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We show
(1) For each strongly normalizable lambda term M, with beta-eta normal form N, there exists an

intersection type A such that in BCD we have `M : A and N is the unique beta-eta normal term
s.t. ` N : A. A similar result holds for finite sets of strongly normalizable terms

(2) For each intersection type A if the set of all closed terms M such that in BCD `M : A is infinite
then when closed under beta-eta conversion this set forms an adequate numeral system for
untyped lambda calculus. In particular, all these terms are generated from a single 0 by the
application of a successor S,

S(. . .(S0) . . .)

and by beta-eta conversion.

1 Introduction

Here we are interested in how much of the structure of a strongly normalizable lambda term is captured
by its intersection types and how much all the terms of a given type have in common.

In this note we consider the theory BCD (Barendregt,Coppo, and Dezani) of intersection types with-
out the element Utop ([1] pps 582-583) and the notion of an adequate numeral system for the untyped
lambda calculus ([3] 6.4 pps 135-137).

2 Formal Theory of Type Assignment

We define the notion of an expression as follows. a,b,c, . . . are atomic expressions. If A, and B are
expressions then so are (A→ B) and (A∧B). Even though we write infix notation we say that these
expressions begin with→ and ∧ resp. A basis F is a map from a finite set of variables, dom(F), to the
set of types. Below we shall often conflate F with the finite set

{x : F(x)|x : dom(F)}.

The formal theory of type assignments BCD (Barendregt, Coppo, and Dezani) is defined by the following
set of rules here presented sequentially. For basis F and terms X ,Y
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F,x : A ` x : A (axiom)
F,x : A ` X : B ⇒ F ` \xX : A→ B (→ I)
F ` X : A→ B & F ` Y : A ⇒ F ` (XY ) : B (→ E)
F ` X : A & F ` X : B ⇒ F ` X : A∧B (∧I)
F ` X : A & A [ B ⇒ F ` X : B ([)

Here we note that the rule ([) is read “less that or equal to”.

3 The Relational Theory of Types

The rule ([) is governed by the free theory of a preorder;

a [ a

a [ b & b [ c⇒ a [ c

a∧b [ a

a∧b [ b

c [ a & c [ b⇒ c [ a∧b,
and a contravariant-covariant operation→,

c [ a & b [ d⇒ a→ b [ c→ d

satisfying the weak distributive law

(c→ a)∧ (c→ b)[c→ (a∧b).

There is an equivalent equational theory.

4 The Algebraic Theory of Types

A semilattice with meet operation ∧
a∧ (b∧ c)∼ (a∧b)∧ c
a∧b∼ b∧a
a∼ a∧a
satisfying the distributive law
c→ (a∧b)∼ (c→ a)∧ (c→ b)
and an absorption law
a→ b∼ (a→ b)∧ ((a∧ c)→ b)
where the quotient partial order can be recovered
a[b⇔ a∼ a∧b.



Rick Statman 3

5 Theory of Expressions and their Rewriting

With an equational presentation we can associate a set of rewrite rules. The one step rewrite of an
expression A by the rule R to the expression B is denoted A R B. This is the replacement of exactly one
occurrence of the left hand side of the rule as a subexpression of A, the redex, by the righthand side. Sets
of rules can be combined by the regular operations + (union) and * (reflexive-transitive closure). We
define rewrites

(asso.) A∧ (B∧C) asso. (A∧B)∧C
(asso.) (A∧B)∧C asso. A∧ (B∧C)
(comm.) A∧B comm. B∧A
(idem.) A idem. A∧A
(absp.) A→ B absp. (A→ B)∧ ((A∧C)→ B)
(dist.) A→ (B∧C) dist. (A→ B)∧ (A→C)

and we set semi. = assoc. + comm., and slat. = semi. + idem. Let redo. = slat. + absp. + dist.. redo.
generates the congruence on expressions induced by the algebraic theory.

We recall the following properties of the rewrite theory from ([5]).

(1) idem. can be restricted to atoms.

(2) comm. can be restricted to atoms and expressions beginning with→.

(3) If A slat.* B then there exists C such that
A idem.∗C semi.∗B.

(4) Every dist. reduction terminates.

(5) dist. has the weak diamond property.

(6) redo. has the Church-Rosser property.

For each type expression A, the unique dist. normal form of A is denoted dnf(A).Each type expression
A in dnf can be written

A1∧ . . .∧Ak

associatively with each Ai =

Ai,1→ (. . .(Ai,t(i)→ ai) . . .).

Here ai is the principal atom of Ai. The Ai are the components of A.

6 Formal Theories of Type Expressions

The formal theory of [ simply mirrors the relational theory.

(1) Traditional:
Axioms;
A [ A
A∧B [ A
A∧B [ B
(A→ B)∧ (A→C)[A→ (B∧C)

Rules;
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C [ A & C [B ⇒C [ A∧B
C [ B & B [A ⇒C [ A
A [ C & D [B ⇒C→ D [ A→ B

(2) Equational:
We add the axioms for the algebraic theory of ∼ and the usual rules for ∼ being a congruence.
Since in this theory A [ B is defined by A∼ A∧B, the BCD rule,

F ` X : A & A [ B ⇒ F ` X : B
is replaced by
F ` X : A∧B ⇒ F ` X : A (∧E)
and
F ` X : A∧B ⇒ F ` X : B (∧E)

in the formal theory of type assignment. In addition, there is a useful proof theoretic variant.

1. Munich Version
The notions of positive, negative, and strictly positive are defined recursively by
A is positive and strictly positive in A.
If C is positive in B then C is positive in A→ B and negative in B→ A.
If C is strictly positive in B then C is strictly positive in A→ B.
If C is positive in A or B then C is positive in A∧B.
If C is strictly positive in A or B then C is strictly positive in A∧B.
If C is negative in B then C is negative in A→ B and positive in B→ A.
If C is negative in A or B then C is negative in A∧B.
A single occurrence of B as a subexpression of A will be indicated A(B). An expression can be
thought of as a rooted oriented binary tree with atoms at its leaves and either → or ∧ at each
internal vertex. For each subexpression B of A there is a unique path from the root of A to the root
of B. If we remove this occurrence of B we have a context A(.) where we could just as easily have
thought of this as the replacement of B by a new atom p. The rules of the Munich version are
Axioms;
A [ B if A,B are slat. congruent
A(D(B∧C)) [ A(D(B)∧ (D(C))) if D(.) strictly positive
A(B∧C) [ A(B) if A(.) is positive
A(B) [ A(B∧C) if A(.) is negative

Rules;
A [ B & B [ C⇒ A[C

Lemma 6.1. (Munich)
If by the Traditional rules A [ B then by the Munich rules A [ B

Proof. We verify that the Munich rules are closed under the Traditional rules by simulating the Tradi-
tional proofs by Munich proofs. First observe that if in Munich A [ B and D(.) is positive then D(A) [ D(B)
and if D(.) is negative then D(B) [ D(A). Next observe that if we have C [ A and C [ B in Munich, then
C∧C [ A∧B, so by idem. C [ A∧B. End of proof.

This version is named in honor of Kurt Schutte.
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7 Evaluating Types in the Tropical Semiring

The tropical semiring is the semiring of integers with 0,1,+,min, and max (and + and - infinity, but we
will not need these; ([2]). With each type expression A we associate a tropical semiring polynomial e(A).
The definition is by recursion over subtype expressions of A and is not context free; it depends on the
sign of the subtype expression. For each atom a pick a distinct variable x and set

e(a) = x
e(C→ B) = 1+ e(C)+ e(B)
e(C∧B) = min(e(C),e(B)) if C∧B is positive
e(C∧B) = max(e(C),e(B)) if C∧B is negative.

The dual of e, denoted ∼ e, is obtained from e by interchanging max and min.
Facts; (tropical)
For all natural number values of the variables x

(1) e(A) is monotone.

(2) If A and B are slat. congruent then e(A) = e(B).

(3) e(A(D(B∧C))) = e(A(D(B)∧ (D(C)))) if D(.) is strictly positive.

(4)
e(A(B∧C)) < or = e(A(B)) if A(.) is positive
e(A(B)) < or = e(A(B∧C)) if A(.) is negative

¿From these facts we conclude the

Lemma 7.1. If A [ B then e(A)< or = e(B)

Proof. By the Munich axioms and rules. End of proof.

8 Proof Theory of BCD

Here we need to strengthen several of the derived rules for BCD stated in ([3]) chapter 14 to proof
theoretic statements. For this it is convenient to write proofs in tree form. Indeed, we shall implicitly
adopt the natural deduction form of the rules of BCD using the left hand side of sequences to indicate
active assumptions. We denote proofs P,P′,Q,Q′ etc.

Lemma 8.1. (dnf)
Suppose that for each x : dom(F) F(x) and A are in dnf, and F ` X : A is provable. Then there is a proof
where every type expression is in dnf.

Proof. Let P be such a proof. Our proof is by induction on P. We write dnf(F) for the basis F ′ such that
F ′(x) = dn f (F(x)).
Basis; X = x and P = the axiom F ` x : A. Then
dnf(F) ` x : dn f (A) is an axiom.

Induction step;

Case 1; P ends in the BCD rule [. Since B [ C implies dnf(B) [ dnf(C) this case is obvious.
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Case 2: P ends in the BCD rule ∧I. Since dnf(B∧V ) = dnf(B)∧ dnf(C) this case is obvious. Remark;
the case ∧E is similar and could be included here.

Case 3; P ends in the BCD rule→ E. So we may suppose that
A = B→C,X = (UV ), and P has the form

P′

F `U : B→C
P′′

F `V : B

F ` (UV ) : C

Let dnf(C) =C1∧ . . .∧Cn where each Ci is dnf and does not begin with ∧. By induction hypothesis
there exist proofs Q′, Q′′ of

dnf(F) `U : (dnf(B)→C1)∧ . . .∧ (dnf(B)→Cn)

and dnf(F) `V : dnf(B) resp..Now for i = 1, . . . ,n, applications of ∧E to Q′′ gives a proof of

dnf(F) `U : dnf(B)→Ci,

which when combined with Q′′ by→ E gives a proof Qi of

dnf(F) ` (UV ) : Ci.

n−1 applications of ∧I to the Qi gives the desired proof of

dnf(F)|− (UV ) : dnf(C).

Case 4; P ends in the BCD rule→ I. Again we may suppose that A = B→C,X has the form uU and P
has the form

P′

F,u : B ` v : C

F ` \uV : B→C

Now if dnf(C) =C1∧ . . .∧Cn, where each Ci is dnf and does not begin with ∧, then

dnf(A) = dnf(B)→C1∧ . . .∧dnf(B)→Cn.

By induction hypothesis there exists a proof of

dnf(F),u : dnf(B) `U : dnf(C)

which after applications of ∧E yields a proof Qi of

dnf(F),u : dnf(B) `U : Ci.

Thus for i = 1, . . . , n we have proofs

Qi
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dnf(F),u : dnf(B) `U : Ci

dnf(F) ` \uU : dnf(B)→Ci

These can be combined by ∧I for the desired result. End of proof.

Lemma 8.2. (predicate reduction)
Suppose P is a proof of F ` X : A where every type expression is in dnf. Then there exists a similar

proof where every application of the BCD rule [ is to a variable as the subject.

Proof. We first recall the criterion for [ on dnfs verified in ([5]) section (19)
If

A = A1∧ . . .∧An

where Ai = A(i,1)→ (. . .(A(i,m(i))→ai) . . .)

ai is an atom, m(i) may be 0,
and each A(i, j) is in distributive normal form
for i = 1, . . . ,n

B = B1∧ . . .∧Bk
where Bi = B(i,1)→ (. . .(B(i,l(i))→ bi) . . .)

bi is an atom, l(i) may be 0,
and each B(i, j) is in distributive normal form
for i = 1, . . . ,k

then
A [ B iff for each i = 1, . . . , k there exists j = 1, . . . ,n

such that bi = a j, l(i) = m( j) and
for r = 1, . . . , l(i) we have B(i,r)[A( j,r).

Next we consider an application of the BCD rule ([) in P immediately following the application of a
different rule, and we show how the ([) can be promoted (if you like, permuted).
Case 1; P =

P′ P′′

F `U : C→ A F `V : C
F ` (UV ) : A
F ` (UV ) : B.

Now for each Bi we have A [ Bi so we have proofs
Pi =

P′ P′′

F `U : C→ A F `V : C
F `U : C→ Bi F `V : C

F ` (UV ) : Bi

which can be combined by ∧I.

Case 2; P =

F,u : C
P′
`U : D
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F ` \uU : C→ D

F ` \uU : B

Now for each Bi we have B(i,1) [ C and

D [ B(i,2)→ (. . .(B(i,l(i))→ bi) . . .).

Replacing axioms G,u : C ` u : C in P′ by

G,u : B(i,1) ` u : B(i,1)

G,u : B(i,1)|−u : C

gives new proofs

Pii

F,u : B(i,1)`U : D

F,u : B(i,1) `U : B(i,2)→ (. . .(B(i,l(i))→ bi) . . .)

F ` \uU : Bi

which can be combined by ∧I.

Case 3; P =

F
P′

` X : C F
P′′

` X : D

F ` X : C∧D

F ` X : B

We may suppose C = A1 ∧ . . .∧Ar and D = Ar+1 ∧ . . .∧An. By the criterion for [ of dnfs, for each
i = 1, . . . ,k there exists 0 < f (i) < n+ 1 such that A f (i) [ Bi. So for each such i where f (i) < r+ 1 we
have the proof Pi =

F
P′

` X : C

F ` X : Bi

and for each i such that f (i)> r we have the proof Pi =

F
P′′

` X : D

F ` X : Bi

and these can all be combined with ∧I. End of proof.
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A sequence of inferences
F ` x : A
F ` x : A1→ (. . .(Ak→ (B→C) . . .) (∧E)
F ` x : A1→ (. . .(Ak→ (D→ E) . . .) ([) F ` X1 : A1

F ` xX1 : A2→ (. . .(Ak→ (D→ E) . . .)
...

F ` xX1X2 . . .Xk : (D→ E) F ` X : D
F ` xX1X2 . . .XkX : E

is said to be “intemperate” and can be replaced by

F ` x : A
F ` x : A1→ (. . .(Ak→ (B→C) . . .) (∧E)
F ` x : A1→ (. . .(Ak→ (B→ E) . . .) ([) F ` X1 : A1

F ` xX1 : A2→ (. . .(Ak→ (B→ E) . . .)
... F ` X : D

F ` xX1X2 . . .Xk : (B→ E) F ` X : B ([)
F ` xX1X2 . . .XkX : E

Theorem 8.3. Suppose that for each x:dom(F) F(x) and A are in dnf, and F ` X : A is provable. Then
there is a proof of F ` X : A such that

(1) every type expression is in dnf,

(2) every application of the BCD rule [ is to a variable as the subject, and

(3) there are no intemperate sequences

Proof. we already know that proofs satisfying (1) and (2) exist for X . The proof is by induction on the
length of X with a subsidiary induction on length of a proof P and (1) and (2). We suppose that X =

(a) \x1 . . .xk. xX1 . . .Xl (head normal form), or

(b) \x1 . . .xk. (\xX0)X1 . . .Xl (head redex)
and A = A1∧ . . .∧Am, showing all components, and we distinguish several cases.

Case 1; P ends in ∧I. By subsidiary induction hypothesis. Otherwise P ends in the BCD rule [,
in which case we are done, or → I, or → E, Thus we can assume that m = 1 and A begins with
→;A = B1→ (. . .(Bn→ b) . . .).
Case 2; Let G = x1 : B1, . . . ,xk : Bk.
In case (a) P has the form
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G ` X : C P1
G ` x : C1→ (. . .(Cp→ c) . . .) G ` X1 : C1

G ` xX1 : C2→ (. . .(Cp→ c) . . .)
... P1

G ` xXl . . .Xl−1 : C1→ (. . .(Cp→ c) . . .) G ` Xl : C1
G ` xX1 . . .Xl : C1+1→ (. . .(Cp→ c) . . .)

G−{xk : Bk} ` \xk.xX1 . . .Xl : Bk→ (C1+1→ (. . .(Cp→ c) . . .)
...
F ` X : A.

Thus, p = n and for i = l+1 . . .n, Ci = Bi. Now suppose that C = Di∧ . . .∧Dq show all components. By
the criterion for [ on dnfs verified in [5] section (19) there exists some Di such that Di [ C1→ (. . .(Cp→
c) . . .) and Di = D1 → (. . .(Dp → c) . . .) with, for j = 1, . . . , p, C j [ D j. Thus we can alter the proofs
above to

Pj

G ` X j : C j

G ` X j : D j ([)

and apply the major induction hypothesis to them while we replace the [ inference
G ` x : C
G ` x : C1→ (. . .(Cp→ c) . . .)

appropriately.
The case (b) follows form the main induction hypothesis. End of Proof.

Definition 8.4 A BCD proof satisfying conditions (1),(2), and (3) is said to be “almost minimal” (am)
Definition 8.5 We define the notion of a oscillation in the Bohm tree of a beta normal term X as follows.
An oscillation is a sequence of pairs of nodes which descend in the tree such that the node

\x1 . . .xk.x

is paired with one of the arguments of this occurrence of x which has a non-empty lambda prefix, and
the next pair (if it exists) has the head variable of its first coordinate bound by this lambda prefix.

\x1 . . .xk.x
. . .\ . . .

\y1 . . .yl.y
/

. . .

\
\z1 . . .zm.yi

. . .\ . . .
\u1 . . .un.u

Definition 8.6 We say that the closed term X =
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\x1 . . .xk.xiX1 . . .Xl

in beta normal form is of class n if

(i) every lambda prefix in the Bohm tree of X has at most n lambdas
(ii) every node in the Bohm tree of X has at most n immediate descendants
(iii) every oscillation in the Bohm tree of X has at most length n.
Lemma 8.4. (class)
Let X be in beta normal form. If F ` X : A is provable in BCD then X then any oscillation beginning with
x :dom(F) has length less than or equal to ∼ e(F(x)) and other oscillations have length less than e(A)

Proof. w.l.o.g we may assume that A and all F(x) are in dnf. The proof is by induction on an am proof
P of F ` X : A

Basis; P is an axiom. Obvious.
Induction step; we distinguish several cases.
Case 1; P ends in ∧I. Then A = B∧C and e(A) = min{e(B),e(C)}. By induction hypothesis applied to
the premise of minimum e.
Case 2; P ends in→ I. Then A = B→C,X = \uU and P =

P′

F,u : B `U : C

F ` \uU : B→C.

This case follows immediately.
Case 3; P ends in→ E Now consider the leftmost path of P proceeding up P′; i.e. we take left premises
of→ E’s as often as possible, and then possibly the premise of an ([) inference with a variable subject,
and end at an axiom for a variable x. This is all that is possible since P is am. Let the axiom for x be

F ′,x : D ` x : D

If the axiom for x is immediately followed by an ([) rule inference

F ′,x : D ` x : D

F ′x : D ` x : E

note that ∼ e(E) < or = ∼ e(D) by tropical fact (4). Now consider one of the → inferences on the
leftmost path of P.

F ′′,x : D ` xX1 . . .Xi : E ′→ E ′′ F ′,x : D ` Xi+1 : E ′

F ′,x : D ` xX1 . . .Xi+1 : E ′′

By induction hypothesis any oscillation in Xi+1 beginning with x′ : dom(F) has length less than or equal
to ∼ e(F(x′)) and other oscillations have length less than e(E ′) less than ∼ e(D) since E ′ is negative in
E. Such an oscillation extends to one beginning with the with the head variable x.
Case 4; P ends in [. Similar to case 3. End of proof.
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Corollary 8.5. For each type A there exists an integer n s.t. for any closed beta normal M such that
`M : A in BCD M has class n.

Proof. by induction on the length of an am proof of F ` X : A using the class lemma. End of proof.

Lemma 8.6. (thinning)
Suppose that P is an am proof of F,x : B ` X : A where X is in beta normal form and the principal atoms
of B do not occur in either A or any F(y) for y : dom(F). Then x does not occur in P.

Proof. By induction on P. End of proof.

Defintion 8.10 An intersection type in dnf is said to be functional if each atom occurs at most twice and
if twice then with opposite sign, and there is no + occurrence of ∧. The type is co-functional if each atom
occurs at most twice and if twice then with opposite sign, and there is no - occurrence of ∧.
Definition 8.11 If A is dnf, say A=A1∧ . . .∧Ak with Ai =Ai,1→ (. . .(Ai,t(i)→ ai) . . .) the set of hereditary
components of A, hc(A), is defined recursively by

hc(A) = {A1, . . . ,Ak}U U hc(Ai, j).

Defintion 8.12 If A is dnf and S is a subset of hc(A) then A−S is obtained by deleting the members of S
from A and the corresponding arrows if entire lhs’s are deleted.
Lemma; (eta normal form)

Suppose that we have a functional type
A = A1→ (. . .(An→ a) . . .) where
Ak+1 =C1→ (. . .(Cp→ (Bk+2→ (. . .(Bn→ a) . . .))) . . .),
and for i+ k = 1, . . . ,n
Ai [ Bi

Let Y be in beta eta normal form. Then if k+1 < i, and
x1A1, . . . ,xk+1 : Ak+1,
yk+2 : Ak+2, . . . ,yn : An ` Y : Bi

we have y = yi.

Proof. by induction on the length of an am proof P. let

F = x1 : Ai, . . . ,xk+1 : Ak+1,
yk+2 : Ak+2, . . . ,yn : An

and suppose that y = \z1 . . .zm. zZ1 . . .Zi. W.l.o.g and may assume P does to end in ∧ and Bi does not
begin with ∧. Suppose that Y is not yi. We then consider the left most path of P. Beginning at the top
this path consists of 0 or 1 application [, followed by 1 application of→ E followed by m applications of
→ I. Now write Bi =

D1→ (. . .(Dq→ b) . . .).

Now since Ai [ Bi, by functionality, Ai has a unique component

Ei→ (. . .(Eq→ b) . . .)
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with principal type b. This accounts for the two possible occurrences of b so z = y1, and we have for
i = 1, . . . ,q Ei [ Di

Le G =

F, z1 : E1, . . . ,zq : Eq.

Then the axiom at the top of the leftmost path is

G−{zm+1 : Em+1, . . . ,zq : Eq} ` yi : Ai

and for j = 1, . . . , l, G ` Z j : D j. Now consider the type A′ =
A′1→ (. . .(A′n+q→ b) . . .) where
A′j = A j for j < k+1 and k+2 < j < n+1
A′k+1 =C1→ (. . .(Cp→ (Bk+2→ (. . .(Bi+1→ (E1→ (. . .(Eq→ (Bi+1→ (. . .(Bn→ a) . . .))) . . .))) . . .)
A′n+ j = D j for j = 1, . . . ,q.
This is functional, so by induction hyothesis Z j = z j. But m = 1. End of proof.

Construction;
Suppose that X is in beta normal form with free variables
x1, . . . ,xk. We construct co-functional types A1, . . . ,Ak, and a functional type A such that if F is the basis
such that F(xi) = Ai then F ` X : A. We construct the types by recursion; it will be convenient not to
identify different free occurrences of each variable xi until xi becomes bound, so that the Ai do not have
strictly positive occurrences of ∧ until binding. Thus, in F,xi may have several types not beginning with
∧. This is only a convenience.

1. if x = xi then A = Ai = the atom ai

2. if X = \xk+1.Y then let Ak+1 be the ∧ of all the types assigned to the different occurrences of xk+1
in Y ; then the type for X is Ak+1→ A

3. if X = xiX1 . . .Xl then we have already types B1 . . . ,Bl such that F ` X j : B j. We add the new
occurrence xi : B1→ (. . .(Bl → b) . . .), for b a new atom, to F and set the type for x = b.

Lemma 8.7. (uniqueness)
Suppose that A = A1− > (...(Ak− > B)...) is functional and there exists a beta-eta normal X such that
x1 : A1, . . . ,xk : Ak ` X : B
then X is unique.

Proof. ; set F = x1 : A1, . . . ,xk : Ak; the proof is by induction on the length of an am proof P of F ` X : B.
Write X as z1 . . .zmzZ1...Zn. Then B =

B1→ (. . .(Bl → b) . . .)

where m < l +1. There are two cases which are determined by A alone.
Case 1; z is Xi. Let G = F,z1 : B1, . . . ,zm : Bm. Then, since P is am, Ai has the component

C =C1→ (. . .(Cn→ (Bm+1→ (. . .(Bl → b) . . .))) . . .)

where B(i) [ B′(i)
and the conclusion of the [ on the leftmost path of P
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(if it exists, otherwise Ai =C) is G ` z : C. Now the lemma applies, and if

x1 : A1, . . . ,xk+1 : Ak+1,z1 : B1, . . . ,zm : Bm,
zm+1 : B′1, . . . ,z1 : B′1 ` z : B′i
then since Bi [ B′i for i = m+1, . . . , l we have
Zi = zi. Thus, since X is eta normal, this case cannot happen for two distinct values of m. We have

G ` Z j : C j, for j = 1, . . . ,n,

by shorter am proofs than P, and

A1→ (. . .(Ak→ (Ak+2→ ((B1→ (. . .(Bm→C j) . . .)))) . . .)
is functional so our induction hppothesis applies.
Case 2; z is a zi. Similar. End of proof.

Theorem 8.8. If M is strongly normalizable then there exists a functional type A such that if N is the
beta eta normal form of M then `M : A and N is the unique beta eta normal form such that ` N : A.

Proof. by the construction of a functional type above and the uniqueness lemma, the theorem follows
for M already beta normal. We must show that this extends to all strongly normalizable M. To this end
we will consider a standard reduction from a strongly normalizable Y to its beta normal form X . This
is sufficient by eta postponement and the construction above. For one step Y → Z � X we will have as
an induction hypothesis F ` Z : A where for each x:dom(F), F(x) is co functional, A is functional,and if
range(F) =
B1, . . . ,Bl then

B1→ (. . .(Bl → A) . . .)

is functional. We will show that there exists G, B such that G`Y : B, where for each x:dom(G),G(x) is co
functional, B is functional and if range(G) =C1, . . . ,Cm then C1→ (. . .(Cm→ B) . . .) is functional.Indeed
F,G,A,B will be related in the following way

1. dom(F) is contained in dom(G).
Let F = x1 : B1, . . . ,xl : Bl, G = x1 : C1, . . . ,xm : Cm

2. There exists a partition of the atoms R U T such that

(i) none of the atoms in R occur in the Bi or A

(ii) if an atom in P occurs in an hc of Ci or B then all the atoms of that hc belong to R

(iii) If S is the set of all hc’s with atoms from R then for each i,Bi =Ci−S and B−S = A

Remark 8.15 it is “almost true” that Ci [ Bi and A [ B. We say “almost true” because of the possibility of
→ deletion. To make the inequalities Ci[Bi and A [ B true we will at every stage of the induction assume
that we start the basis case with dom(F) large enough to include all the free variables in Y . We proceed
now by induction on the size of the reduction tree of Y with a subsidiary induction on the length of Y .
We distinguish a number of cases.
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Case 1; Y begins with lambda. Say, Y = \z.Z. Then \z.Z→\z.Z′ in the standard reduction strategy and
the main induction hypothesis applies to \z.Z′. Thus G ` \z.Z′ : B, B = B1→ B2, and G,z : B1 ` Z′ : B2.
Now the subsidiary induction hypothesis applies to Z and this gives the case.
Case 2; Y begins with a head variable. Say, Y = yY1 . . .Yk. Now the standard reduction contracts a redex
in one of the Yi with result Y ′i , say i = t; otherwise set Y ′j = Yj. The main induction hypothesis applies to
Y ′ = yY ′1 . . .Y

′
k so there exists co-functional F and functional A, with all the desired properties, such that

F ` Y ′ : A. Take an am proof P of F ` Y ′ : A. Now since F is co-functional F(y) has a component of the
form

B1→ (. . .Bk→ A) . . .)

such for i = 1, . . . ,k.
F ` Y ′i : Bi,

By the subsidiary induction hypothesis there exists G,C with all the desired properties w.r.t. F and Bt

such that G ` Yt : C. In particular there is a partition of atoms RUT as above. In particular, all the atoms
in F(x) and A lie in T . Now replace all the atoms in T by new atoms, but for notational purposes we will
continue to write the results as G and C. Now define H by
H(x) = F(x)∧G(x) if x is not y
H(y) = B1→ (. . .Bt−1→ (c→ (Bt+1→ (. . .A . . .))) . . .)
∧G(y)∧ the other components of y in F .

It is easy to see that H,A have the desired properties.
Case 3; Y begins with a head redex. In case the head redex is a lambda I redex the case follows from the
subject expansion theorem for lambda I ([2]pg 620). Otherwise we have Y = (\zZ)Z0Z1 . . .Zk and the
main induction hypothesis applies to Y ′ = ZZ1 . . .Zk. The main induction hypothesis also applies to Z0.
Thus there exists F,G,A,B with the desired properties s.t. F ` Y ′ : A, and G ` Z0 : B. We replace all the
atoms in B and G(x), for all x:dom(G), by new atoms, but for notational purposes we continue to write
the results as G an B. Now inspection of the am proof of F ` Y ′ : A shows that there exists C such that
C =C1→ (. . .Ck→ A),
F ` Z : C, and
F ` Zi : Ci for i = 1, . . . ,k.
Thus F ` \zZ : B→C. Now define H by
H(x) = F(x)∧G(x)
and H ` Y : A with the desired properties. End of proof.
Corollary 8.9. (finite sets)
If M1, . . . ,Mm are strongly normalizable then there exists a type A such that if Ni is the beta eta normal
form of Mi then `Mi : A and the Ni are the only beta eta normal forms N such that ` N : A.
Theorem 8.10. (class n)
If for each n there exists a type A such that if M is a beta eta normal form of class n then `M : A

Proof. suppose that we are given a term X in beta normal form of class n. We shall perform certain
operations on X which may increase its class to at most 3n.
(1) Each occurrence of a variable in the initial lambda prefix should be eta expanded so its lambda
prefix has length 2n. In addition, the eta variables so introduced for the head occurrence of X should be
similarly expaneded. The number of arguments of altered variable occurrences is now between n and 3n.
Oscillation could be increased to 1.
(2) We eta expand so that for any maximal subterm

\x1 . . .xk. xiX1 . . .Xl
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where xi was not considered in (1),
we have l = n so k < or = 3n, or l = 0 and k = 0.
In the result only the newly introduced eta variables are to have l = 0. Oscillations may have increased
by 1.

(3) Next we eta expand the new eta variables in X so that every maximal oscillation in the Bohm tree of
X has the same length n+1.

We call this normal form the vers normal form of X . We shall also assume that in X no bould variable
is bound twice and no bound varialbe is also free; this is just a convenience. If X is in vers normal form
then any occurrence of a given variable in X begins a maximal oscillation of the same length by (3).
We call this the rank of the variable. We define by recursion on rank an intersection type for each such
variable which depens only on its rank. In the process, we define an intersection type for each subterm.
Variables of maximum rank are treated as a special case.

We suppose that A has been defined for variables of rank k. If k+1 is not maximum set Tt =
A→ (. . .(A→ a) . . .)

|
t

Let S = k1, . . . ,kn be any sequence of non-negative integers less than or equal to 3n. Let Ts be the
type

Tk1 → (. . .(Tkn → a) . . .).

Finally the A for k+1 is the intersection of all these Ts. Now if k+1 is maximum let s(t) = k1, . . . ,kt be
any sequence of non-negative integers less than or equal to 3n, for t = n, . . . ,3n. Finally the A for k+1
is the intersection of all these T (s(t)). End of proof.

9 Adequate Numeral Systems

A numeral system d0,d1, . . . is a sequence of closed terms such that there exist lambda terms S and Z
satisfying
Sdn = dn+1

Zdn =

{
K∗ if n = 0
K if n > 0.

A numeral system is adequate if every partial recursive function is lambda definable on the system ([1]
page 136). Here we recall a corollary to Theorem 3.1 of ([4]).

Theorem 9.1. Theorem; Suppose that S is an infinite R.E. set of closed terms each of which has a beta
normal form and S is closed under beta-eta conversion. Then S is an adequate numeral system if and
only if the map that takes a term in S to the Gödel number of its beta-eta normal form is representable.
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Here, representable means that there exists a closed term M such that for each closed beta-eta normal
form N in S,

MN =′N′.

This will be used below.

10 New Normal Form

Suppose that we are given a term X in beta normal form of class n. We shall perform certain operations
on X which may increase its class.

(1) We eta expand each lambda prefix in X to length n+1. In the result only the newly introduced eta
variables have a prefix of length < n+1; namely, length = 0. In the result, the maximum number
of arguments of any variable occurrence may have increased to 2n+ 1. Oscillations may have
increased by 1.

(2) Next we eta expand the new eta variables in X so that every maximal oscillation in the Bohm tree
of X has the same length n+1.

We call this normal form the new normal form of X . Since class can be increased by 1 in the next
definition we begin with n−1.

Next, we construct terms which will compute a bound on the applicative depth of a closed term of
class n−1 put in new normal form. It will be convenient to construct these terms as simultaneous fixed
points, however for fixed n they can simply be defined recursively. Indeed, since the length of oscillations
and lambda prefixes is fixed at n our term can be defined recursively as if we are in the simple typed case
with one exception. The number of arguments of a head variable can vary between 0 and 2n. The term
replacing the head variable must first compute the number of arguments of the original variable and then
proceed to compute the depth recursively. This can be achieved by adding a suffix 1 . . .2n+1 and having
the term replacing the head variable compute which integer is in position 2n+ 1; e.g. 0 yields 2n+ 1,
2n+1 yields 1 etc. These terms use the lambda calculus representations of the sg and pred functions; sg
0 = K∗, sg (m+1) = K, pred 0 = 0, and pred (m+1) = m. They also use a term H which has specified
values on the positive Church numerals and is easy to construct;
set
V = 2

H(k+1) = \z1...z2n−k\w1...\w2n+1.

V z1...z2n−kw1...w2n+1

U = \u1...\u2n+1H(u2n+1))u1 . . .u2n+1

Gx = sgxV (\x1...x2n.Ux(F(predx)x1)...(F(predx)x2n))

Fxy = y(Gx) . . .n copies . . .(Gx)1 . . .2n+1
Notation;
We write
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M(X ,Y,s) := XY . . .s copies . . .Y
N(X ,Y,s) := M(X ,Y,s)1 . . .2n+1
R(X ,Y,s) := \x1 . . .xs.X(Y x1) . . .(Y xs).

Computation;
Now if 0 < s and X = \x1 . . .xn.xiX1 . . .Xl is beta normal let Yi = \x1 . . .xn. Xi then

G0 = V

Gs = \x1 . . .x2n.U N(x1,G(s−1),n) . . .N(x2n,G(s−1),n)

F0X = V (M(Y1,V,n) . . .(M(Yl,V,n))1 . . .2n+1

FsX = Gs(M(Y1,Gs,n) . . .(M(Yl,Gs,n)1 . . .2n+1.

Lemma 10.1. (depth)
If X has class n−1 and is put in new normal form then FnX beta converts to a Church numeral m such
that the depth of the Bohm tree of X is at most m.

11 Bohm-out

Fix n. We now describe an algorithm which given a closed beta eta normal form X of class n constructs
the Gödel number of an eta expansion of X . The algorithm is the result of iterating a procedure at least
depth of the Bohm tree of X times. The procedure can be realized as a normal lambda term and the
iterations accomplished by the use of the previous lemma on depth.
pi is (the Church numeral for) the ith prime

Pi := \x1 . . .x2n+1 pi

L j := \x1 . . .x2n\a.a jx1 . . .x2n.
For a positive integer s we define recursively the prime components of s to the the set of primes dividing
s together with the prime components of the exponents of these primes in the prime power factorization
of s.

We assume that X has been eta expanded so that for any subterm

\x1 . . .xk.xiX1 . . .Xl

we have l = n so k < or = 2n, or l = 0 and k = 0. We suppose that we are currently working on such
a subterm, recursing downwards, and that we have already substituted L j for the the jth variable bound
on the path in the Bohm tree to this subterm; say for j = 1, . . . ,r and the substitution @. So,the term in
front of us is

\x1 . . .xk.L j@X1 . . .@Xl

or

\x1 . . .xk.xi@X1...@Xl

depending on i. Now apply the term in front of us to the sequence
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P1 . . .P6n.

The result beta reduces to an integer s
We distinguish two cases

(i) the minimum element pr of the prime components of s has r < or = 2n.
In this case we have the second alternative for the term in front of us, and i = r. We now substitute
Lr+ j for x j, for j = 1, . . . ,k, thus expanding @, and recurse downwards on each of the @Xt for
t = 1, . . . ,n. Observe that in this case k = (t−1)/2 such that pt is the second smallest member of
the set of prime components of s

(ii) the minimum element pr of the prime components of s has r > 2n. In this case we have the first
alternative for the term in front of us. In case l = n we have r = k+ 2n+ 1 and for the second
smallest we have t = k+2n+n. In case k = l = 0 we have r = 2n+1 and t = 4n+1. Once k and
l are known l can be computed by applying then term in front of us to the sequence I . . .k+2n− l
copies . . . I(\x\x1 . . .x2n.x). Now proceed as in (i).

We obtain the following
Theorem 11.1. Let A be an intersection type and S be set of all closed terms M such that `M : A in BCD.
Then the map that takes a term in S to the Gödel number of its beta-eta normal form is representable.

12 An example.

An example of an adequate numeral system which is not the set of all closed terms of an intersection
type is the set of Bohm-Berraducci numerals

O := KK
S :=C∗
Z :=C ∗ (KK∗)
P := \xZxx(xI)
since C ∗ (. . .(C ∗KK)) . . .)

do not have bounded oscillation. A better example has bounded oscillation. Let

Fi,n := \ f . f (\x1. f (. . . f (\xn.xi) . . .))

Let S be a single valued infinite subset of the positive integer pairs (n, i) such that i< n+1. We distinguish
two cases

(a) for infinitely many n, i > n/2

(b) for infinitely many n, i < (n+1)/2.

We consider the case (b) here. The case for (a) is almost identical.
Proposition 12.1. Suppose that for (n, i) : S we have ` Fi,n : A. Then for n sufficiently large depending
only on A, we have for infinity many m

` Fi,m : A



20 On sets of terms with a given intersection type

Proof. we may suppose that A is in dnf. We first consider the case that A begins with→;A = B0→C0.
Consider an am proof of ` Fi,n : A then we have
f : B0 ` f (\x1. f (. . . f (\xnxi) . . .)) : C0

f : D1∧ ((B1→C1)→C′0),x1 : B1 `
f (\x2. f (. . . f (\xnxi) . . .)) : C1

...
f : Dn∧ ((B1→C1→C′0)∧ . . .∧ ((Bn)→Cn)→C′n−1),

x1 : B1, . . . ,xn : Bn ` xi : Cn

where
B0 =
D1∧ ((B1→C1)→C′0)∧ . . .∧ ((Bi→Ci)→C′i−1),
modulo slat. Bi[Cn and for j = 1 . . . ,n,C′i [Ci).
We now define a directed graph on the components of B0 which are of the form (B→C)→D. We make
(B→C)→D adjacent to (B′→C′)→D′ provided D′ [ D. Thus an am proof of ` Fi,n : A gives us a walk
through this digraph of length n. Hence if n/2 is larger than the number of components of B0 this walk
contains a directed cycle in its second half. The corresponding section of Fi,n can be repeated. The case
for more than one component is similar by using least common multiples. End of proof.

References
[1] Henk Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus with Types. Perspectives in Logic.

Cambridge University Press, 2013.
[2] Peter Butkovic. Max-linear Systems: Theory and Algorithms. Springer, 01 2010.
[3] Erwin Engeler. Barendregt h. p.. the lambda calculus. its syntax and semantics. studies in logic and foundations

of mathematics, vol. 103. north-holland publishing company, amsterdam, new york, and oxford, 1981, xiv +
615 pp. The Journal of Symbolic Logic, 49:301–303, 03 2014.
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