule E-PushBlameCI, v : (blame T ′ T1 l cl : T1⇒l T2

cl)−→∗∩CC v : (blame T ′ T2 l cl).
By rule E-PropagateBlame, v : (blame T ′ T2 l cl) −→∗∩CC blameT2 l) and blameT2 l =c

blameT2 l.
– Rule ID-BASE and Rule ID-STAR. If v : T ⇒l T =c e and v : T ⇒l T −→CC v, then by the

definition of =c and by applying rule E-RemoveEmpty zero or more times, e −→∗∩CC v′ :
(cv : T ⇒l T cl), such that v =c v′ : cv. By rule E-EvaluateCasts and by rule E-IdentityCI,
v′ : (cv : T ⇒l T cl)−→∩CC v′ : cv and v =c v′ : cv.
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– Rule SUCCEED. If v : G⇒l1 Dyn : Dyn⇒l2 G =c e and v : G⇒l1 Dyn : Dyn⇒l2 G−→CC v
then there are two possibilities. By definition of =c and by applying rule E-RemoveEmpty
zero or more times, either
∗ e−→∗∩CC v′ : (cv : G⇒l1 Dyn cl : Dyn⇒l2 G cl) or
∗ e−→∗∩CC v′ : (cv : G⇒l1 Dyn cl) : (∅ Dyn cl : Dyn⇒l2 G cl)

such that v =c v′ : cv. As, by rule E-MergeCasts, v′ : (cv : G⇒l1 Dyn cl) : (∅ Dyn cl : Dyn⇒l2

G cl)−→∩CC v′ : (cv : G⇒l1 Dyn cl : Dyn⇒l2 G cl), we only need to address the first case. By
rule E-EvaluateCasts and by rule E-SucceedCI, v′ : (cv : G⇒l1 Dyn cl : Dyn⇒l2 G cl)−→∩CC

v′ : cv and v =c v′ : cv.
– Rule FAIL. If v : G1 ⇒l1 Dyn : Dyn⇒l2 G2 =c e and v : G1 ⇒l1 Dyn : Dyn⇒l2 G2 −→CC

blameG2 l2 then there are two possibilities. By definition of =c and by applying rule E-
RemoveEmpty zero or more times, either
∗ e−→∗∩CC v′ : (cv : G1⇒l1 Dyn cl : Dyn⇒l2 G2

cl) or
∗ e−→∗∩CC v′ : (cv : G1⇒l1 Dyn cl) : (∅ Dyn cl : Dyn⇒l2 G2

cl)

such that v=c v′ : cv. As, by rule E-MergeCasts, v′ : (cv : G1⇒l1 Dyn cl) : (∅ Dyn cl : Dyn⇒l2

G2
cl)−→∩CC v′ : (cv : G1⇒l1 Dyn cl : Dyn⇒l2 G2

cl), we only need to address the first case.
By rule E-EvaluateCasts and by rule E-FailCI, v′ : (cv : G1⇒l1 Dyn cl : Dyn⇒l2 G2

cl)−→∩CC

v′ : blame TI G2 l2 cl . By rule E-PropagateBlame, v′ : blame TI G2 l2 cl −→∩CC blameG2 l2
and blameG2 l2 =c blameG2 l2.

– Rule GROUND. If v : T ⇒l Dyn =c e and v : T ⇒l Dyn −→CC v : T ⇒l G : G⇒l Dyn then
by definition of =c and by applying rule E-RemoveEmpty zero or more times, e−→∗∩CC v′ :
(cv : T ⇒l Dyn cl) such that v =c v′ : cv. By rule E-EvaluateCasts and by rule E-GroundCI,
v′ : (cv : T ⇒l Dyn cl) −→∩CC v′ : (cv : T ⇒l G cl : G⇒l Dyn cl). As v =c v′ : cv, then by
definition of =c, v : T ⇒l G : G⇒l Dyn =c v′ : (cv : T ⇒l G cl : G⇒l Dyn cl).

– Rule EXPAND. If v : Dyn⇒l T =c e and v : Dyn⇒l T −→CC v : Dyn⇒l G : G⇒l T then
by definition of =c and by applying rule E-RemoveEmpty zero or more times, e−→∗∩CC v′ :
(cv : Dyn⇒l T cl) such that v =c v′ : cv. By rule E-EvaluateCasts and by rule E-ExpandCI,
v′ : (cv : Dyn⇒l T cl) −→∩CC v′ : (cv : Dyn⇒l G cl : G⇒l T cl). As v =c v′ : cv, then by
definition of =c, v : Dyn⇒l G : G⇒l T =c v′ : (cv : Dyn⇒l G cl : G⇒l T cl).

We will now prove the left direction of the implication, that if e2−→∩CC e′2 then e1−→CC e′1 and e1 =c e2.
We proceed by induction on the length of the derivation tree of e1 =c e2.

Base cases:

• x =c xT . As xT doesn’t reduce by −→∩CC, this case is not considered.

• n =c n. As n doesn’t reduce by −→∩CC, this case is not considered.

• true =c true. As true doesn’t reduce by −→∩CC, this case is not considered.

• false =c false. As false doesn’t reduce by −→∩CC, this case is not considered.

• blameT l =c blameT l. As blameT l doesn’t reduce by −→∩CC, this case is not considered.

• blameT l =c e : (blame T ′ T l cl). There are two possibilities:

– Rule E-Evaluate. If e : (blame T ′ T l cl) −→∩CC e′ : (blame T ′ T l cl) and as blameT l is
already a value, then blameT l =′c e : (blame T ′ T l cl).

– Rule E-PropagateBlame. If v : (blame T ′ T l cl)−→∩CC blameT l and as blameT l is already
a value, then blameT l =c blameT l.
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Induction step:

• λx : T . e =c λx : T . e′. As λx : T . e′ doesn’t reduce by −→∩CC, this case is not considered.

• e1 e2 =c e3 e4. There are 6 possibilities:

– Rule E-PushBlame1. If blameT ′→T l e2 = blameT ′→T l e4 and blameT ′→T l e4 −→∩CC

blameT l then by rule E-PushBlame1, blameT ′→T l e2 −→CC blameT l and blameT l =c

blameT l.
– Rule E-PushBlame2. If e1 blameT ′ l = e3 blameT ′ l and e3 blameT ′ l −→∩CC blameT l then

by rule E-PushBlame2, e1 blameT ′ l −→CC blameT l and blameT l =c blameT l.
– Rule E-App1. If e1 e2 =c e3 e4 and e3 e4 −→∩CC e′3 e4 then by the definition of =c, e1 =c e3

and e2 =c e4, and by rule E-App1, e3 −→∩CC e′3. By the induction hypothesis, e1 −→CC e′1
and e′1 =c e′3. Then by rule E-App1, e1 e2 −→CC e′1 e2. By definition of =c, e′1 e2 =c e′3 e4.

– Rule E-App2. If v1 e2 =c v3 e4 and v3 e4 −→∩CC v3 e′4 then by the definition of =c, v1 =c v3
and e2 =c e4, and by rule E-App2, e4 −→∩CC e′4. By the induction hypothesis, e2 −→CC e′2
and e′2 =c e′4. Then by rule E-App2, v1 e2 −→CC v1 e′2. By definition of =c, v1 e′2 =c v3 e′4.

– Rule E-AppAbs. If (λx : T ′ . e) v2 =c (λx : T ′ . e′) v4 and (λx : T ′ . e′) v4 −→∩CC [x 7→ v4]e′

then by the definition of =c, (λx : T ′ . e) =c (λx : T ′ . e′) and v2 =c v4 and e =c e′. By rule
E-AppAbs, (λx : T ′ . e) v2 −→CC [x 7→ v2]e. As v2 =c v4 and e =c e′, then by definition of
=c, [x 7→ v2]e =c [x 7→ v4]e′.

– Rule E-SimulateArrow. There are two possibilities:
∗ If v1 v2 =c (v3 : ∅ T ′ → T cl) v4 and (v3 : ∅ T ′ → T cl) v4 −→∩CC ((v3 : ∅ T ′ →

T cl) (v4 : ∅ T ′ cl)) : ∅ T cl then by definition of =c, v1 =c (v3 : ∅ T ′ → T cl) and
v2 =c v4 and v1 =c v3. By the definition of =c, v2 =c v4 : ∅ T ′ cl . By the definition of
=c, v1 v2 =c ((v3 : ∅ T ′→ T cl) (v4 : ∅ T ′ cl)). By the definition of =c, v1 v2 =c ((v3 :
∅ T ′→ T cl) (v4 : ∅ T ′ cl)) : ∅ T cl .
∗ If (v1 : T1→ T2⇒l T3→ T4) v2 =c (v3 : (cv : T1→ T2⇒l T3→ T4

cl)) v4 and (v3 : (cv :
T1 → T2 ⇒l T3 → T4

cl)) v4 −→∩CC ((v3 : cv) (v4 : (∅ T3
cl : T3 ⇒l T1

cl))) : (∅ T cl :
T2 ⇒l T4

cl) then by definition of =c, v1 =c v3 : cv and v2 =c v4. By rule C-BETA,
(v1 : T1→ T2⇒l T3→ T4) v2 −→CC (v1 (v2 : T3⇒l T1)) : T2⇒l T4. As v2 =c v4, then
by definition of =c, v2 : T3 ⇒l T1 =c v4 : (∅ T3

cl : T3 ⇒l T1
cl). As v1 =c v3 : cv and

v2 : T3⇒l T1 =c v4 : (∅ T3
cl : T3⇒l T1

cl), then by the definition of =c, (v1 (v2 : T3⇒l

T1)) =c ((v3 : cv) (v4 : (∅ T3
cl : T3⇒l T1

cl))). As (v1 (v2 : T3⇒l T1)) =c ((v3 : cv) (v4 :
(∅ T3

cl : T3⇒l T1
cl))), then by the definition of =c, (v1 (v2 : T3⇒l T1)) : T2⇒l T4 =c

((v3 : cv) (v4 : (∅ T3
cl : T3⇒l T1

cl))) : (∅ T cl : T2⇒l T4
cl).

• e1 =c e2 : (∅ T cl). There are two possibilities:

– Rule E-Evaluate. If e1 =c e2 : (∅ T cl) and e2 : (∅ T cl) −→∩CC e′2 : (∅ T cl) then by the
definition of =c, e1 =c e2, and by rule E-Evaluate, e2−→∩CC e′2. By the induction hypothesis,
e1 −→CC e′1 and e′1 =c e′2. As e′1 =c e′2 then by definition of =c, e′1 =c e′2 : (∅ T cl).

– Rule E-RemoveEmpty. If v1 =c v2 : (∅ T cl) and v2 : (∅ T cl)−→∩CC v2 then by the definition
of =c, v1 =c v2.

• e : T1⇒l T2 =c e′ : (c : T1⇒l T2
cl). There are four possibilities:

– Rule E-PushBlameCast. If blameT1 l : T1⇒l T2 =c blameT1 l : (c : T1⇒l T2
cl) and blameT1 l :

(c : T1 ⇒l T2
cl) −→∩CC blameT2 l then by rule CTX-BLAME, blameT1 l : T1 ⇒l T2 −→CC

blameT2 l and blameT2 l =c blameT2 l.
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– Rule E-Evaluate. If e1 : T1 ⇒l T2 =c e2 : (c : T1 ⇒l T2
cl) and e2 : (c : T1 ⇒l T2

cl) −→∩CC

e′2 : (c : T1⇒l T2
cl) then by definition of =c, e1 =c e2 : c, and by rule E-Evaluate, e2 −→∩CC

e′2. By rule E-Evaluate, e2 : c −→∩CC e′2 : c. By the induction hypothesis, e1 −→CC e′1 and
e′1 =c e′2 : c. By rule E-Evaluate, e1 : T1⇒l T2 −→CC e′1 : T1⇒l T2. As e′1 =c e′2 : c, then by
the definition of =c, e′1 : T1⇒l T2 =c e′2 : (c : T1⇒l T2

cl).
– Rule E-MergeCasts. If v : T1⇒l T2 =c (v′ : cv) : (∅ T1

cl : T1⇒l T2
cl) and (v′ : cv) : (∅ T1

cl :
T1 ⇒l T2

cl) −→∩CC v′ : (cv : T1 ⇒l T2
cl) then by the definition of =c, v =c v′ : cv. As

v =c v′ : cv, then by the definition of =c, v : T1⇒l T2 =c v′ : (cv : T1⇒l T2
cl).

– Rule E-EvaluateCasts. There are seven possibilities:
∗ Rule E-PushBlameCI. If blameT1 l1 : T1 ⇒l2 T2 =c v : (blame T ′ T1 l1 cl : T1 ⇒l2 T2

cl)
and v : (blame T ′ T1 l1 cl : T1⇒l2 T2

cl) −→∩CC v : blame T ′ T2 l1 cl then by rule CTX-
BLAME blameT1 l1 : T1⇒l2 T2 −→CC blameT2 l1 and blameT2 l1 =c v : blame T ′ T2 l1 cl .
∗ Rule E-EvaluateCI. If v1 : T1⇒l T2 =c v2 : (c : T1⇒l T2) and v2 : (c : T1⇒l T2)−→∩CC

v2 : (c′ : T1⇒l T2) then v1 =c v2 : c and by rule E-EvaluateCasts, v2 : c−→∩CC v2 : c′. By
the induction hypothesis, v1 −→CC v′1 and v′1 =c v2 : c′. By rule E-Evaluate, v1 : T1⇒l

T2 −→CC v′1 : T1⇒l T2. As v′1 =c v2 : c′, then by definition of =c, v′1 : T1⇒l T2 =c v2 :
(c′ : T1⇒l T2).
∗ E-IdentityCI. If v1 : T ⇒l T =c v2 : (cv1 : T ⇒l T ) and v2 : (cv1 : T ⇒l T )−→∩CC v2 : cv1

then by the definition of =c, v1 =c v2 : cv1. By rule ID-BASE or ID-STAR, v1 : T →l

T −→CC v1 and v1 =c v2 : cv1.
∗ E-SucceedCI. If v1 : G⇒l1 Dyn : Dyn⇒l2 G =c v2 : (cv1 : G⇒l1 Dyn cl1 : Dyn⇒l2 G cl2)

and v2 : (cv1 : G⇒l1 Dyn cl1 : Dyn⇒l2 G cl2) −→∩CC v2 : cv1 then by the definition
of =c, v1 =c v2 : cv1. By rule SUCCEED, v1 : G⇒l1 Dyn : Dyn⇒l2 G −→CC v1 and
v1 =c v2 : cv1.
∗ E-FailCI. If v1 : G1⇒l1 Dyn : Dyn⇒l2 G2 =c v2 : (cv1 : G1⇒l1 Dyn cl1 : Dyn⇒l2 G2

cl2)
and v2 : (cv1 : G1⇒l1 Dyn cl1 : Dyn⇒l2 G2

cl2) −→∩CC v2 : blame T ′ G2 l2 cl1 then by
the definition of =c, v1 =c v2 : cv1. By rule FAIL, v1 : G1⇒l1 Dyn : Dyn⇒l2 G2 −→CC

blameG2 l2 and by the definition of =c, blameG2 l2 =c v2 : blame T ′ G2 l2 cl1 .
∗ E-GroundCI. If v1 : T ⇒l Dyn =c v2 : (cv1 : T ⇒l Dyn cl) and v2 : (cv1 : T ⇒l Dyn cl)
−→∩CC v2 : (cv1 : T ⇒l G cl : G⇒l Dyn cl) then by the definition of =c, v1 =c v2 : cv1.
By rule GROUND, v1 : T ⇒l Dyn −→CC v1 : T ⇒l G : G⇒l Dyn. As v1 =c v2 : cv1,
then by the definition of =c, v1 : T ⇒l G =c v2 : (cv1 : T ⇒l G cl). As v1 : T ⇒l G =c

v2 : (cv1 : T ⇒l G cl), then by the definition of =c, v1 : T ⇒l G : G⇒l Dyn =c v2 : (cv1 :
T ⇒l G cl : G⇒l Dyn cl).
∗ E-ExpandCI. If v1 : Dyn⇒l T =c v2 : (cv1 : Dyn⇒l T cl) and v2 : (cv1 : Dyn⇒l T cl)
−→∩CC v2 : (cv1 : Dyn⇒l G cl : G⇒l T cl) then by the definition of =c, v1 =c v2 : cv1.
By rule EXPAND, v1 : Dyn⇒l T −→CC v1 : Dyn⇒l G : G⇒l T . As v1 =c v2 : cv1, then
by the definition of =c, v1 : Dyn⇒l G =c v2 : (cv1 : Dyn⇒l G cl). As v1 : Dyn⇒l G =c

v2 : (cv1 : Dyn⇒l G cl), then by the definition of =c, v1 : Dyn⇒l G : G⇒l T =c v2 :
(cv1 : Dyn⇒l G cl : G⇒l T cl).
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