Gradual Intersection Types

Pedro Angelo Mirio Florido
Faculdade de Ciéncias & LIACC Faculdade de Ciéncias & LIACC
Universidade do Porto Universidade do Porto

pedro.angelo@fc.up.pt amf@dcc.fc.up.pt

Gradual typing integrates dynamic and static types. Since its introduction, it has been successfully
applied to several extensions of simple types, including subtyping, parametric polymorphism and
substructural types. This work studies its application to intersection type systems. We introduce
a new approach to define a gradual version of the original intersection type system of Coppo and
Dezani. We then present a new operational semantics for terms typed with static and dynamic inter-
section types, which enables dynamic type casts and identifies the causes for type errors in a frame-
work inspired by the blame calculus. Finally we prove several properties of our system including a
correctness criteria and soundness of the extension of the original gradual type system.

1 Introduction

The recent contributions of gradual typing [3} 4]], integrating static and dynamic typing in a single pro-
gram, are the basis for several type systems. Gradual typing allows to fine tune the distribution of static
and dynamic checking in a program, thus harnessing the strengths of both typing disciplines. Regard-
ing polymorphism, gradual typing has been sucessfully applied [8] to the well-known and widely used
Hindley-Milner (HM) type system [[10, [14], resulting in a gradual type system with polymorphism.

Intersection types [3, 16} [12, 1] were proposed as an alternative to the HM type system. They allow a
different form of polymorphism, discrete polymorphism, in which all the (finite) instances of a type are
explicitly expressed. Thus, type systems based on these types are able to type more programs than the
HM type system, some are able to type all the strongly normalizing terms, and also allow for increased
expressiveness when describing instances of polymorphic types.

In our work, we extend gradual typing with intersection types, resulting in a polymorphic system
that contains all the expressive power of intersection types along with all the advantages of gradual
typing. Our system allows the use of the dynamic type in instances of intersection types, and thus
allows a single expression to be typed with dynamic and static types simultaneously. For example, in
(Ax : IntN Dyn . x™ + xP) 1 different instances of the variable x are typed with different (static and
dynamic) types.

In general, our system extends the Gradually Typed Lambda Calculus (GTLC) [3, 4], since besides
a type system and the cast calculus, we also present a cast insertion procedure that inserts casts to test
types at run-time, and an operational semantics to evaluate these casts. These casts are similar to those
of [3]], but modified to accomodate intersection types at run-time. This system adheres to the formal
correctness criteria, put forth in [[16} 3| |4], that guides the design of gradual languages. We also show
how our system is a generalization of the GTLC, behaving as the GTLC when expressions are typed with
only simple types.

A recent contribution that discussed the use of intersection types in a gradual setting is [2]. This
work focused on extending semantic subtyping [7] with gradual types, where types were interpreted as
sets of values. In [2l], intersection types were interpreted as its corresponding set-theoretic intersection

© Pedro Angelo & Mirio Florido
This work is licensed under the |Creative Commons
Attribution-Noncommercial-Share Alike|License.

Submitted to:
ITRS 2018

http://creativecommons.org
http://creativecommons.org/licenses/by-nc-sa/3.0/

2 Gradual Intersection Types

operator and typed overloaded functions which run a different code for each different type. Our work is
fundamentally different from [2]] in the sense that we follow the original motivation of intersection type
systems, where functions with intersection types may be applied to arguments of different types but they
always execute the same code for all of these types. Thus, in our work, intersection types are finitely
parametric polymorphic types in opposition with the work reported in [2]], where intersection types were
used to overload function names which discriminated on the different types of their arguments.

This paper makes the following contributions:

e A gradual type system with intersection types, as well as a cast calculus and cast insertion, thus
combining discrete polymorphism with gradual typing (Section [2)).

e An operational semantics for the cast calculus, handling the reduction of run-time checks and with
support for discrete polymorphism granted by the use of intersection types (Section [3).

e We show important properties, namely the correctness criteria for gradual typing, and we also
show how our system is a generalization of the GTLC (Section).

2 Gradual Intersection Types

Intersection types add to simple types [9] intersections of types of the form 71 N...NT,. Intersections
of types are independent of the order and the number of occurrences of each type. We thus consider
intersections of types modulo the following equivalence relations:

nn..ntNhigan..NT,=NnN..NTLyNTN...NT, commutative
hin..NnNNLN..NT,=NTnN..NT;N...NT, idempotent
(i —-T)Nn..N(T,-T)=TiNn...nT, =T distributive

We follow the original definition in [J5]], so intersections are not allowed in the codomain of the arrow
type, so i — (T N T3) is not a valid type, but (73 NT) — (T3NTy) — T5 is. We do not distinguish
between a singleton intersection of types and its sole element, and we assume thatif I; =T71N...NT,
and L, =T/ N...NT,, then we write [, NL for T1N...NT,NT{N...NT,. Wesay that 1 N...NT, C
T'n...NT, if and only if {T3,...,T,,} C{T}/,...,T,}. The intersection N has a higher precedence than
the arrow type, so 1 N1, NT3 — Ty is equal to (71 N T, NT3) — Ty.

2.1 Syntax and Type System

Here we define our Gradual Intersection Type System (ng), or GITS for short. Our language is an
explicitly typed A-calculus with integers and booleans. The syntax and the type system are presented in
Figure[l} Gradual typing uses an explicitly typed system with domain-type declarations in A-abstractions
to be able to declare them as dynamic. The same happens with our system, where the programmer
controls the type checker behavior with explicit type declarations for function arguments. Rule T-Abs’
restricts to binding just one instance of the intersection to the variable in the context of the (single) type
judgement in the premise of the rule. This allows the programmer to explicitly control the generation
of alternative types for terms (this extra rule goes back to Reynolds in [15]]). We say that two types
are consistent if the instances of both types are consistent. Considering the properties of intersection
types, they are consistent with a simple type (Int for example), if all the instances are consistent with
that simple type. Looking at the definition of pattern matching, we see that if the type of the function, in
the application rule, is a function type, then pattern matching gets its domain and codomain. However,

Pedro Angelo & Mrio Florido 3

Syntax

Types T ::= Int | Bool |Dyn |T —T |TN...NT

Expressions e :=x" |Ax:T .e|ee|n|true| false

T'tager : PM PM>TiN..NT, - T

Ix:TiN..NT,Fag e: T Thogex:TiN...NT, Nn...nT,~TiN...NT,
T-ABS T-Aprp
FkngleT]m...ﬁTn.eZT]ﬁ...an%T I'trgerex: T
x:T'el TCT Ix:Titbng e: T IT'thge:Ty - Thpge: T,
7 T-VAR e T-ABS’ e ! ne " T-GeN
I'kgx' T I'tgAx:TiN...NT, .e: T, =T I'tge:TiN...NT,
I'tge:TiN...NT,
T-INST ——— T-INT ———— T-TRUE ———— T-FALSE
I'bage: T; I'tagn:Int I' Fng true : Bool I"'ng false : Bool
Consistency
T\ ~Ts Th~Ty T]NTI’...TnNTn/
T~T T ~ Dyn Dyn~T N—>T~T—T, nN..NT,~T/N...0T,

Pattern Matching

h—-5L>T — 1T Dynr> Dyn — Dyn

Figure 1: Gradual Intersection Type System ()

if the function is typed dynamically, then it must be treated as a function type from dynamic to dynamic.
Finally, if the type of the function is not a functional type and not dynamic then the typing rule for
application is not applicable. Being an explicitly typed calculus we assume that expressions are always
typed with an intersection type. For example, rule T-App assumes that e, is typed with 7/ N...NT,.
However, these rules also accept simple types, when n = 1.

In our correctness criteria we will relate our system with a standard statically typed A-calculus with
intersection types, here called the Static Intersection Type System (Fns), or SITS for short (presented in
Appendix [A] for space limitation reasons). The Gradualizer [3] is a methodology to automatically gener-
ate a gradual type system from a given static type system. It accomplishes that purpose by individually
inspecting the typing rules of a type system and transforming those rules into their gradual counterpart.
It also generates the cast calculus typing rules and a cast insertion procedure from the static type sys-
tem. We note that applying the gradualizer to the SITS results in our Gradual Intersection Type System,
however our cast calculus and cast insertion procedure were designed by intuition.

2.2 Cast Calculus

In our system, casts only allow simple types. We are forced to consider how the intersection type is
treated in the scope of the type system, and to rethink the definition of casts, as in [3, 4]. We solve
this difficulty with the following reasoning: each instance of the intersection type generates a different
cast during cast insertion. Therefore, all the instances produce various casts, which during evaluation
are reduced independently. This is the key insight used in designing this system, and to implement it,

4 Gradual Intersection Types

Syntax

Types T ::= Int | Bool | Dyn | T — T
Casts ¢ :=c:T='T | blameTT19|>T*

Frcrc: (T, T) | Typing

}_QCI C: (T, Tl) Tl ~ T2
T T-SINGLECI i T-BLAMECI P e ——— T-EmMPTYCI
Frcre:Ti = T < (T, Tz) Facr blame Ty T 1 € - (T17TF) Frcr @ T (T7T)

Figure 2: Cast Intersection Type System (-ncy)

the cast as in the original contribution from [3| 4] is replaced with the cast intersection, e : ¢c; N ... N ¢y,
where c; represents a series of casts that are evaluated independently, and each of these c; are related to an
instance of the intersection type. The need for a system that handles the various casts in cast intersections
gave rise to the Cast Intersection system, with each cast ¢; being part of the Cast Intersection system.
Therefore, our cast calculus is composed of both the Intersection Cast Calculus (Fnc¢), which is the
counterpart to the Cast Calculus from [3]], and the Cast Intersection Type System (Fncy), which types
these casts c;.

Cast Intersection Type System The Cast Intersection Type System (F~¢y), or CITS for short, in Figure
is the type system for the sublanguage of casts. The sublanguage is composed of 3 terms: the single
cast ¢ : T} =! T» “ casts a type T; to a type T»; the blame cast blame T; Tr | ¢ represents a blame with
initial type 7, final type T and blame label [[3]]; and the empty cast @ T is an identity cast (from T to
T). No context is required in the typing rules of Figure 2] because there are no variables. The cast label
cl is a mark used to compare casts depending on their origin, its purpose will be explained in Section 3]

A cast ¢ can have many casts (single, blame or empty casts), and therefore, many source and target
types, as defined in [4]]. We adapt the concept of source and target type, and rename it as initial and final
type, with initial type refering to the source type of the inner (left) most cast and final type refering to
the target type of the outer (right) most cast. In the typing judgement F~¢; ¢ : (77, TF), ¢ has initial type
T; and final type Tf.

Intersection Cast Calculus The Intersection Cast Calculus (F~¢c¢), shown in Figure (3] is the counter-
part in our system to the Cast Calculus from [3]]. It introduces the cast intersection e : ¢; M ...MN ¢, and
its typing rules. In the GTLC, a cast is well typed if the source type of the cast is equal to the type of
the sub expression. In our system, as per rule T-CastIntersection, a cast intersection is well typed if the
intersection of the initial types of all casts ¢; is equal to the type of the subexpression. The cast intersec-
tion then types with the intersection of the final types of all casts ¢;. The Intersection Cast Calculus also
introduzes the blame term, blamer [, as described in the original contribution [4].

Rule T-App is not sufficient to type applications, since casts are typed with intersections only appear-
ing in the top level of the type. For example, if I' Frcc ey : (Int — Int) N (Bool — Int) and I Frec e
Int N Bool, then by rule T-App, e; e; is not typeable. Rule T-App’ is then required to type applications.
During cast insertion, types are converted such that intersection types only appear in the top level of the
type. Then, rule T-App’ and T-Castlntersection only expect types with this restriction, and don’t allow
intersection types in their type variables.

Pedro Angelo & Mrio Florido 5

Syntax

Types T ::= Int | Bool |Dyn |T —T |TN...NT

Expressions e :=x" |Ax:T .e|ee|n|true|false|e:cn...Nc| blamer |

Static Intersection Type System (Fns) rules and

Tkaccer: (T —= Ti)N...0 (T — T) Ihnccer:TiiN...NTy

T-AprP’
I'taccerer:TioN...NTpn
FFQCC e. T]H n...N TnH |_QCI Ccl: (T{,Tl) cee }_ﬂcl Cp: (T,;,Tn)
'n...nT) =1T{Nn...N7T,
T-CASTINTERSECTION ——— T-BLAME
I'tacce:cinN...0¢,:TiN...NT, I'tncc blamer 1 : T

Figure 3: Intersection Cast Calculus (-ncc)

2.3 Cast Insertion

The compilation of the Gradual Intersection Type System to the Intersection Cast Calculus (also called
cast insertion) is displayed in Figure[d} This compilation to the Cast Calculus is written I'-rcc e~ e’ : T,
meaning that e is compiled to ¢’ with type T in the type environment I, and it basically inserts run-time
casts in subexpressions where the type system uses consistency to compare types. The cast insertion
rules for the Intersection Cast Calculus are similar to the cast insertion rules for the cast calculus of [3]],
with the exception that the rules are adapted to deal with the Gradual Intersection Type System, which
results in 3 aditional rules: C-Abs’, C-Gen and C-Inst. Both compilation systems only insert casts in
the application of terms, therefore rules that deal with other terms are similar. Regarding the rule for
application, the two systems differ mainly due to different casts. Inserting cast intersections follows the
same basic principle as cast insertion in [3]]: we add a cast intersection to the expression on the left with
initial types equal to the instances of the type of the expression and final types equal to the instances of
the result of pattern matching, and we add a cast intersection to the expression on the right with initial
types equal to the instances of the type of the expression and final types equal to the instances of the
type given by the consistency relation. As we are dealing with intersection types, we must first retrieve
the simple types that make up all the instances of the intersection type with the instances (<) relation
presented in Figure [Then we add the casts with the cast insertion (S, S, e < e) relation.

Theorem (Instances of Intersection Types). We define the set S of instances of an intersection type T as
the set obtained by T < S. Given a type T, if T S then every element of S is a simple type.

The proof for this theorem can be found in Appendix [B| This allows the system to deal with finite rank
intersection types [[11, [12} [13]], by inserting as casts all its alternatives.

3 Normalization

Due to the existence of two systems, the Cast Intersection Type System (Fn¢y) and the Intersection Cast
Calculus (Fncc), the reduction rules of our system are divided into two operational semantics: the Cast
Intersection operational semantics (—>ncy) and the Intersection Cast Calculus operational semantics

(—nco)-

6 Gradual Intersection Types

‘ I'Facc e~ e: T | Compilation

Ix:TiNn..NTFacce~é : T
ThaccAx:TiN..NT,.e~Ax:TiN...NT,. ¢ :TiN...NT, = T

C-ABS

Fl—mcce‘1 Well :PM
PM>TiN..NT,—=T Thraccer~ey:TiN...NT, T\Nn...NnT,~TiN...nT, PM<S,
hiNn..NT,—-T98, T{ﬂ...ﬁTn’ﬁS3 iNn...NT, <84 Sl,S27e/1<—>e/1/ S3,S4,€,2;)€/2,

7 C-App
I'Frccerex~ef ey: T
x:T'eTl TCT Ix:TiFrcce~ée: T
T _ T C-VaRr ; C-ABS’
Itaccx’ ~x' T I'FaccAx:TiN..NT,.e~Ax:T1N...NT,,.¢: T, =T
I'tacce~se T -+ Thrcce~ € 1 T, I'tacce~e :TiN...NT,
nee ! S nee ® C-GexN nee 1/ % C-InsT ————————— C-INT
I'tacce~e :TiN...NT, I'tacce~e : T; I'tacecn~n:Int
C-TRUE C-FALSE
I' Frcc true ~ true : Bool I"'Fncc false ~~ false : Bool
Instances
Int < {Int} Bool < {Bool} Dyn < {Dyn}
Ty <{T1,...,Tin} T <{T1,...,Tim} - T S{Tu, ..., T}
-0 <{T—=D,....Tin— D} nn..0T <{T,. o Tims - Tty g}

Cast Insertion

{Tll,~~-7Tln}7 {T217.,.,T2n}, e—e: (@ T OZT“ :>ll T 0)ﬂ...ﬂ(@ Tl,,OZTln =>1” Tzno)
{Tll7~~-aTln}a {T2}, e‘—)e:(@ T OITH :>l' Tzo)ﬁ...ﬂ(g TanITln :>l” TZO)

(T}, {Dy,..., D} e e (@ =" D OYn...n(@h °: T =0 1,)

Figure 4: Compilation to the Intersection Cast Calculus

Cast Intersection Reduction Rules The Cast Intersection operational semantics is presented in Figure
Bl These rules are solely responsible for the reduction of casts pertaining a single instance of intersection
types, and as such, casts only contain simple types. Therefore, these rules are very similar to the cast
handler reduction rules in [4]]. The original purpose of the rules in [4]] was preserved in this system: rule
E-PushBlameCl is responsible for triggering blame to the top level; rules E-IdentityCI, E-SucceedCI
and E-FailCI detect the success or failure of casts; and rules E-GroundCI and E-ExpandCI mediate the
transition between the two disciplines. Note that, as presented in [4], G is a ground type of T if G ~ T
and G # T, and also G is a ground type. Each rule in the Cast Intersection operational semantics has a
counterpart in the cast handler reduction rules.

Due to the existence of the empty cast and the blame cast in this system, cast values remain similar to
the original definition of values pertaining casts of [4]], with a few exceptions. Casts from ground types
to the dynamic type and casts from an arrow type to a different arrow type are kept as values, however
we now recursively check if the sub-cast is also a value, or if the recursion stops with the empty cast.
Regarding the new casts of the language, as neither blame casts nor empty casts can be further reduced,
they are also considered values.

Pedro Angelo & Mrio Florido 7

Syntax
Types T ::= Int | Bool |Dyn |T — T
Ground Types G ::= Int | Bool | Dyn — Dyn
Casts ¢ i=c:T='T | blame TT 1| @T*
Cast Values c¢v ::=cvl | blame T T 1<
ovl = T4 | evl :G= Dy ‘CV11T1—>T2:>IT3%T4€1
Evaluation

E-PUSHBLAMECI

blame Ty Tr I ch :Th :>]2 T cly —rnCI blame T; T» ch

—(is cast value c) ¢ —ncr €
7 7 7 7 7 E-EVALUATECI R E-IDENTITYCI
c:i=5—ncacd TT1="T° vl :T='"T" —ncrevl

E-SUcCEEDCI

vl :G="Dynl Dyn =R G —nep evl

—(same ground G| G Frcrevl : (T;, T
(same g 102) ner evl: (01, 1) E-FAILCI

vl 1 Gy =h Dyn e, Dyn =G,y 5y blame T; Gy I, !

G is ground type of T —(is ground type T)

1 1 T ~d i 7 E-GROUNDCI
evl:T="Dyn® —nqpevl:T='G“:G="'Dyn®

G is ground type of T —(is ground type T
g ypeof (isg ype T) EEXPANDCI

vl :Dn='TY — vl :Dyn='G4 . G='T1¢

Figure 5: Cast Intersection Operational Semantics (—>ncy)

Intersection Cast Calculus Reduction Rules The Intersection Cast Calculus operational semantics is
presented in Figure[6] Being the counterpart to the Cast Calculus operational semantics from [4]], these
rules specify evaluation of the A-calculus terms and the remaining terms of the language, including cast
intersections. Updating the definition of casts from [3] to cast intersections (e : ¢; N...N¢,) requires
some reduction rules to be adapted as well.

In [4]], cast handler reduction rules were a part of the operational semantics. However, with the new
definition of casts, we require a rule to connect the Intersection Cast Calculus with the evaluation rules
for casts, given by the Cast Intersection operational semantics. E-EvaluateCasts then establishes a bridge
between the two operational semantics, by specifying that casts ¢; in the cast intersection e : c;N...Nc,
are reduced in parallel.

The simulation rule for the arrow type, C-BETA in [4]], also requires adaptation, resulting in the
rule E-Simulate Arrow (we have not included the definition of the function simulateArrow due to space
constraints, but it can be found in Appendix [A). The key insight of this rule remains the same, only
extended to deal with multiple casts. Casts that are not compatible with the arrow type are filtered out,
so the only casts that are used in this step are empty casts with an arrow type (& T} — T> /) or casts from
arrow types to arrow types, ¢ : Ty — T» =/ T3 — Ty !, assuming c also follows these restrictions. Then
we take the outermost cast and divide it, forming two casts and distributing these between the terms.
Forexample (v: (@ T =T :Ti = T ='Ts = T,)N(D Ts — Ts ') vy is evaluated to (v: (@ T} —
T Cl)ﬂ(@ s — Tg Cl)) (VQ : (@ T3 L. T3 =1 Ti 1>ﬂ<® Ts 2)) : (@ T L. T =1 Ty l)ﬂ(g Ts 2). The main

8 Gradual Intersection Types

Syntax

Types T ::= Int | Bool |Dyn |T —T |TN...NT
Expressions e :=x" |Ax:T .e|ee|n|true|false|e:cn...Nc|blamer |
Values v :=x" | Ax:T .e|n| true | false | blamer I | v: cviN...Ncv, such that

~(Vietn . cvi=blame T T 1) A ~(Vieyn . cvi=@ T <)

e —>ncc e | Evaluation

'+ CC blamep 1 ey T] '+ CC €1 blameT, l): T1
nec (1) E-PUSHBLAME! necer (: 1) E-PUSHBLAME2
(blamer, 1) ey —>ncc blamer, 1 ey (blamer,) —>n~cc blamer; |
FCICII T/ Ti ~~F(;1C : T/,T 61—>CCel
o (73, 7h) rcr e (T, Tn) E-PUSHBLAMECAST —ﬁ], E-ApPl
blamer | : ciN...Ncy —rncc blameryn. 1, | e| ey —ncc €] e
! !
€) —rnCC € e —rncc e
R . N i E-EVALUATE
V1 €2 —>nce V1 € e:c1N...Nc, —>ncce :c1N...Ncy
E-APPABS

Ax:TN...NT, .e) v—rncc [x—v]e

is value (vi :cviN...Ncvy) Ji € 1..n . isArrowCompatible(cv;)

((er1s€125€1)s -y (CmisemayC)y)) = simulateArrow(cvy, . .., cvy)
E-SIMULATEARROW

(vizevin...Nevy) v —nce (viiefN...ne,) (veieinNecNemn) teiaNe.Nem

isvalue (v:eviN...Nevy) viclN...Ncj =mergeCasts(v:cviN...Nevy:ciN...Ney,)

! / 7 T E-MERGECASTS
vieviN...NevyiepN...Nec, —nccvicpN...Nc;

(Vi € 1..n . is cast value c;) Cl —>ACI CV] -+ Cn —>ACI CVn

E-EVALUATECASTS
vieiN...Ncy, —>nccv:eviN...MNcvy

E-PROPAGATEBLAME

v:blame I, Fy I} " N...Nblame I, F, I, " —s~cc blame r,n..Ar,)

E-REMOVEEMPTY

VviB NN T, —necv

Figure 6: Intersection Cast Calculus Operational Semantics (—>ncc)

difference with C-BETA from [4] is that E-Simulate Arrow applies the same treatment to various casts c;.
The marks ¢/ are used to distinguish casts that originate from different instances, thus preventing these
casts from being merged together. We use integers as marks and we assign marks to casts based on their
index in cast intersections. The neutral mark is 0.

Rule E-MergeCasts merges two cast intersections to allow the evaluation of casts (the definition of
mergeCasts, found in Appendix [A] was not included due to space limitations). We take the casts from
the sub expression and merge every cast against every cast in the expression, provided these casts will
be typeable under Fn¢; and share a compatible mark c/. For example, merging the cast & Ty <t : T; =/
T, i with @ T3 2. 3= Ty L resultsin @ Tp 0 : Ty =L T b Ty =Ty 2 assuming 7> equals
T3, thus preserving typeability under ¢y, and c/; and cl, are compatible. The two marks c/; and cl,
are compatible if ¢/ = ¢l or either cl; or ¢/, is a neutral mark. As rule E-SimulateArrow filters casts
and rule E-MergeCasts removes casts that do not type check, we are potentially removing instances of
intersection types. Thus our definition of type preservation is a weaker one.

Pedro Angelo & Mrio Florido 9

Substitution We change the standard substitution definition to properly instantiate cast intersections,
here done by the function I(T,e). Substitution is thus the standard one with the following change:

[x > elx” =I(T,e)
The definition of I(T,e) follows:
I(T,e:ciN...Ncy,) =e:cyN...Nc),
where T < Sand ¢\ N...Nc,,={c|ce{ci,...,cn} and Frcrc: (T, T") and T" € S}
I(T,e) =e, if e is not a cast intersection
One illustrating example of reduction follows:
(Ax:IntNDyn . xP") 1 ~ (cast insertion)
((Ax : Int0Dyn . x") - (@ Int — Dyn ° : Int — Dyn =" Int — Dyn °)n
(@ Dyn — Dyn° : Dyn — Dyn =' Dyn — Dyn°)))
(1: (@It Int =" Int °)N (@ Int © - Int =' Dyn °)) —" - (E-EvaluateCasts and E-IdentityCI)
(Ax:Int0Dyn . xP") (1: (@ Int°)N (2 Int ° : Int =' Dyn °)) —~cc (E-AppAbs)
1: (@ Int°: Int ="' Dyn ©)

4 Correctness Criteria

Consider a partial order C [3]] meaning that a type, or a term, is less precise than another type, or a term
(the formal definition of T is on Appendix [A). We want to ensure that less precise programs behave the
same way as more precise ones. This property, along with other properties such as those related to type
safety, are ensured by correctness criteria, put forth in [16} 3} 4]. Our system observes these correctness
criteria, and as such has the following properties (proofs can be found in Appendix [B]):

Conservative Extension: If e is fully static and T is a static type, then'Frse: T <= T'tnge:T.
Monotonicity w.r.t. precision: If T Frge: T ande’ CethenT'Frge : T and T' C T.
Type preservation of cast insertion: If TG e: T thenT'Frcce~s e : T andThpece’ @ T.

Monotonicity of cast insertion: If I'-rcc e) ~» €] : Ty and ' e ex ~ €5 : Tr and e; C e, then €] C).
Conservative Extension: If e is fully static, then e —ng ¢’ <= e —ncc €.

Type preservation: If ' ~ncce:T1N...NT, and e —>ncc € then T kqec e : Ty N...N T, such that m < n.
Progress: If I' Frcc e : T then either e is a value or there exists an ¢’ such that e —ncc €.

In our system, we simulate simple casts [3,'4] as an instance of cast intersections e : ¢ N...MN ¢y, when
n = 1. For example, the expression 1 : Int = Dyn can be represented in our system as 1: (& Int * : Int =/
Dyn ?). The diferent representations are comparable using the equality relation =, (defined in Appendix
[A). In fact, our system is an extension to the GTLC, and each program in the GTLC is typed with the
same type in our system, and its evaluation produces the same result. The proofs for the following
properties are in Appendix [B]

Conservative Extension to the GTLC: If ¢ is annotated with only simple types and T is a simple type:
1. thenT'Fge:T < T'tpge:T.

2. thenI'tece~ e : T < I'trcce~~ey: T and e] =, e5.

3. if Ckecer : T, Thnccex: T and e =¢ €3 then e] —>cc €] <= €2 —>ncc €5, and €] = €}.

10

Gradual Intersection Types

Acknowledgements

We thank Jeremy Siek and Ronald Garcia for providing clarifications on gradual typing. We also thank
the anonymous ITRS reviewers for their comments and suggestions, which helped us improve the quality
of this paper. This work is partially funded by FCT within project Elven POCI-01-0145-FEDER-016844,
Project 9471 - Reforgar a Investigacdo, o Desenvolvimento Tecnoldgico e a Inovagdo (Project 9471-
RIDTI) and by Fundo Comunitdrio Europeu FEDER.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Steffen van Bakel (1995): Intersection type assignment systems. Theoretical Computer Science 151(2), pp.
385 — 435, doii10.1016/0304-3975(95)00073-6. 13th Conference on Foundations of Software Technology
and Theoretical Computer Science.

Giuseppe Castagna & Victor Lanvin (2017): Gradual Typing with Union and Intersection Types. Proc. ACM
Program. Lang. 1(ICFP), pp. 41:1-41:28, doi310.1145/3110285!

Matteo Cimini & Jeremy G. Siek (2016): The Gradualizer: A Methodology and Algorithm for Generating
Gradual Type Systems. SIGPLAN Not. 51(1), pp. 443-455, doi:10.1145/2914770.2837632.

Matteo Cimini & Jeremy G. Siek (2017): Automatically Generating the Dynamic Semantics of Gradually
Typed Languages. SIGPLAN Not. 52(1), pp. 789-803, doi:10.1145/3093333.3009863.

M. Coppo & M. Dezani-Ciancaglini (1980): An extension of the basic functionality theory for the A-calculus.
Notre Dame J. Formal Logic 21(4), pp. 685-693, doi:10.1305/ndjfl/1093883253.

M. Coppo, M. Dezani-Ciancaglini & B. Venneri: Functional Characters of Solvable Terms. Mathematical
Logic Quarterly 27(2-6), pp. 45-58, doi:10.1002/malq.19810270205.

Alain Frisch, Giuseppe Castagna & Véronique Benzaken (2008): Semantic Subtyping: Dealing Set-
theoretically with Function, Union, Intersection, and Negation Types. J. ACM 55(4), pp. 19:1-19:64,
doi:10.1145/1391289.1391293.

Ronald Garcia & Matteo Cimini (2015): Principal Type Schemes for Gradual Programs. SIGPLAN Not.
50(1), pp. 303-315, doii10.1145/2775051.2676992,

J. Roger Hindley (1997): Basic Simple Type Theory. Cambridge Tracts in Theoretical Computer Science,
Cambridge University Press, doi:10.1017/CBO9780511608865.

R. Hindley (1969): The Principal Type-Scheme of an Object in Combinatory Logic. Transactions of the
American Mathematical Society 146, pp. 29—-60. Available athttp://www. jstor.org/stable/1995158|

T. Jim (1995): Rank 2 Type Systems and Recursive Definitions. Technical Report, Cambridge, MA, USA.
A.J. Kfoury & J. B. Wells (1999): Principality and Decidable Type Inference for Finite-rank Intersection
Types. In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL *99, ACM, New York, NY, USA, pp. 161-174, doi:10.1145/292540.292556.

AJ. Kfoury & J.B. Wells (2004): Principality and type inference for intersection types using expansion
variables. Theoretical Computer Science 311(1), pp. 1 — 70, doii10.1016/j.tcs.2003.10.032.

Robin Milner (1978): A theory of type polymorphism in programming. Journal of Computer and System
Sciences 17(3), pp. 348 — 375, doi:10.1016/0022-0000(78)90014-4.

John C. Reynolds (1997): Design of the Programming Language Forsythe, pp. 173-233. Birkhduser Boston,
Boston, MA, doii10.1007/978-1-4612-4118-8_9.

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini & John Tang Boyland (2015): Refined Criteria for
Gradual Typing. In: Ist Summit on Advances in Programming Languages (SNAPL 2015), Leibniz Interna-

tional Proceedings in Informatics (LIPIcs) 32, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, pp. 274-293, doii10.4230/LIPIcs.SNAPL.2015.274/

http://dx.doi.org/10.1016/0304-3975(95)00073-6
http://dx.doi.org/10.1145/3110285
http://dx.doi.org/10.1145/2914770.2837632
http://dx.doi.org/10.1145/3093333.3009863
http://dx.doi.org/10.1305/ndjfl/1093883253
http://dx.doi.org/10.1002/malq.19810270205
http://dx.doi.org/10.1145/1391289.1391293
http://dx.doi.org/10.1145/2775051.2676992
http://dx.doi.org/10.1017/CBO9780511608865
http://www.jstor.org/stable/1995158
http://dx.doi.org/10.1145/292540.292556
http://dx.doi.org/10.1016/j.tcs.2003.10.032
http://dx.doi.org/10.1016/0022-0000(78)90014-4
http://dx.doi.org/10.1007/978-1-4612-4118-8_9
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.274

Pedro Angelo & Mrio Florido 11

A Additional Definitions

Syntax

Types T ::= Int |Bool |T —T |TN...NT

Expressions ¢ ==x' |Ax:T .e|ee|n|true|false

Cx:'Nn..NT,Fns e: T

T-ABS
I'tsAx:TiN...NT,.e:TTN...NT,, > T
Ihaser:TiN...NT, - T Thpser:TiN...NT, x:T'el TCT
T-APP T T-VAR
I'baserex: T I'krgx' @ T
Iox:Tikas e: T IM'Fase: Ty - Thnse: T,
itns T-ABS’ ns 1 ns nT-GEN
I'bsAx:TiN...NT,.e:T;—T I'kFrse:TiN...NT,
I'krse:TiN...NT,
s ! " T-INST —— T-INT T-TRUE
I'brse: T; I'brsn:Int I' Fg true : Bool

T-FALSE

I' s false : Bool

Figure 7: Static Intersection Type System (Fnys)

12 Gradual Intersection Types

<C ‘T :>l T cl)cl’ _ <c>cl’ ‘T :>l T cl’
(blame T; Tg 1 "Y' = blame Ty Ty 1

<®Tcl’>cl:®Tcl

isArrowCompatible(c) = Bool ‘

isArrowCompatible(c : Ty — Tiz2 =T = Ty d) = isArrowCompatible(c)

isArrowCompatible(@ (T — T») ') = True

separatelntersectionCast(c) = (c,c) ‘

separatelntersectionCast(c : Ty =t Cl) =(@T .=l Cl,c)

separatelntersectionCast(@ T)= (@ T ', & T)

breakdownArrowType(c) = (c,c) ‘

breakdownArrowType(2 Ty — Ti2 Ty = T = T — T Cl) =
(@I T =" T @ T Tn=Tn)

breakdownArrowType(3 Ty = T,)= (@ T, /@ T,)

simulateArrow(cy,...,cn) = ((c11,¢12,¢),- -, (Cm1, Cm2,C})))
(ch,...,ch) = filter isArrowCompatible (cy,...,cp)
((c{,ci), ..., (¢l ¢5)) = map separatelntersectionCast ((c})°,...,(c)°)

((c11,¢12)5- -+ (Cm1,cm2)) = map breakdownArrowType ((c{>1 yeers <cf>m)

simulateArrow(cy,...,cp) = ((c11,¢12,¢1), -, (Cm1,Cm2,C),)

Figure 8: Definitions for auxiliary semantic functions

Pedro Angelo & Mrio Florido 13

getCastLabel(c) = cl ‘

getCastLabel(c: Ty =' T, <) = cl
getCastLabel (blame T; Ty 1 ') = cl

getCastLabel (@ T <) = cl

sameCastLabel(c,c) = Bool ‘

sameCastLabel(cy,cy) = getCastLabel (c)) ==
sameCastLabel(cy,cp) = getCastLabel (c;) ==

sameCastLabel(cy,c,) = getCastLabel(c)) == getCastLabel (c;)

joinCasts(c,c) =c¢ ‘

joinCasts(c: Ty =' T <! ,¢') = joinCasts(c,c’) : Ty =' T, !
joinCasts(blame T; Tr 1 Cl,c) = blame T; T 1 !

joinCasts(@ T ', ¢) = (c)!

mergeCasts(e) = e ‘

(c),...,c)) = [joinCast y x| x < (ci1y---,C1m), ¥ < (€215 ,Con);

sameCastLabel y x && Frcry: (T, Tr) && Focr x: (T, Tf) && Ty == T}.]

mergeCasts(e:ciyN...Ncpp:caN...Ncy) =e:ciN...Nc,

Figure 9: Definitions for auxiliary semantic functions

14 Gradual Intersection Types

Type Precision

hLET LET, hLEeT - T,CT,
DynC T TCT i - THhCh =Ty n..NT,CT/N...NT,
TCT, ---TCT, LET - - T,CT
TCTiN...NT, niNn..NT,C T
Cast Precision
cCd T CTl D©CT cCd Fperd:(TT) TCT TCT
c:hi='ndcd .11 c:Ti='BoCd
cCd Frcrc: (T, T) TCT TCT Facr e (Tp, TF) T,CT/ Tr C Ty
cCd: ="' c C blame T} T}, e
TCT

gTrdC T

Expression Precision

TCT TCT eCé e1 Cé) e Cé)
xTExTI Ax:T.eCAx:T' .¢ erer el) nCn true C true
elCé aCdy---c,CC
= 1=¢1 n==uty
false C false e:ciN...Nc, Ce :ciN...Nc,

eCe Thrpece:T bocrer: (TV,Ty) - Facren: (T,,T,) TiN...NT,CT
e:ciN...Nc, Cé

eEe’ I'brcce: T l—mcjcli(Tl/,Tl)-" I—QC[CHI(];;,TH) TCTiNn...NT,

eCé:cinN...Ncy,

Fl—mcceZT TET,

e C blamer: 1

Figure 10: Precision (C)

Pedro Angelo & Mrio Florido 15

Equality of Casts

T

X=¢X n=¢n true =, true false =, false blamer | =, blamer |
/ / / o
e=c¢ er =ce€ e =€ e=c¢
Ax:T.e=.Ax:T.¢ e1er=c¢) e, e:Ce’:(QTd)
e=.¢:c
blamer | =, e : (blame T' T [') ei='Dh=:(c:T1='T"

Figure 11: Equality of Casts

16 Gradual Intersection Types

B Proofs

Lemma B.1 (Consistency reduces to equality when comparing static types). If Ty and T, are static types
thenT) =T, <—= T\ ~ 1.

Proof. We proceed by structural induction on 7.

Base cases:
o T =Int.
— If Int = Int then by the definition of ~, Int ~ Int.
— If Int ~ Int, then Int = Int.
e 71 = Bool.
— If Bool = Bool then by the definition of ~, Bool ~ Bool.
— If Bool ~ Bool, then Bool = Bool.
Induction step:
o 71 =T — Ty
- If T1y — Tip = T — Tap, for some 75 and Ty, then 71 = 151 and 71, = T»,. By the induction
hypothesis, 711 ~ 151 and T1» ~ T»,. Therefore, by the definition of ~, 7] — Tip ~ 1oy — Tho.
— If 71y — T1p ~ T, then by the definition of ~, T, = 151 — T»; and 111 ~ T»; and Tjp ~ 7.
By the induction hypothesis, 711 = T»; and Ti, = T»,. Therefore, 71y — T12 = To1 — T
o =T N...NTiy.

-IfThN..NT, =T, then Ay ... T, . Th=T1N...NTh,and T} =T»; and ... and Ty, = T»,,.
By the induction hypothesis, 711 ~ 7> and ... and Tj, ~ T5,. Therefore, by the definition of
~TiuN..NTy,~T1N...NT5,.

- If 1 N...NT, ~ 15, then either:

x* 3. Ty . Th =T1N...NTh, and Ty ~ T3; and ... and Ty, ~ T,. By the induction
hypothesis, 711 = T»; and ... and Ty, = Ty,. Therefore, ;1 N...N Ty, = To1 N ... N Ty

* Tiy~Trand...and 71, ~ T>. By the induction hypothesis, 71 = 7> and ... and Ty, = T>.
AshN..NTh, =1, then T N...NT, =T5.

]
Lemma B.2 (Type preservation of —nc¢y). If ¢ —>ncy ¢ and Focp ¢ @ (17, Tr) then Focp ¢ (Tp, T).

Proof. We proceed by induction on the length of the derivation tree of — ;.

Base cases:

e Rule E-PushBlameCl. If Fnc; blame T Ty 11 1 : Ty =" T, % : (T;, T») and by rule E-PushBlameCl,
blame T] TF ll chy : T] :>12 T2 ch —NCI blame T[T2 ll ch . then by rule T—BlameCI, l_ﬂCI blame T[T2 ll chy .
(11, T7).

e Rule E-IdentityCI. If ey evl : T =/ T ¢! : (T;,T), then by rule T-SingleCL, Frc; evl : (T3, T). By
rule E-IdentityCI, ¢cvl : T =T o evl.

e Rule E-SucceedCL If Fnc; cvl : G = Dyn 't : Dyn =2 G 2 : (T;,G), then by rule T-SingleClI,
Fncr evl : (T7,G). By rule E-SucceedCI, cvl : G =h Dyn ch :Dyn =h G 5 evl.

Pedro Angelo & Mrio Florido 17

e Rule E-FailCL If Fnc; evl : Gy =" Dyn < : Dyn =" G, % : (T;,G,), and by rule E-FailClI,
evl s Gy =h Dyn cly . Dyn =b G,y ¢ — o blame Ty G, 1, ' then by rule T-BlameCl, Fnq¢y
blame T; Gy I, ' : (T, Gy).

e Rule E-GroundCl. If -n¢; evl : T =/ Dyn ¢ : (T;, Dyn) then by rule T-SingleCI, Fnrc; evl : (17, T).
By rule E-GroundCl, cvl : T =! Dyn vl T=G:G=! Dyn < then by rule T-
SingleCl, Frcy evl : T = G : G =! Dyn <! : (T, Dyn).

e Rule E-ExpandCL If Frc; evl : Dyn =! T ¢/ : (T, T) then by rule T-SingleCI, ¢y cvl : (T7, Dyn).
By rule E-ExpandCI, ¢vl : Dyn =! T </ —s ¢y evl : Dyn =! G </ : G =! T “, then by rule T-
SingleClL, Frcyevl : Dyn =!G G=!T <. (13, T).

Induction step:

e Rule E-EvaluateCL If Frcy ¢ : Ty = T» ¢ : (T3, T») then by rule T-SingleClL, -~¢; ¢ : (77, T1). By rule
E-EvaluateCI, ¢ —>n¢y ¢’. By the induction hypothesis, Frcy ¢’ @ (77, T1). By rule E-EvaluateCl,
c:T ="' —ncr i Ty = Tr 9, then by rule T-SingleCL ey ¢ : Ty =! T, 2 (T1,).

O]

Lemma B.3 (Progress of —>ncy). If T bncy ¢ : (T;, Tr) then either c is a cast value or there exists a ¢’
such that c —sncr .

Proof. We proceed by induction on the length of the derivation tree of Fr¢y ¢ : (T, 7).

Base cases:
e Rule T-BlameCl. As bn¢y blame Ty T 1 < (T;,Tr) and blame T; Tr | <l is a cast value, it is proved.
e Rule T-EmptyCI. As Fre; @ T < : (T,T) and @ T ! is a cast value, it is proved.

Induction step:

e Rule T-SingleCL. If -rcy ¢ : Ty =! T ¢/ : (T7,T») then by rule T-SingleCl, ¢y ¢ : (77, T1). By the
induction hypothesis, either c is a cast value or there is a ¢’ such that c —n¢y ¢’. If ¢ is a cast
value, then ¢ can either be of the form blame T; Tr [¢!, in which case by rule E-PushBlameCI,
blame Ty Tp 1} ' : Ty =2 T 2 — ¢y blame Ty T> 1) ' or ¢ is a cast value 1. If ¢ is a cast value
1 then ¢ : Ty =' T» ¢l can be of one of the folowing forms:

- cvl:T=!T¢. Then by rule E-IdentityCI, cvl : T =t 50 evl.
— cvl: G =" Dyn " : Dyn =" G 2. Then by rule E-SucceedClI, cv1 : G =" Dyn I : Dyn ="
G ch —rNCI cvl.
- cvl: Gy = Dyn Y : Dyn =% G, 2. Then by rule E-FailCl, ¢v1 : G| =" Dyn <t : Dyn ="
Gy ch —nct blame T; G, [clr,
— ¢vl : T =! Dyn . Then by rule E-GroundCL cvl : T =! Dyn & —c;evl : T =G <
G ='Dyn“.
— ¢vl : Dyn=! T !, Then by rule E-ExpandCI, ¢vl : Dyn =/ T < —c;cvl : Dyn =/ G < :
G='T¢d,
If there is a ¢’ such that c —¢;y ¢, then by rule E-EvaluateCL, ¢ : Ty =/ T» €1 —sqcr ¢’ : Ty = T “L.
O

18 Gradual Intersection Types

Conservative Extension: If e is fully static and T is a static type, then'Fnge: T <= I'tnge: T.
Monotonicity w.r.t. precision: If 'Frge:T ande' Cethen'Fnge : T and T' C T.

Type preservation of cast insertion: If TG e: T thenT'Frcce~ e :TandThpec e @ T.
Monotonicity of cast insertion: If I't-ncc e ~ €| : T and T’ e €2 ~~ €, : T and e T e; then €] C é.
Conservative Extension: If e is fully static, then e —ng e’ <= e —>ncc €.

Type preservation: If ' -ncce:T1N...NT, and e —>ncc € then T Frcc e’ : Ty N...N T, such that m < n.
Progress: If I' Frcc e : T then either e is a value or there exists an ¢’ such that e —sncc €.

Theorem B.1 (Conservative Extension). Depends on Lemma If e is fully static and T is a static
type, thenl'tFnse: T < I'tqge:T.

Proof. We proceed by induction on the length of the derivation tree of g and k¢ for the right and left
direction of the implication, respectively.

Base cases:
e Rule T-Var.
-~ IfTFqgx! :T,thenx:T' €Tand T C T'. Therefore, I' g x! : T.
- IfTFqgx? :T,thenx:T' €T and T C T'. Therefore, I'rge’ : T.
e Rule T-Int.
- IfI'Fagn:Int, then I' g n: Int.
— IfI'tqgn:Int,then ' Frg n: Int.
e Rule T-True.
— If I'" g true : Bool, then I' b true : Bool.
— If ' g true : Bool, then I Fng true : Bool.
e Rule T-False.
— If ' Fng false : Bool, then T - false : Bool.
— If I"'Fng false : Bool, then I g false : Bool.
Induction step:
e Rule T-Abs.

-IfTtsAx:-TiNn..NT,.e:T1N...NT, =T, thenT,x:T1N...NT, Fas e : T. By the
induction hypothesis, I',x: Ty N...NT, Fnrg e : T. Therefore, T'Frg Ax:T1N...NT, . e:
hnn..NnT,—T.

-IfTtgAx:-TiN...NT, .e:TiN...NT, - T,thenT,x: TyN...NT, Fng e: T. By the
induction hypothesis, I')x: Ty N...NT, bns e : T. Therefore, CFns Ax: T1N...NT, . e:
nn..NnT,—T.

e Rule T-Abs’.

-IfTFasAx:T1N...NT,.e:T; — T, then I',x : T; Fng e : T. By the induction hypothesis,
I',x:Titnge:T. Therefore, ' Frg Ax:TiN...NT,.e: T —T.

-k Ax:TiN...NT,.e:T;— T, then ', x: T; Fng e : T. By the induction hypothesis,
Ix:T:Fnse:T. Therefore, T Fas Ax:T1N...NT, .e: T, —T.

e Rule T-App.

Pedro Angelo & Mrio Florido 19

— IfT'Fnserex:Tthenl'bqge :TiN...NT, — T and ' g er : T1N...NT,. By the induction
hypothesis, 'Frge; :T1N...NT, - T and I' Frg ez : T N...NT,. By the definition of >,
nn..NT,—-Tr>TiN...NT, = T. By the definition of ~, Ty N...NT, ~T1N...NT,.
Therefore, ' ng e ex: T.

- IfT'Frgerex:Tthen'bFqge : PM, PM>T1N...NT, > T, Fl—mG€2ZTl’ﬂ...ﬁTn/
and T/N...NT, ~TiN...NT,. By the definition of >, PM =TiN...NT, — T, therefore
I'tgey:TiN...NT, = T. ByLemma T'N...NT, =TiN...NT,, and therefore
I'Fhgex: TiN...NT,. By the induction hypothesis, I'~se; : T1N...NT, — T and
I'baser:TiN...NT,. Therefore, I'Fqgejer: T.

e Rule T-Gen.

- IfTkqse:TiN...NT,thenT'~ge: T and ... and ' Fng e : T,,. By the induction hypothesis,
I'Frge:Tyand ... and ' e : T,. Therefore, I'rge:T1N...NT,.

- IfI'Fpge:TiN...NT,then'Frge: Ty and ... and ' e : T,,. By the induction hypothesis,
I'base:Tyand ... and I'qg e : T,,. Therefore 'Frge: TiN...NT,.

e Rule T-Inst.

- IfThknge: T then T Fage: TyN...NT,, such that T; € {Ty,...,T,}. By the induction
hypothesis, 'Frge: TiN...NT,. As T, € {T1,...,T,},then'Frge: T,

-IfT'kpge:Tithen T'qge: TyN...NT,, such that T; € {Ty,...,T,}. By the induction
hypothesis, T'Fnse: T1N...NT,. AsT; € {T1,..., T}, then T kg e: T,

O
Theorem B.2 (Monotonicity w.r.t. precision). If TFrge: T andeé CethenT Fpge : T and T' T T.
Proof. We proceed by induction on the length of the derivation tree of ' e : T.

Base cases:

e Rule T-Var. f THrgx? : T and xT Cx7, then T g xT : T and T' C T.

Rule T-Int. If I'Fng n: Int and n C n, then I' Fqg n : Int and Int C Int.

Rule T-True. If I' g true : Bool and true C true, then I' g true : Bool and Bool C Bool.

Rule T-False. If I' -~ false : Bool and false T false, then I g false : Bool and Bool C Bool.
Induction step:

e Rule T-Abs. If ' Ax:TiN...NT, .e:TiN...NT, - Tand Ax: T{N...NT, . € C Ax:
T'N...NT, . e, then by rule T-Abs, I',x: 1 N...NT, Fng e : T, and by the definition of C,
T/N...NT, CTiN...NT, and € C e. By the induction hypothesis, I',x: T/ N...NT, Fag e : T’
and 7" C T. By rule T-Abs, T Frg Ax: T{N...NT, . ¢ : T/N...NT, — T', and by the definition
of C,T/N..NT, - T'CThn..NT,—~T.

e Rule T-Abs’. If ' Ax:TiN...NT,.e:T;—»Tand Ax:T{N...NT, . TAx:TiN...NT, . e,
then by rule T-Abs’, I',x: T; g e : T, and by the definition of C, 7/N...NT, T Ty N...NT, and
¢’ C e. By the induction hypothesis, I',x: T/ g € : T" and T’ C T. By rule T-Abs’, I' g Ax :
T/N...NT, .e : T/ — T', and by the definitionof C, 7/ - T'C T; — T.

20 Gradual Intersection Types

e Rule T-App. If 'k ej ex: T and €] €5 C e e, then by rule T-App, I'-ng ey : PM, PM>T;N...N
Ty, —T,TFrgery:ToyN...NThy,and TN ...NTp, ~ T N...N Ty, and by the definition of C,
¢, Ce; and €}, C e;. By the induction hypothesis, I' Frg €| : PM’ and PM’ T PM and PM' > T}, N
.NT{, > T andTkrg ey : Ty N...NT, and Ty, N...NTy, CThiN...N Ty and Ty, N...NTy, ~
T/, N...NTJ,. By the definition of C and >, 7{,N...NT{, > T'C T1;N...NT, — T, and
therefore, T' C T. AsI'tng € €, : T', it is proved.

e Rule T-Gen. If ' e: Ty N...NT, and €' C e, then by rule T-Gen, I'Frge: Ty and ... and '
e : T,. By the induction hypothesis, I't-ng €' : T{ and T/ C Ty and ... and ' g €' : T, and T, C T,,.
Then by rule T-Gen, ' g € : T{ N...N T, and by the definition of C, 7/ N...NT, C T1N...NT,.

e Rule T-Inst. If ' e: T; and €' C e, then by rule T-Inst, ' Frg e : Ty N...N T, such that T; €
{T1,...,T,}. By the induction hypothesis, T'Fng ¢ : T/N...NT, and T/ N...NT, T T1N...NT,.
Therefore, by rule T-Inst, I' g €' : T and by the definition of C, 7/ C T..

O]

Theorem B.3 (Type preservation of cast insertion). If T'Frge: T thenTU'Frcce~~ e : T andTpec €
T.

Proof. We proceed by induction on the length of the derivation tree of ' Frg e : T.

Base cases:

e Rule T-Var. If T'Frg x : T, then by rule T-Var, x: T’ € Tand T C T'. By rule C-Var, I' Fncc xT ~s
x! : T and by rule T-Var, T e xT : T

e Rule T-Int. As I"'ng n: Int, then by rule C-Int, I'-ncc n ~~ n : Int and by rule T-Int, I' -qcc n 2 Int.

e Rule T-True. As I' Fng true : Bool, then by rule C-True, I Fncc true ~> true : Bool and by rule
T-True, I" Frcc true : Bool.

e Rule T-False. As I" -ng false : Bool, then by rule C-False, I" -r¢c false ~ false : Bool and by rule
T-False, I' Fncc false : Bool, it is proved.

Induction step:

e Rule T-Abs. If TFrg Ax:T1N...NT, .e:TyN...NT, — T then by rule T-Abs, I',x: 71 N...N
T, FnG e : T. By the induction hypothesis, I',x : Ty N...NT, Facce~¢€ : T and T, x: Ty N...N
T,tncce :T.Byrule C-Abs, T'ncc Ax:T1N...NT, e~ Ax:T1N...NT,.¢ - TyN...NT,, > T
and by rule T-Abs, U'Frcc Ax: Ty N...NT, . ¢ :TyN...NT, = T.

e Rule T-Abs’. If kg Ax: T1N...NT, . e:T; — T then by rule T-Abs’, I''x: T kg e : T.
By the induction hypothesis, I',x: T; Fncc e ~ € : T and T',x : T; Frec € : T. By rule C-Abs’,
ItaccAx:TiN..NT, e~ Ax:TiN...NT, . € :T; — T and by rule T-Abs’, I Frcc Ax :
hn..NT,.e¢:T,—=T.

e Rule T-App. If ' eq €5 : T then by rule T-App, ' g e1 : PM, PM>TiN...NT, > T,T' g
er:T{N...NT,and T{N...NT, ~ Ty N...NT,. By the induction hypothesis, I -rcc e; ~ €] : PM
and T'tnec e : PM, and T Fpecep ~» €5 TV N...NT, and I' Frcc €5 : T/ N ...NT,. Therefore,
by rule C-App, I' Frcc €1 e2 ~» €] €5 : T. By the definition of < and S, S, e < e, by rule T-
Castlntersection, U'Frcc e : Ty = TN...NT, = T and T brec €y : TiN...NT,. By rule T-App’,
Threc €] €5 :TN...NT and then by the properties of intersection types (modulo repetitions),
Ihnccel e5:T.

Pedro Angelo & Mrio Florido 21

e Rule T-Gen. If 'nge: Ty N...NT, then by rule T-Gen, 'Frge: Ty and ... and ' e : T;,. By
the induction hypothesis, ['Frcce~ € : Ty and ... and ' Frcc e~ €' : T, and T e € 2 Ty and
...and T Free € o T,. By rule C-Gen, 't e ~ € : Ty N...N T, and by rule T-Gen, I' ¢ € :
nin...NT,.

e Rule T-Inst. If ' e : T; then by rule T-Inst, T Frg e : Ty N ...N T, such that 7; € {T1,...,T,}.
By the induction hypothesis, I'Frcc e~ e :TiN...NT, and ' Frcc e : Ty N ...NT,. By rule
C-Inst, I'ncc e ~ €' : T; and by rule T-Inst, ' Frcc e : T,

O]

Theorem B.4 (Monotonicity w.r.t precision of cast insertion). If I' Fncc er ~ €| : Ty and T Frec ep ~
¢y:Thande) C ey then ¢} C &, and Ty C T.

Proof. We proceed by induction on the length of the derivation tree of I' e €1 ~~ e’l :T.

Base cases:

e Rule C-Var. If I' e x! ~» xT : T and T Fncc KT s X T ,and xT C xT/, then xT C xT" and
TCT.

e Rule C-Int. f I'rccn~n:Int,I'trccn~ n:Int and n C n, then n C n and Int C Int.

e Rule C-True. If I' Fr¢c true ~ true : Bool, I bncc true ~ true : Bool and true C true, then true C
true and Bool C Bool.

e Rule C-False. If I Fq¢c false ~~ false : Bool, I -n¢c false ~~ false : Bool and false C false, then
false C false and Bool C Bool.

Induction step:

e Rule C-Abs. f I'FrccAx:TiiN...NTy, . e~ Ax: T N...NTip .e’l :Thn...NTy, — T and
I'taccAx TN ...NDy . ex~~Ax: T N...NTy, .eé:Tzlﬂ...ﬁTzn—}Tz and Ax: Ty N...N
T, .e1tCTAx:T1N...ND, . e then by rule C-Abs, I',x: 711N ... N Ty, Frce er W(,’/] : 71 and
Cx:ToN...00, Face e2 Welz : T> and by the definition of C, 71 N...NT, T ThyN...NT,
and e; C ey. By the induction hypothesis, ¢} C ¢} and T; C T». Therefore, by the definition of C,
/l)CZT]]ﬂ...ﬂTln.ell CAx:DiN...ND, .eéandTllﬂ...ﬂTln—>T] ChHhiNn...NhL, —T.

e Rule C-Abs’. If T'pcc Ax: Ty N...NTy, . eg ~Ax: T N...NTy, . ell : Ty; — Ty, such that
Ti; € {Tlly---,Tln}, andkpcc Ax: oy N...NTay cep~~Ax:To1N...NT, . 6/2 : To; — T», such
that Tp; € {Ta1,...,Tan}, and Ax: 11 N...NTy, . e EAx: Ta1N...N Ty, . e; then by the definition
of C-Abs’, I',x : T} Fnec e1 ~ €] : Ty and T',x : Th; Fnee €2 ~~ €5 2 T and by the definition of C,
T N...NT, CTh1N...NT,, and e| C e, and therefore T1; C T5;. By the induction hypothesis, e’1 C
¢, and Tj C T». Therefore, by the definition of C, Ax: 711 N...NT1, . €] T Ax: T N...NTy, . €5
and T, =T CTy — T>.

e Rule C—App. Itfr '_QCC €11 é12 > 6/1,1 6,1/2 : T1 andl“l—mcc €1 €22 ~> 6/2,1 6,2,2 : T2 and e e Ceren
then by rule C-App, I'Fncc 11 ~» €] : PMy and PM > T N...NTy, — Ty and T'Frce en ~ €,
lllﬁ...ﬂTlln and Tlllﬂ...ﬁTllnNTllﬁ...ﬂTln and PMy < Syyand T N...N Ty, — T1 181 and

Tl,l ﬂ...ﬂT{n <JSizand T N...N Ty, <S4 and Sy, Sio, elll — 6/1’1 and Sy3, Si4, 9/12 — 6/1/2 and
I'Frce ez ~ 8/21 :PMy and PMr>Th1N...NT, — T and I' e €22 ~~ 6,22 : Tzll n.. .ﬂTz/n and
Télﬂ...ﬂTZInNTZlﬂ...ﬂTznandPA/bﬂSz] andTmﬂ...ﬂTzn—>T2ﬁngandTélﬂ...ﬂTz’nngB

and Tr1 N...NT, < So4 and Soy, Sao, €5, < €5, and Sa3, S, €5, < €5,. As, by the definition of C,

22 Gradual Intersection Types

ei11 C ey and e3 C ey then by the induction hypothesis, ¢}, C €5, and PM; C PM, and ¢/, C ¢},
and T{; N...NT{, C T, N...NT;,. By the definition of >, we have that PM; =Ty;N...NT1, — T;
and PMr =11 N...NThy, =T andso Ty N...NT, =TI CThyN...NT, — T, and therefore by
the definition of C, 71 C T». As by the definition of <, S, S, e < e and C, ¢, C €5, and ¢/, C €5,
then by the definition of C, ef, €, C €}, ¢}, and T} C T>.

e Rule C-Gen. If T'Frcc ey~ € i TiiN...NT, and T'nec ep v €5 - ThyN...NThy, and e) C e
then by rule C-Gen, 'rcc e ~ €} : T and ... and Tqcceg ~> €] 2 Ti and T ke e ~ € 2 Tay
and ... and I' Frec ep ~> €) : Tr,. By the induction hypothesis, €] C ¢}, and Tj; C T35 and ... and
T1, C T5,,, and therefore by the definition of &, 711N ... NT,, T ThyN...NTy,.

e Rule C-Inst. If I'Fncc e ~» €] : Th; and I e ex ~» € : Tr; and e; T e; then by rule C-Inst,
Ihaccer ~ e :TiiN...NTy, and T e ep ~ €5 2 Ta N ... N Ta,. By the induction hypothesis,
i Ceésand T11N...NT1, T T N...N Ty, and therefore, by the definition of T, Tj; T T»;.

O]

Corollary B.4.1 (Monotonicity of cast insertion). Corollary of Theorem IfT Frcc ey ~ €] 2 Ty and
T'hacc e~ €, :Thand ey C e; then €] C é,.

Theorem B.5 (Conservative Extension). If e is fully static, then e —sns € <= e —>ncc €.

Proof. We proceed by induction on the length of the derivation tree of —>~g and —>~¢¢ for the right
and left direction of the implication, respectively.

Base cases:

e Rule E-AppAbs. If (Ax:T1N...NT, .e) v—ns [x—=v]jeand (Ax: Ty N...NT, . e) v —ncc
[x — v]e, then it is proved.

Induction step:

e Rule E-Appl.
- Ife; o —>ns €] ez then by rule E-Appl, e; —>ng €. By the induction hypothesis, e; —>ncc
¢. Therefore, by rule E-Appl, e; e, —rncc €] e2
- If e; 2 —>ncc €] ep then by rule E-Appl, e; —>~cc €). By the induction hypothesis,
e; —ns €}. Therefore, by rule E-Appl, e; e —rns €] e2
e Rule E-App2.
- Ifvi eo —>ng vy €, then by rule E-App2, e —>ns €5. By the induction hypothesis, e2 —>ncc
¢,. Therefore, by rule E-App2, vi e; —rncc Vi €
- If vi &2 —>ncc vi €, then by rule E-App2, e —>ncc €5,. By the induction hypothesis,
€2 —ns €5. Therefore, by rule E-App2, vi e2 —ns Vi €5

O]

Theorem B.6 (Type preservation). Depends on Lemmas and IfTkacce:TiN...NT, and
e —ncce thenT'Facce :TiN...NT, such that m < n.

Proof. We proceed by induction on the length of the derivation tree of —n¢c.

Base cases:

Pedro Angelo & Mrio Florido 23

e Rule E-PushBlamel. If I" -ncc blamer, | e; : Ty and blamer, | e2 —ncc blamer, [then by rule
T-Blame, I'' -ncc blamer, | : Ty.

e Rule E-PushBlame?2. If I" Frcc e blamer, | : Ti and ey blamer, | —>ncc blamer, [then by rule
T-Blame, I' -ncc blamer, | : Ty.

e Rule E-PushBlameCast. If I' Fqcc blamer 1 :ciN...N¢c, : TiN...NT, and blamer [: c1N...N
cn —rncc blamer,n_r, | then by rule T-Blame, I' -ncc blamern 7, [: T1N...NT,.

e Rule E-AppAbs. If I'rec (Ax:T1N...NT, . e) v: T then either by rule T-App, I'Frcc Ax: 1N

.NT,.e:TyN...NT, = T orbyrule T-App’, I'Frcc Ax:T1N...NT, .e: Ty - TN...NT, —»T

andI'Fnecv:TiN...NT, (x does not occur in I'). Moreover, by rule T-Abs, [',x: Ty N...NT, Fnce

e:T.Byrule E-AppAbs, (Ax:T1N...NT, .e) v —>ncc [x — v]e. Toobtain ' Free [x—v]e: T, it

is sufficient to replace, in the proof of I',x: Ty N...N T, Frcc e : T, the statements x : 7; (introduzed

by the rules T-Var and T-Inst) by the deductions of I' r¢cc v : T; for 1 <i < n. (Proof adapted from
(5

e Rule E-SimulateArrow. If I'Frce (vi i evin...Newy) vo @ TizN ... N T, then by rule T-App’,
I'taceviievin...Nev,:TiN...NT,suchthatdiel.n. T, =T) > Tpand'Frecvo : T11N...N
Tu. AsTFaccvi tevin...Nevy : Ty N...N T, then by rule T-CastIntersection, I' -rcc vy : 7' N

..NT" and Frcgevy 2 (I, Th) and ... and Frey evy, @ (1, T,) such that {1y,...,L,} C{T/,....T"}
and1N...NL,=T{'N...NT," and n < [. For the sake of simplicity lets elide cast labels and blame
labels. By the deﬁnition of SimulateArrow, we have that ¢, = ¢ : T{; — T/, = T11 — Tip and ...
and ¢, =c) : T — T}y = Ty — Ty, for some m < n. Also, ¢y =@ Tyy : T = T/, and ...
and ¢, = @ Tml T =T andcip: @ T}, :T,=Tpand...andc,p =2 T, :T!, = T2
and ey ¢ ¢ (I, T, — T},) and ... and ey ¢, 2 (L, Ty — T),). As by rule T-Gen and T-
Inst Cknec vt I N...NT) and [N...N 1, = T” .N T/, then by rule T-CastIntersection,
I'Frce v .clﬂ...ﬂcm T, —»T,N...0T), —T,. AsbyruleTGenandTInstFl—mccvz TN

..N Ty and ey ey 2 (Th,T4,) and ... and Facr ¢ 2 (T, T,),,) then by rule T-Castlntersection,
TChnccvaieniN...0epr 2 T{;N...NT),. Therefore, byruleTApp ,Thace (viiein...ncy,) (va
ciiN...0ep) : TH,N...NT) 5. As I—ma ci2:(T{,,Ti2) and ... and Frcy e (T, Tnz), then by rule
T-CastIntersection, I' -rce (vi :e§N...N¢)y) (v2ictiNoNemt) teiaNecNem : TioN N Ty,
By rule E-SimulateArrow, (vi :cviN...Ncvy) va —nce (viteiN...Neyy) (vaieinnN...Nemr) -
c12M...Ncpyp, therefore it is proved.

e Rule E-MergeCasts. If I'Fnccv:ievinN...Nev, e N. ch Fl’ .NE, then by rule T-

CastIntersections, I'Faccvicevin. ﬂcvn Fin...NnE, and |—mc1 i (II,F)and ... and Fn¢y

't (L, Fyy) such that {I7,...,I)} g {F,....F} and nn..nh,=FRN...NF,and m <n. As

F Faccv:ievin...Ncv, : F1N...NF, then by rule T—CastIntersection, I'tacev:TiN...NT;

and ey evy 2 (I, Fy) and ... and Fney evy, @ (I, F,) such that {1y,...,1,} C {T,..., T} and I; N

ﬂln =TiN...NT, and n < I. By the definition of mergeCasts, I—na ¢ (I{,F]') and ... and

l_ﬂC] i (17, F”) and such that {f{,....I7} C{Ty,...,T;} and I} N ...ﬁlj’ TN ...ﬂT and

{F/',... F”}Q{Fl’, JFhyand F'N.. ﬂF” Fl’ﬂ...ﬂFj’andjglandjgm. ByruleT—Gen

and T-Inst, T Frcc v : T1 N...NTjand therefore by rule T-CastIntersection, I'rec viciN...N c;-’ :
Fl”ﬂ...ﬂFj”. By rule E—MergeCasts, vieviN...NevyiciN...Ncl, —accv:icin... ﬂc;.’.

e Rule E-EvaluateCasts. If 'Fnccv:iceiN...N¢, : Ty N...NT, then by rule T-Castlntersection,
Chnecv:T{N...NT, and Fner ey (I1,Th) and ... and Faer ey @ (1, Ty) and 1N ...N L, =T N
..NT,. By rule E-EvaluateCasts, c; —>~¢s ¢vy and ... and ¢, —>n~¢y ¢v,. By Lemmas and

24 Gradual Intersection Types

Facrevy : (I, Th) and ... and ey vy, : (1, T,). Therefore by rule T-CastIntersection, I' Frce
vieviN...Nevy: TiN...NT,. By rule E-EvaluateCasts, v:c;N...N¢c, —>ncc V:ieviN...Ncvy.

e Rule E-PropagateBlame. If I'Fncc v : blame T Ty [™ N ...Nblame T, T, I, ™ : Ty N...N T, and
by rule E-PropagateBlame v : blame T{ T Iy ™ N...Nblame T, T, I, ™ —>ncc blame,n) b,
then by rule T-Blame, I' bnce blame (1, a7,y i TiN ... 0T,

e Rule E-RemoveEmpty. If 'Frecv: o 71 ™ N...N@ T, ™ : Ty N...NT,, then by rule T-
CastIntersection, I' Frecv:TiN...NT, and Faey @ Ty ™ 2 (Th,Th) and ... and bney @ T, ™
(T, T,). Therefore, by rule E-RemoveEmpty, v: @ T} ™ N...NS T, ™ —rcc v.

Induction step:

e Rule E-Appl. There are two possibilities:

— IfIC'Frec ey ez : T, thenby rule T-App, I'nccer : T1N...NT, > T and T'Fnccer : T1N...N
T,. By rule E-Appl, e; —>n¢y €], so by the induction hypothesis, I'Frcc €] : TiN...NT, —
T. As by rule E-Appl, e; e; —>ncy €] €2, then by rule T-App, T Frcc €] e : T

— IfI'knccer ex: TinN...N T, then by rule T-App’, 'rccer : Ty — TioN...N Ty — T
and 'nccep : Ti1N...NTy,1. By rule E-Appl, e —cr e’l, so by the induction hypothesis,
I'kacc €] : Ty — TiaN...N Ty — Tp. As by rule E-Appl, e; e2 —>ncy €] €2, then by rule
T-App’, I'nce ell er:TipN---NTpy.

e Rule E-App2. There are two possibilities:

— IfI'nec vy ex: T, then by rule T-App, I' Frccvi : TiN...NT, = T and 'qccex: T1N...N
T,. By rule E-App2, e; —>n ¢y €5, so by the induction hypothesis, I' -rcc €5 : 1N ...NT,.
As by rule E-App2, vi e2 —>ncy v1 €5, then by rule T-App, I'rcc vy €5 : T

— IfTFrecvi €2 : TioN...N Ty, then by rule T-App’, I'rccvi : Tip — Tio N .. .N Ty — Thp
andI'Frcc e : TN ...N T, By rule E-App2, ex —>ncr e’2, so by the induction hypothesis,
T'kace €, 2 TiiN...NT,. As by rule E-Appl, vi e —>ncy v €5, then by rule T-App’,
I'tFrce vi 6’/2 TioN---NTpo..

e Rule E-Evaluate. If ' Frcce:ciN...Nc, : T1 N...NT,, then by rule T-CastIntersection, I" Fncc
e:T/N...NT,, Frcrer : Ty and ... and Fney ¢, @ T, and initialType(ci) N ... NinitialType(c,) =
T/N...NT,. By rule E-Evaluate, ¢ —>n¢y €/, so by the induction hypothesis, I' Frcc € @ T.
As by rule E-Evaluate, e : ¢c;N...N¢, —ncr € 2 c1N...N¢y, then by rule T-CastIntersection,
Fl—mcce’:clﬂ...ﬂcn hin...NT,.

O
Theorem B.7 (Progress). If U'tncc e : T then either e is a value or there exists an e’ such that e —sncc €'

Proof. We proceed by induction on the length of the derivation tree of I' Frcce: T.

Base cases:
e Rule T-Var. If ' e xT 2 T, then x7 is a value.
e Rule T-Int. If I' e n : Int then n is a value.
e Rule T-True. If I'n¢¢ true : Bool then true is a value.
e Rule T-False. If I' -ncc false : Bool then false is a value.

Induction step:

Pedro Angelo & Mrio Florido 25

e Rule T'Abs. fI'Frcc Ax:TiN...NT,.e:TiN...NT,, =T then Ax: Ty N...NT, . eis a value.
e Rule T'Abs’. If T'Frcc Ax:ThiN...NT, .e:T; - T then Ax: TyN...NT, . eis a value.

e Rule T-App. If ' Fncc e1 ex : T then by rule T-App, 'Frcc e : TN ...NT, =T and ' Frccer :
T1N...NT,. By the induction hypothesis, e is either a value or there is a e’l such that ey —rncc e’l
and e, is either a value or there is a €5 such that e; —>ncc €5. If e; is a value, then by rule
E-PushBlamel, (blamer, 1) ex —>ncc blamer, 1. If ey is a value, then by rule E-PushBlame2,
ey (blamery, 1) —sncc blamer, 1. If e) is not a value, then by rule E-Appl, e; e; —>ncc €] 2.
If e; is a value and e; is not a value, then by rule E-App2, v e —>ncc Vi e’z. If both ¢; and e;
are values then e; must be a A-abstraction (Ax: Ty N...NT, . e), and by rule E-AppAbs (Ax :
nin...NnT,. e) Vo —>rnce [xi—>V2]e.

e Rule T-Gen. If ' Frcc e: T1N...NT, then by rule T-Gen, ' Frcce: Ty and ... and U'Fqec e : Th,.
By the induction hypothesis, either e is a value or there exists an ¢’ such that e —s~cc €.

e Rule T-Inst. If ' ¢ e : T; then by rule T-Inst, I'Frcc e : Ty N...N T, such that 7; € {T1,...,T,}.
By the induction hypothesis, either e is a value or there exists an ¢’ such that e —>~cc €.

e Rule T-App’. If I'cceg ex: T1aN...N T then by rule T-App’, I'Fnccer : 111 — Ti2N...N T, —
Tp and I'Frcc ep : TN ...N T,;. By the induction hypothesis, e is either a value or there is a
e such that e, —ncc €] and e; is either a value or there is a €} such that e, —>ncc €. If ej is
a value, then by rule E-PushBlamel, (blamer, 1) ex —>ncc blamer, 1. If e; is a value, then by
rule E-PushBlame?2, e; (blamer, I) —>ncc blamer, 1. If e; is not a value, then by rule E-Appl,
e1 e2 —rncc €] ea. If e is a value and e; is not a value, then by rule E-App2, vi e2 —>ncc Vi €.
If both e; and e, are values then e¢; must be a A-abstraction (Ax: Ty — TN ...N T, — T. e),
and by rule E-AppAbs (QLX T —=TpN...NT, —= T . 6) V) —ncC [x — VQ]e.

e Rule T-CastIntersection. If I'F~cce:ciMN...N¢, : T1N...NT, then by rule T-Castlntersection,
I'Frcce: T{N...NT,. By the induction hypothesis, e is either a value, or there is an ¢’ such
that e —s~cc €. If e is a value, then either by rule E-EvaluateCasts, v:c;N...N¢, —ncc V-
cviN...Ncvy, or by rule E-PushBlameCast, blamer{m...an' l:ciN...Ncy —>nce blamern. nr, 1. If
there is an ¢’ such that e —~cc €', then by rule E-Evaluate, e : ¢;N...Nc, —ncc € :c1N...N0cy.

e Rule T-Blame. If I ¢ blamer [: T then blamer [is a value.
O

26 Gradual Intersection Types

Theorem B.8 (Instances of Intersection Types). We define the set S of instances of an intersection type
T as the set obtained by T < S. Given a type T, if T < S then every element of S is a simple type.

Proof. We proceed by structural induction on 7.

Base cases:
o T =Int. If Int < {Int} then Int is the only instance of Int and Int is a simple type.
e T = Bool. If Bool < {Bool} then Bool is the only instance of Bool and Bool is a simple type.
e T = Dyn. If Dyn < {Dyn} then Dyn is the only instance of Dyn and Dyn is a simple type.
Induction step:

o IT=T1—1.If - T, < {T]] —>T2,...,T1n—>T2} thenbythedeﬁnitionofﬁ, T < {T]],...,T]n}.
By the induction hypothesis, {711,...,T1,} is the set of all the instances of 7T; and 77; and ... and
Ty, are all simple types. As 75 is a simple type, then 75 is the only instance of 7,. Therefore,
{Ny = Ta,...,Tin — Tr} is the set of all the instances of 7} — T and T;; — T and ... and
T, — T, are all simple types.

e T=TN...0T,. ¥T1N...0T, <{T11,...,Tims-- -, Tn1,...,T,j} then by the definition of <,
T\ <{Ti,...,Tiu} and ... and T, < {T;,...,T,;}. By the induction hypothesis, {7i1,...,Tim}
is the set of all the instances of 77 and 7j; and ... and Tj,, are all simple types and ... and
{T1,...,Tyj} is the set of all the instances of 7, and T, and ... and 7,; are all simple types.
Then, {T11,...,Tim,---Tn1,...,Tyj} is the set of all the instance of 77 N...N 7T, and 71; and ... and
Ty and ... and 7,y and ... and 7,; are all simple types.

O]

Conservative Extension to the GTLC: If e is annotated with only simple types and T is a simple type:
1. thenl'Fge:T <= I'tpge:T.

2. thenT'kece~ e : T < T'kpcce~er: T and e =, e5.

3. if I'kecey : T, T'Frcc ex : T and e =, ep then e; —>¢¢ e’] <= e —nccC 6/2, and 6/1 =c e’z.

Theorem B.9 (Conservative Extension to the GTLC). If e is annotated with only simple types and T is
a simple type, thenT'tFge: T < I'Fnge: T.

Proof. We will first prove the right direction of the implication, that if 'ge: T then'Frg e : T. We
proceed by induction on the length of the derivation tree of .

Base cases:

e Rule T-Var. If I'-g x : T, then by rule T-Var, x : T € I'. As we are dealing with only simple types
T C T and therefore, I'Frg x7 : T.

e Rule T-Int. If I' =g n : Int, then by rule T-Int, I' g n : Int.

e Rule T-True. If I' - true : Bool, then by rule T-True, I" - true : Bool.

e Rule T-False. If I" - false : Bool, then by rule T-False, I" ¢ false : Bool.
Induction step:

e Rule T-Abs. If ' Ax: T} . e : Ty — T5, then by rule T-Abs, I',x : T} ¢ e : T5. By the induction
hypothesis, I',x : T} g e : T». Therefore, by rule T-Abs, ' Ax: Tq . e: T} — .

Pedro Angelo & Mrio Florido 27

e Rule T-App. If I' - e e, : T» then by rule T-App, I'Fg e; : PM, PM>T) — T, T'Fg ey : T/ and
T]’ ~ Ti. By the induction hypothesis, '~ e; : PM and ' e; : Tl’ . Therefore, by rule T-App,
r l_ﬁG ey e Tz.

We will now prove the left direction of the implication, that if ' ng e : T then ' -G e : T. We proceed
by induction on the length of the derivation tree of Fng.
Base cases:
e Rule T-Var. If '+ xT : T, then by rule T-Var,x: T € "and T C T. Therefore, 'Fgx:T.
e Rule T-Int. If I' g n : Int, then by rule T-Int, [' ¢ n : Int.
e Rule T-True. If I' g true : Bool, then by rule T-True, I kg true : Bool.
Rule T-False. If I' -n false : Bool, then by rule T-False, I' ¢ false : Bool.

Induction step:

e Rule T-Abs. If I'ng Ax: Ty : e : Ty — T, then by rule T-Abs, I',x : T} Frg e : T5. By the induction
hypothesis, I',x : T} k¢ e : T>. Therefore, by rule T-Abs, '+ Ax: Ty . e: T1 — T».

e Rule T-Abs’. If I'Fng Ax: Ty :e: Ty — T», then by rule T-Abs’, I',x: T} Fng e : T». By the
induction hypothesis, I',x : T} b¢ e : T>. Therefore, by rule T-Abs, ' Ax: Ty . e: Ty — T».

e Rule T-App. If ' kg) e : T5 then by rule T-App, I'trg e : PM, PM>Ty — Th, T kg ey : T
and T] ~ T;. By the induction hypothesis, I't-g e; : PM and "¢ e : T{. Therefore, by rule T-App,
r l_G ey e Tz.

e Rule T-Gen. If I'ng e: T, then by rule T-Gen, '~ e : T. By the induction hypothesis, ['Fge: T.
e Rule T-Inst. If ' e: T, then by rule T-Inst, '~ e : T. By the induction hypothesis, I'-ge: T.
O

Theorem B.10 (Conservative Extension to the GTLC). If e is annotated with only simple types and T is
a simple type thenU'tFcce~re1: T < T'kpcce~ ey : T and e] =, e;.

Proof. We will first prove the right direction of the implication, that if 'Fcc e~ ey : T then I' e e ~~
ep : T and e; =, e5. We proceed by induction on the length of the derivation tree of I'cc e~ ey : T.

Base cases:

e Rule C-Var. If I'F¢cc x ~» x: T, then by rule C-Var, x: T € I'. As we are dealing with only simple
types, T C T, and therefore, by rule C-Var, I' -ncc xl Xl T.

e Rule C-Int. If I' F¢¢ n ~~ n : Int, then by rule C-Int, I' Frcc n ~~ n : Int.

e Rule C-True. If I" F¢¢ true ~ true : Bool, then by rule C-True, I" -n¢¢ true ~~ true : Bool.

e Rule C-False. If I F¢¢ false ~~ false : Bool, then by rule C-False, I" F-ncc false ~~ false : Bool.
Induction step:

e Rule C-Abs. If T'bcc Ax: Ty . e~ Ax: Ty . € : Ty — T», then by rule C-Abs, I',x : T} Fcc
e ~ ¢ : T,. By the induction hypothesis, I',x : T} Frcc e ~ €' : T>. Therefore, by rule C-Abs,
I'FaccAx:Ti.e~~Ax:Ty.e : Ty = Tx.

28 Gradual Intersection Types

e Rule C-App. If I'cc e; €3 ~ (€] : PM =T - D) (e : T/ =!T)) : T», then by rule C-App,
Ikecer ~ € : PM,PM1>T) — T, I'Fcc e ~ €5 : T/ and T} ~ T;. By the induction hypothesis,
I'Frcc eg ~ € : PM and T e ex ~» €5 2 T]. By definition of <, PM I{PM}, T\ — T, <{T} —
T}, T < {T/} and T} < {T;}. By the definition of <, {PM}, {T} — T}, €} —~ €| : @ PM °:
PM='Ty - T and {T{}, {Ti}, &, — €, : @ T/ °: T/ =! T, . Therefore, ' -ncc €1 €2 ~ (e} :
GPM?:PM='T) - T,0) (ey: 0 T{*: T/ =' T\ °) : T». By the definition of =, (¢} : PM = T} —
B)=c(,:oPM°:PM='Ty 5> T,% and () : T| =/ T1) =, (¢h : @ T *: T/ = Ty ©). Therefore,
(€| :PM='Ty = T) (eb:T| ='T\) = (e} : o PM°:PM='T) = T,%) () : 2T/ *: T] =' T,).

We will now prove the left direction of the implication, that if 'Frcc e~ ex: T then'cce~v e : T
and e; =, ep. We proceed by induction on the length of the derivation tree of ' -rcc e~ ep: T.

Base cases:

e Rule C-Var. If I'trcc xT ~ xT : T, then by rule C-Var, x: T € I'and T C T. Therefore, by rule
C-Var,I'Fecx~x:T.

e Rule C-Int. If I' Frcc n ~ 1 : Int, then by rule C-Int, I'Fcc n ~~ n : Int.

e Rule C-True. If I' k¢ true ~~ true : Bool, then by rule C-True, I' F¢¢ true ~~ true : Bool.

e Rule C-False. If I' ¢ false ~ false : Bool, then by rule C-False, I F-¢¢ false ~ false : Bool.

Induction step:

e Rule C-Abs. f 'Frcc Ax: Ty . e~ Ax:T; . € : Ty — T, then by rule C-Abs, I',x : T} Frcc
e ~ ¢ : T». By the induction hypothesis, I',x : T} Fcc e ~ € : T>. Therefore, by rule C-Abs,
Fl—cclxiTl .e->7Lx:T1 .€/ZT1 —T15.

e Rule C-Abs’ f ' Frcc Ax: Ty . e~ Ax: Ty . € : Ty — Ty, then by rule C-Abs’, I',x : T} Frce
e ~ ¢ : T>. By the induction hypothesis, I',x : T Fcc e ~ € : T. Therefore, by rule C-Abs,
FI—CC}.XITl .EWAXITI .6/:T1—>T2.

e Rule C-App. If I'ncc e €3~ €] &) : T» then by rule C-App, I't-rcc e) ~» € : PM, PM>T) — T,
I l_r]CC e ~ 6/2 : Tll, Tl, ~T,PM <S8, T T, <8, T{ < S3, T < 84, Sl, Sz, e’l — elll and
S3, Sa, €, — €j. Since e e is annotated with only simple types, then by the definition of <,
el = :aPM°:PM='T) - T, % and &) = (¢): @ T/ °: T/ =' T; °). By the induction
hypothesis, I'-cc €] ~+ €] : PM and " F¢c ey ~» €, : T{. Therefore, by rule C-App, I' t-cc e; ep ~
(¢} : PM =Ty = T) (¢ : T/ =' T1) : To. By the definition of =, (¢} : PM = T} — Tr) =,
() : o PMO:PM='T) — T % and (¢): T] =' T\) =. (¢ : @ T] *: T/ =' T} ©). Therefore,
(e :PM='Ty = TD) (eb:T| ='T\) =, (e} : o PM°:PM='T) - T,%) () : 2T/ *: T] =' T,).

e Rule C-Gen. If ' Frcc e~ € : T then by rule C-Gen, I' Fncc e ~ ¢’ : T. By the induction
hypothesis, C'Fec e~ e : T.

e Rule C-Inst. If I'Frcc e ~ € : T then by rule C-Inst, I' rcc e ~ ¢’ : T. By the induction
hypothesis, TFece~ € @ T.

O
Theorem B.11 (Conservative Extension to the GTLC). Depends on Theorem[B.7} If e> are annotated

with only simple types, T is a simple type, U't-cc ey : T, U'tnccex : T and e; =, e; then ey —>¢¢ e"1 <—
er —rncc €, and €] =, é),.

Pedro Angelo & Mrio Florido 29

Proof. We will first prove the right direction of the implication, that if e; —>¢¢ e’1 then e — 7 e’2
and e; =, ep. We proceed by induction on the length of the derivation tree of e; =, e;.

Base cases:

e x=.x!. As x doesn’t reduce by —¢c, this case is not considered.

e n=,n. As n doesn’t reduce by — ¢, this case is not considered.

o ftrue =, true. As true doesn’t reduce by — ¢, this case is not considered.

o false =, false. As false doesn’t reduce by — (¢, this case is not considered.

o blamer | =, blamer . As blame [doesn’t reduce by —> ¢, this case is not considered.

e blamer = e: (blameT' T | cl). As blamer [doesn’t reduce by — ¢, this case is not considered.
Induction step:

e Ax:T .e=.Ax:T .. AsAx:T .edoesn’t reduce by — ¢, this case is not considered.

® ¢] ey =, e3 eq. There are six possibilities:

— Rule E-PushBlamel. If blamey: .1 | e = e3 e4 and blamey_,y | ey —¢cc blamer [then by
the definition of =, blamey'_, | = e3. There are two possibilities. By the definition of =,
and by applying rule E-RemoveEmpty zero or more times, either

* e3 — e blamer 7 |. By rule E-Appl, e3 e4 — - blamer_,7 | e4. By rule E-
PushBlamel, blamer: 1 | e4 —F ¢ blamer | and blamer | =, blamer 1.

* e3 —toce: (blame T" (T — T) | <!). By repeated application of rule E-Evaluate and
by Theorem e:blame T" (T' —T) 1) —tccv:blame T" (T' —T)1!). By rule
E-PropagateBlame, v : blame T" (T' — T) | ') —* ~c blamer_r . By rule E-Appl,
e3 e4 —}\cc blamer: 1 | e4. By rule E-PushBlamel, blamer:_,7 | e4 —[, - blamer |
and blamer | =, blamer .

— Rule E-PushBlame2. If e; blamey | = e3 e4 and ey blamey: | —>¢¢ blamer [then by the
definition of =, blamey' | =, e4. There are two possibilities. By the definition of =, and by
applying rule E-RemoveEmpty zero or more times, either

* e4 — ¢ blamer: 1. By rule E-App2, e3 es —/ - e3 blamey: I. By rule E-Push-
Blame2, e3 blamer: | — 7~ blamer | and blamer | = blamer 1.

* e4 —% e blame T" T' | °!. By repeated application of rule E-Evaluate and by The-
oreme :blame T" T' 1 ! —7 v : blame T" T’ | °!. By rule E-PropagateBlame,
v:blame T" T' 1 < —7 - blamer: 1. By tule E-App2, e3 es —* - €3 blamez . By
rule E-PushBlame2, e3 blamey: | —f, - blamer | and blamer | =, blamer 1.

— Rule E-Appl. If e; e; =, e3 e4 and €] e; —r¢cc e’1 e then by the definition of =., e; =, e3
and e =, e4, and by rule E-Appl, e; —>¢c €. By the induction hypothesis, e3 —>ncc €}
and e} =. ¢}. Then by rule E-Appl, e3 e4 —>ncc €5 es. By definition of =, €| e> =, €} ea.

— Rule E-App2. If v ey =; €3 e4 and v| €3 —>¢cc Vi e’2 then by the definition of =, v| =, e3
and e =, e4, and by rule E-App2, e —¢c €5. By the induction hypothesis, es —>ncc €}
and ¢, =, ¢);. By definition of =, and by applying rule E-RemoveEmpty zero or more times,
e3 — e vi. If e3 — % V| such that vi = v/}, by rule E-Appl, e3 e4 —>ncc V) es, and by
rule E-App2, V| es —>ncc V) €}. By definition of =, v; €, =. V] €.

Gradual Intersection Types

— Rule E-AppAbs. If (Ax:T' . e) v=,e3eqand (Ax:T' . e) v —>cc [x +— v]e then by the
definition of =, (Ax: T’ . e) = e3 and v = e4. By the definition of =, and by applying rule
E-RemoveEmpty zero or more times, e3 — /- Ax: T’ . ¢’ and e4 — /.- V', such that, by
definition of =., (Ax:T" . e) =, (Ax: T’ . ¢') and v=,V and e = €. By rule E-AppAbs,
(Ax:T".€¢) VvV —ncc [x — V']e' and by definition of =, [x — v]e =, [x — V']¢’.

- Rule C-BETA.If (v : Ty = T =/ T3 = Ty) va=cesesand (v : T} = Th = T3 — Ty) v
—cce (1 (01 T3 =! h)): T =! Ty then by the definition of =., v : T} = T»h = T3 —
Ty = e3 and v, =, e4. By definition of =, and by applying rule E-RemoveEmpty zero or
more times, e3 —" V| (@ T1 = Th . Ty — T, =! T3 — Ty) such that v; = V|, and
e4 — 7\ V5 such that vy =. V5. By rule E-SimulateArrow, (v} : (@ Ti — T» T Ty =t
5 — T4>) v’2 —ncc ((v’l o — 1T Cl) (v’2 : (@ T3 0. T3 =1 T; O))) : (@ T 0. T =1 T O).
By the definition of =, (vi (n: G ='T)): h='Ty= ((V|: o1 > 1) (vV,: (@ T °:
T =1 Ti 0))) : (@ T 0. T =1 Ty O).

eei=cer: (BT . Ife;=cer:@T " and e; —¢c ¢ then by the definition of =, ¢; = e;. By the
induction hypothesis, e, —sncc €5 and €] =, ¢5. By rule E-Evaluate, ey : @ T < —cceh: @ T <.
As €| =. ¢} then by definition of =, ¢] =, ¢, : @ T °.

eI =>h=.¢" (c:Th =1 C’). There are seven possibilities:

— Rule E-Evaluate. If e, : Ty =/ Th =ceand ¢, : T} = Th —¢c e’1 : Ty = T», then by the
definition of =. and by applying rule E-Evaluate zero or more times, e —/ - €2 : (c:
T\='T ¢) such that e; =, e; : ¢, and by rule E-Evaluate, e; —¢¢ e’l. By the induction
hypothesis, ey : ¢ — /€, :cand €] =. €, :c. If ex:c —F €, : c then by rule E-
Evaluate, e, —* - €5. By rule E-Evaluate, e : (c: Ty =! b /) —sncc ey : (c: T = T).
As ¢} =. €} : c then by the definition of =, ¢} : Ty =/ Ty =. ¢y : (c: Ty =' T,).

- Rule CTX-BLAME. If blamey, | : Ty =' Ts =, e and blamey, | : Ty =' Ty —cc blamer,
then there are three possibilities. By the definition of =, and by applying rule E-Remove-
Empty zero or more times, either

* e — o0 blamer, 1: (2 T .7y =! T,). By rule E-PushBlameCast, blamer, [:
(2T .=l) —>ncc blamer, | and blamer, | =, blamer, .

x e —hcc €t (blame T' Ty 11 : Ty =' T,). By repeated application of rule E-Evaluate
and by Theorem e (blame T' Ty 1< : Ty =' T,) —tce v (blame T' Ty 1 c .
T; = T, ¢!). By rule E-EvaluateCasts and by rule E-PushBlameCl, v : (blame T' Ty [¢ :
Ty =T, ") —* o v: (blame T' To 1 <'). By rule E-PropagateBlame, v: (blame T' Ty [')
— A cc blamer, | and blamer, | =, blamer, .

x e —tcce (blame T' Ty 1<) : (@ Ty ' : Ty =' T»). By repeated application of
rule E-Evaluate and by Theorem e :(blame T' Ty 1" : Ty =! T) — e v
(blame T' Ty 1Y) : (@ T; < : Ty =' T ¢!). By rule E-MergeCasts, v : (blame T’ Ty 1 ') :
(@N T =T —nccv: (blame T' Ty 1 : Ty = T> ¢!). By rule E-EvaluateCasts
and by rule E-PushBlameClL, v: (blame T' Ty 1" : Ty = T, ') —F o v: (blame T' T 1).
By rule E-PropagateBlame, v : (blame T' Ty 1) — " cc blamer, 1) and blamer, | =,
blamer, .

— Rule ID-BASE and Rule ID-STAR. If v: T =/ T =.eand v: T =/ T —¢¢ v, then by the
definition of =. and by applying rule E-RemoveEmpty zero or more times, e — - V' :
(cv:T =T <), such that v =,V : cv. By rule E-EvaluateCasts and by rule E-IdentityCI,
Vi(ev:T =T —qcev ievand v =,V : cv.

Pedro Angelo & Mrio Florido 31

— Rule SUCCEED. If v: G ="' Dyn: Dyn =" G =, eandv: G =" Dyn: Dyn =2 G —¢cv
then there are two possibilities. By definition of =, and by applying rule E-RemoveEmpty
zero or more times, either

* e —teeV i (ev:G =1 Dynl: Dyn =2 G) or

x e —* eV (ev:G="Dyn): (@ Dynl: Dyn =" G)
such that v =, V' : cv. As, by rule E-MergeCasts, V' : (cv: G =" Dyn ') : (@ Dyn < : Dyn ="
G —nccV : (ev:G=" Dyn ! : Dyn =" G '), we only need to address the first case. By
rule E-EvaluateCasts and by rule E-SucceedCL, V' : (¢v: G ="t Dyn ! : Dyn =2 G 1) — ¢
Viievandv =,V :cv.

— Rule FAIL. If v : G; =" Dyn: Dyn =2 G, =. e and v : G| =" Dyn : Dyn =" G, —¢¢
blameg, I, then there are two possibilities. By definition of =, and by applying rule E-
RemoveEmpty zero or more times, either

* e —reeV i (ev: Gy =" Dynl: Dyn =" G,) or

x e —* oV (ev:Gy =" Dyn) (@ Dyn ' : Dyn =" G,)
such that v =V : cv. As, by rule E-MergeCasts, V' : (cv: G| ="t Dyn!) : (@ Dyn ! : Dyn ="
Gr ") —nccV i (ev: Gy =" Dyn <t Dyn = G, Cl), we only need to address the first case.
By rule E-EvaluateCasts and by rule E-FailCI, V' : (cv: G =" Dyn ! : Dyn =" G, ') — ¢
V' : blame Ty Gy I °. By rule E-PropagateBlame, V' : blame T; G5 I, _5nce blameg, 1>
and blameg, lh =; blameg, 1.

— Rule GROUND. If v: T =/ Dyn=;eandv:T =1 Dyn —ccv: T =1G:G=! Dyn then
by definition of =, and by applying rule E-RemoveEmpty zero or more times, e — - V' :
(cv: T =! Dyn) such that v =. V' : cv. By rule E-EvaluateCasts and by rule E-GroundClI,
Vi(ev:T='Dyn) —nccV i (ev:T=G:G=!Dyn). Asv =,V :cv, then by
definition of =, v: T =' G:G='Dyn =,V : (cv:T =!G :G='Dyn).

— Rule EXPAND. If v:Dyn =/ T =, eand v: Dyn =/ T —¢ccv:Dyn =/ G: G =! T then
by definition of =, and by applying rule E-RemoveEmpty zero or more times, e —* V' :
(cv:Dyn=!T) such that v =. V' : cv. By rule E-EvaluateCasts and by rule E-ExpandCI,
Vi ev:Dyn =T) —nccV i (ev:Dyn='G:G=T). Asv=,V:cv, then by
definition of =, v:Dyn =/ G:G='T =,V : (cv:Dyn =G :G=!T).

We will now prove the left direction of the implication, that if ey —>ncc 6’2 then e —cc e’l and e| =, e;.
We proceed by induction on the length of the derivation tree of e; = e>.

Base cases:
o x=.x". As x” doesn’t reduce by —ncc, this case is not considered.
e n=,n. As n doesn’t reduce by — ¢, this case is not considered.
o ftrue =, true. As true doesn’t reduce by —>n~¢c, this case is not considered.
o false =, false. As false doesn’t reduce by —>n~cc, this case is not considered.
o blamer | =. blamer . As blamer [doesn’t reduce by —>n~¢c, this case is not considered.

e blamer | = e : (blame T' T | °!). There are two possibilities:
— Rule E-Evaluate. If e : (blame T' T 1 ') —qcc €' : (blame T' T 1 ') and as blamer 1 is
already a value, then blamer [=/, e : (blame T' T 1).
— Rule E-PropagateBlame. If v : (blame T' T | ') —qcc blamer [and as blamer 1 is already
a value, then blamer | =, blamer 1.

32

Gradual Intersection Types

Induction step:

e Ax:T .e=.Ax:T .. AsAx:T . doesn’t reduce by —>n~cc, this case is not considered.

e ¢] ey =, e3 eq. There are 6 possibilities:

.el

— Rule E-PushBlamel. If blamer_7 | ey = blamer_7 | e4 and blamer_7 | e4 —rncc

blamer [then by rule E-PushBlamel, blamey_,; | ey —>¢cc blamer | and blamer | =,
blamer .

Rule E-PushBlame?2. If e; blamer: | = e3 blamer: | and e3 blamer: | —>~cc blamer [then
by rule E-PushBlame?2, e; blamey: | —c¢ blamer | and blamer | =, blamer 1.

Rule E-Appl. If e e; =, e3 e4 and e3 e4 —>ncc 6’3 e4 then by the definition of =, e; =, e3
and e, =, e4, and by rule E-Appl, e3 —>ncc €;. By the induction hypothesis, e; —¢c €}
and e} =. ¢;. Then by rule E-Appl, e; e; —cc €] e>. By definition of =, €| e = €} e4.
Rule E-App2. If vi ez =, v3 e4 and v3 e4 —>ncc v3 €} then by the definition of =, v; =, v3
and e =, e4, and by rule E-App2, e —>ncc €. By the induction hypothesis, e; —>¢c €}
and ¢}, =, €}. Then by rule E-App2, v| e, —¢c vi €5. By definition of =, v €5 =, v3 €}.
Rule E-AppAbs. If (Ax:T' .e) vy =, (Ax:T" . €)vaand (Ax:T' . ¢€') va —>ncc [x > vale’
then by the definition of =, (Ax: T’ .e) =, (Ax: T . ¢') and v, =, v4 and e =, €. By rule
E-AppAbs, (Ax: T’ . e) vy —cc [x — wle. As vy =, v4 and e =, ¢/, then by definition of
= x> m)e =, [x— v

Rule E-SimulateArrow. There are two possibilities:

* If vi vo =, (V3Z@ T/—)Td) v4 and (V32@ T/%TCI) V4 —>nCC ((V32@ T —
T (vg: @ T ")) : @ T then by definition of =, vi = (v3: @ T’ = T) and
vy =c v4 and v =, v3. By the definition of =, vo =, v4 : & T’ e By the definition of
=i = ((»3: DT =T (vq: @ T <")). By the definition of =, v; vo =, ((v3:
ST =T (vy: 2T)): T

x (T =T ='"Ts >T)va=(vi:(cv:TI =T = T3 = T, ")) vy and (v3: (cv:
-1 =! ;— T Cl)) V4 —>ncC ((Vz : CV) (V4 : (Q Tz c . T3 =1 Ti Cl))) : (@ T <
T, = T,) then by definition of =., v{ =, v3 : cv and v, =. v4. By rule C-BETA,
(V1 T —T1; :>l T — T4) V) —rcC (V] (VZ 1T :>l T])) 11T :>l Ty. As vy =¢ V4, then
by definition of =, vy : T3 =/ Ty = vy : (@ T3 < : T3, =/ Ty). Asv; =.v3:cvand
v =T = vy (@ T3 ¢ T3 = 11 1), then by the definition of =, (vi (v2: T =!
Tl)) =c ((Vg 2CV) (V4 : (@ T; cl T :>l T cl))). As (Vl (VZ T :>l Tl)) =c ((V3 : CV) (V4 .
(@ T5 < : T3 =! Ty 1)), then by the definition of =, (v; (2 : T3 =/ T1)) : T = Ty =,
((V3 : CV) (V4 : (@ T; ol T; =1 T Cl))) : (@ T < Jb) =1 Ty Cl).

=cey: (@ T). There are two possibilities:
— Rule E-Evaluate. If ej =, ¢;: (@ T) and ey : (& T ') —>ncc €y : (@ T) then by the

definition of =, e; =, e;, and by rule E-Evaluate, ey —>ncc e’z. By the induction hypothesis,
el —cc €} and €] =. €. As €| =. ¢} then by definition of =.,] =, ¢, : (T T).

— Rule E-RemoveEmpty. If vi =, v, : (@ T) and vo : (& T ') —~cc v then by the definition

of =¢, vi =¢ 2.

T =T =ce:(c: T =' Tr ¢). There are four possibilities:
— Rule E-PushBlameCast. If blamer, [: T; =T =, blamer, 1: (c:Th S) and blamer, [

(c: Ty =' T ') —nrcc blamer, [then by rule CTX-BLAME, blamer, [: Ty =' T» —cc
blamer, | and blamer, | =, blamer, .

Pedro Angelo & Mrio Florido 33

- Rule E-Evaluate. Ife; : Ti =/ h=,er: (c: Ty =/ TN and ey : (c: Ty = T) —rcc
e’2 (e Th =i) then by definition of =, e; = e; : ¢, and by rule E-Evaluate, ¢, —>n~cc
¢,. By rule E-Evaluate, e; : ¢ —>ncc €, @ ¢. By the induction hypothesis, e; —¢¢ ¢} and

J—
e‘l_

¢ €y :c. By rule E-Evaluate, ey : Ty = Th —scc e} : Ty =/ Th. As €| = €} : c, then by

the definition of =, ¢} : T} ==, e (c:Th =1,

— Rule E-MergeCasts. If v: 1 =/ Th = (vV:ev) : (@ 1 . Ty =' Th) and (Vi ev) : (@ Ty <
Ty =T) —nccV : (ev: Ty = Th) then by the definition of =, v =,V : cv. As
v =¢V' : cv, then by the definition of =, v: T} =/ Th =V : (ev: T} =/ T, 9).

— Rule E-EvaluateCasts. There are seven possibilities:

*

Rule E-PushBlameCL. If blamer, I} : Ty =2 T» =, v: (blame T' Ty I, ' : Ty =2 T, <)
and v: (blame T' Ty Iy < : Ty =2 T, ') —cc v : blame T' Tz I, ! then by rule CTX-
BLAME blamer, Iy : Ty = Ty —>cc blamer, Iy and blamer, [y = v : blame T' T» I “'.
Rule E-EvaluateCLIf v : T} =/ o = va: (c: Ty =' T) and vy : (¢: Ty =/) —rcc
vo: (' : Ty =! Ty) then v{ =, v, : ¢ and by rule E-EvaluateCasts, v, : ¢ —ncc v2 @ ¢’ By
the induction hypothesis, vi —s¢cc v; and V| =, v, : ¢. By rule E-Evaluate, v; : T} ="'
T, —cc V) Th =T, As V| =c vp : ¢, then by definition of =, V| : T} =7 =.vy:
(c: T ='T).

E-IdentityCLIfvi : T =! T =.vp: (ev1: T=!T)and vy : (ev1: T ='T) —nccvp i evl
then by the definition of =., vi =, v, : cvl. By rule ID-BASE or ID-STAR, v, : T —!
T —ccvi and v; =cV icvl.

E-SucceedCL. If vi : G =" Dyn: Dyn =" G =.v,: (cvl : G=" Dyn " : Dyn =" G %)
and v, : (evl : G =" Dyn ' : Dyn =2 G “2) —cc vy : cvl then by the definition
of =¢, vi =¢c v» : cvl. By rule SUCCEED, v; : G =h Dyn : Dyn =b G —cc v and
Vi =¢ V2 :cvl.

E-FailCL If v; : Gy =" Dyn: Dyn =" G, =, v, : (¢v1: Gy =" Dyn I : Dyn =" G, °2)
and v2 : (vl : Gy ="' Dyn < : Dyn =" Gy %) —cc vo @ blame T' G, I, €I then by
the definition of =, vi =, v; : ¢vl. By rule FAIL, v; : Gy =h Dyn : Dyn =L G, —ec
blameg, I, and by the definition of =, blameg, I = v, : blame T' G, I cl,
E-GroundCL If vi : T =/ Dyn =, vy : (cv1 : T =/ Dyn!) and v, : (cv1 : T =/ Dyn)
—nccva i (evl i T = G : G =! Dyn ') then by the definition of =, vi = v5 : cv1.
By rule GROUND, v, : T =1 Dyn —¢ccvy: T =1G:.G=! Dyn. As vy =, vy : cvl,
then by the definition of =., vi : T =/ G =, vy : (cv1: T =!G). Asv;: T =/ G =,
vy i (evl: T =!G 1), then by the definition of =., v; : T =/ G: G =! Dyn =, v : (cv1 :
T='G":G=!Dyn).

E-ExpandCL If vi : Dyn =/ T =. vy : (cvl : Dyn =' T ') and vy : (evl : Dyn = T <)
—nceva i (evl : Dyn =!G : G =! T) then by the definition of =, v; =, v : ¢v1.
By rule EXPAND, v; : Dyn =T —cevi:Dyn='G:G='T. Asv| =.v,: cvl, then
by the definition of =, v : Dyn =/ G =, v2 : (evl : Dyn =!G). Asv; : Dyn = G =,
vy : (evl : Dyn =! G 1), then by the definition of =., vi : Dyn =/ G: G=!T =, v, :
(ev1:Dyn='G:G=IT.

O]

	Introduction
	Gradual Intersection Types
	Syntax and Type System
	Cast Calculus
	Cast Insertion

	Normalization
	Correctness Criteria
	Acknowledgements
	Additional Definitions
	Proofs

