Strong normalization of simple types
through uniform intersection types

Daniele Pautasso & Simona Ronchi Della Rocca
Dipartimento di Informatica — Universita di Torino

daniele.pautasso@edu.unito.it, ronchi@di.unito.it

A new proof of strong normalization for simple type assignment for A-calculus is obtained, through
a translation from this system to a system of uniform intersection types, which is equivalent to it
as typability power and whose strong normalization property can be easily proved by induction on
derivation.

1 Introduction

The simple type assignment system for A-calculus comes from the simple type theory, introduced by
Alonzo Church. It assigns types to A-terms and enjoys the strong normalization property, i.e., the eval-
uation of a term which can be typed eventually stops, independently from the choice of the reduction
strategy. This property allowed for the design of type assignment systems for real programming lan-
guages, like ML and Haskell, based on simple types, assuring the termination of programs. There are
in the literature various proofs of such a property, following different approaches. Between the others,
Roger Hindley, in [8] supplies a semantic proof, based on a A-model, René David uses a completely
syntactical approach [3]], Federico Aschieri and Margherita Zorzi [1]] obtain a proof as consequence of
an analysis of non-strongly normalizing terms in an extended calculus, using the notion of perpetual
strategy.

Here we supply a further proof, based on a proof-theoretical approach. Namely we introduce a
restriction of intersection types, where intersection comes without idempotency, and moreover the inter-
section can be applied only to copies of the same type: we represent them as multisets having a singleton
as support. The resulting system has interesting properties: it has the same typability power of simple
types but it has a quantitative property, in the sense we can statically derive, from a derivation, some in-
formation about the size of the normal form of the subject. Moreover, the strong normalization property
for it can be proved quite easily, by induction on derivation. Then we prove that every derivation in the
simple type assignment system can be translated in a derivation in this system, with the same subject.

The translation is not simple: the original derivation is translated rule by rule, and every rule needs a
rewriting of the derivations obtained so far, to update the cardinality of the multiset types. But we think
this procedure is interesting in itself, since it shows the difficulty to transform a purely qualitative system
into a quantitative one.

Intersection types were first introduced in [4] in order to increase the typability power of simple
types, but immediately they turned out to be a very powerful tool to study the A-calculus semantics
[9]. The intersection connective traditionally enjoys commutativity, reflexivity and idempotency. In
[7, 6] idempotency was breached in order to gain a quantitative interpretation of types: in fact, some
properties which are undecidable for standard intersection types, like inhabitation, become decidable if

(© D.Pautasso & S. Ronchi Della Rocca
This work is licensed under the |Creative Commons
Attribution-Noncommercial-Share Alike| License.

Submitted to:
ITRS 2018

http://creativecommons.org
http://creativecommons.org/licenses/by-nc-sa/3.0/

2 Uniform intersection types

intersection is not idempotent [3[]. As far as we know, this is the first time that uniform intersection has
been introduced.

2 Preliminaries

Syntax We will follow the syntax and the notation for A-calculus as defined in [2]. Terms and term
contexts of A are generated respectively by the grammars:

M,N,P,Q
C

x| Ax.M| MM
O]x|Ax.C|MC|CM

where x ranges over a countable set Var of variables (denoted by x,y,z,...), and [J denotes the hole of
the term context. As usual, we assume that A-abstraction associates to the right, and has higher priority
than application. So, we write Axyz.xyz for Ax.(Ay.(Az.((xy)z))). The set of free variables of a term
Mis denoted by FV(M). We say that a term M is closed whenever FV(M) = @ and we denote by A° the set of
all closed terms. Both terms and term contexts are considered up to Q-conversion, i.e., modulo renaming
of bound variables. Given a term context C, we denote by C(M) the term obtained from C by filling the
hole with M, allowing the capture of free variables. An occurrence of a subterm N inside a term M is a
context C such that M = C(N).
The symbol = denotes the syntactic identity, modulo a-conversion.

Reduction The reduction relation — B is the contextual closure of the rule:
(Ax.M)N — M|N/x]

where M|N/x] denotes the capture avoiding simultaneous substitution of N for all free occurrences of x in
M. (Ax.M)N is called a redex and M|N/x] is its reduct. As usual, — denotes the reflexive and transitive
closure of — > and =g its reflexive, transitive and symmetric closure.

Normalization A term is in normal form if it has not occurrences of redexes, it has normal form (or it
is normalizing) if it can be reduced to a normal form. A term is strongly normalizing if all the reduction
sequences starting from it eventually terminate.

The simple type assignment system The set .7 of types is defined by the following grammar:
AB.C == a|A—A

where a ranges over a countable set of type constants. A confext is a set of pairs x : A, where x € Var
and A € 7. Contexts are ranged over by I',A; if x : A € T, then I'(x) = A; the domain of a context
I'is dom(I') = {x | JA.x: A € T}, I' — A denotes that I" and A agree, i.e., if x € dom(I") Ndom(A), then
I'(x) =A(x). I',Ais short for TUA in case dom(I") Ndom(A) = 0. Moreover A = B if they are syntactically
identical.

The simple type assignment system is a set of rules proving statements of the shape I' =M : A, where
I"is a context, M a term and A a type. The rules are shown in Figure[I} A derivation is a tree of rules, such
that its leaves are applications of rule (var), every node is an application of a rule whose premises are
conclusion of its sons and its conclusion is one of the premises of its father, and the conclusion of the root

D.Pautasso & S. Ronchi Della Rocca 3

I'EM:A x¢dom(I)

—— (var) (weak)
x:AFx:A Ix:BFM:A
x:AFM:B 'M:B—A AFN:B T'—A
—— (1) (=)
'FAxM:A—B TFT'UAFMN:A

Figure 1: The simple type assignment system

is its conclusion. Derivations are ranged over by IT,X. I' =M : A is short for the existence of a derivation
proving I'-M: A, when we want to put in evidence a particular derivation IT with this conclusion we will
write [I>T"FM: A.

The system enjoys two important properties.
Theorem 1 (subject reduction) I'-M: A andM —pg N imply U'EN: A.

Theorem 2 (strong normalization) I' =M : A implies M is strongly normalizing.

3 The uniform intersection types

In order to make easier the reading, we will use for the uniform intersection types the same notations
as for simple types. We recall that a multiset is an unordered list of elements, whose support is the set
of its elements. The union between two multisets, denoted by W, takes into account the multiplicity of
elements.

Definition 1 1. The set 7; of uniform intersection types is defined by the following grammar:

AB,C = a|lo—A (types)
o,T,p = [A, (n>1) (multisets)

where a ranges over a countable set of type constants and [A], denotes a uniform multiset of types,
with n elements, whose support is the singleton {A}.

2. A context is a set of pairs x : 6, where x € Var and & is a multiset. Contexts are ranged over by
A
3. The uniform intersection type assignment system proves statements of the shape I' -3 M : A, where
[is a context, M a term and A € ;. The rules of the systems are shown in Figure 2]
Notation
We extend to contexts all the notations introduced in the previous section, i.e.: if x: 6 € I, thenI'(x) = o,
dom(I') = {x | 3o.x: 0 € I'}. But in this setting I" —; A denotes that, if x € dom(I") Ndom(A), then I'(x)
and A(x) are multisets with the same support. Moreover I'W A denotes the context such that TWA(x) =
I'(x) WA(x). || denotes the cardinality of ©.
Rule (weak) is necessary to obtain the subject reduction property, as shown in the next example.
Example 1 Consider the following derivation:

(var)

y:[AlFiy:A
(—1) ——— (var)
yi[AlFs Axy:[A] = A yi[AlFiy:A

y:[A b (Axy)y: A

4 Uniform intersection types

F|_1MA {X:G}vir

(var) weak
x:[AlFix:A Fwx:oh; M:A (wealk)
Ix:o0F;M:B I'M:[Bl,—-A AF;N:B I'— A

(—=1) (—e)
'~ AxM:0—B 'y (AW.."JA), F; MN: A

(AW .. w5 A),, is short for the multiset union of n copies of the context A.

Figure 2: The uniform intersection type assignment system

Ay.(Ax.y)y —p Ay.y, but to derive =5 Ay.y : [A]y — A it is necessary to use the weakening rule.

Moreover the system enjoys the strong normalization property. In order to prove it, we need first a
substitution property, and a measure of its complexity.

Definition 2 The measure of a derivation I1 (denoted by meas(I1)), is defined by induction in the fol-
lowing way:

if I1 ends with an application of rule (var), then meas(Il) = 1;

if I1 ends with an application of rule (—1), and ¥ is its premise, then meas(IT) = meas(X);

if Il ends with an application of rule (weak), and ¥ is its premise, then meas(I1) = meas(X);

if I ends with an application of rule (—g), with X1 and ¥, as major and minor premise respectively, and
Ly >T'FM: [A], — B, then meas(I1) = meas(X;) +n x meas(L,).

Lemma 1 [fIIoT,x: [A],Fi M:Band E>A; N: A, then TI[E/x|>T'W (AW...WA), i M[N/x|, where
meas(I1[X/x]) < meas(IT) +n x meas(X).

Proof. By induction on I1. If IT is:

yi[AlFiy:A (var)

If x = y then I1[X/x] = £, otherwise I1[£/x] = I1. In both cases the result is obvious. If the last rule of
ITis (—1), the proof follows by induction. If IT is:
I oIy, x: [A]m HiP: [C]s —B IhLplyx: [A]p FiQ:C
Iy (Fz ... L‘!:lrz)s,x : [A]erpXS F;PQ:B

—>E)

where n = m+ p X s. Then, by induction, there are: IT; [X/x]|>Tj W(AW...wA),, ;3 P[N/x] : [C]; — B and
ILZ/x]>pThW(AW...WA), F; Q[N/x] : C, such that: meas(IT;[X/x]) < meas(II;)+ m x meas(X) and
meas(I1;[X/x]) < meas(Il;) + p x meas(X). Then by rule (—g), with premises IT; [£/x] and IT,[X/x]
we obtain: II[X/x|oT W (AW...WA), WL W (AW...WA), F; PQ[N/x] : B, where: meas(IT[X/x]) =
meas(IT;[X/x]) + s X meas(II;[X/x]) < meas(Il;) + m x meas(X) + s x (meas(I;) + p X meas(X)) =
meas(IT}) +s x meas(Il) + (m+s x p) x meas(X) = meas(I1) +n x meas(X).

In case the last rule of IT is (weak) the proof is obvious.

Property 1 1. I>T k3 Ax.M: A implies A =B — C and there is II'>T' 3 Ax.M: A such that its last
applied rule is (—1) and meas(IT) = meas(IT').

2. TI>T by MN : A implies and there is II'>T b5 MN @ A such that its last applied rule is (—g) and
meas (IT) = meas(IT.

D.Pautasso & S. Ronchi Della Rocca 5

Proof. In both cases, the only other possible rule is (weak), which commutes with both the rules.
The quantitative properties of the system allow for a very easy proof of strong normalization.

Lemma 2 [fTI>T; M: AandM —g M, then TI'>T =35 M : A and meas(IT') < meas(IT).

Proof. M —pg M means that M = C((Ax.P)Q) and M' = C(P[Q/x). The proof is by induction on C. Let
C = 0. Then, by Property (I} IT has the following shape:

OvIx:[B],FiP:A
(—1)
Fl—lle[B]n—>A ZDA"iQIB
I'w(AW..wWA), F; (Ax.P)Q: A

(—E)

Let IT be the derivation obtained by replacing IT by ®[X/x], then arranging the subjects. Then
meas(I1') = meas(®[X/x]) < meas(II) by induction. The induction cases are straighforward.

The measure of a derivation IT>I"F; M: A is an upper bound to the number of variable occurrences
(both bound and free) in the normal form of the subject M.

Example 2 Consider the following derivation I1:

y:[[AH[AHA]hy;[AH[AHA(VH) x:[A]Fix:AEvar)) e
—E — (var
y:[[A] = [A] = AlL,x: [A]lF;yx:[A] = A x:[A]I—ix:A(_>
v Al = [A] — Al,x: [Al2 Fs yxx: A . i
v Al = [A] = Al Fs Ax.yxx: [Als A T x

y:[[A] = [A] = Al,z: [A]a s (Ax.yxx)z : A
where ¥ is the derivation:
(var)

z:[A]F;z:A

Then meas(IT) = 5. (Ax.yxx)z — g yzz, which is typed by the following derivation IT' :

Ao E oy Wom o Sareal

(—E) —— (var)
y:[[A] = [A] = A,z: [A] b yz: [A] — A z:[A]Fiz:A

y:[[A] = [A] > Al,z: [Ala b yzz: A
and meas(IT') = 3.
Theorem 3 Let [I1>1"F; M: A. Then M is strongly normalizing.

Proof. The proof is a corollary of Lemma 2]

4 Strong normalization of simple types

The proof of strong normalization of simple types assignment system is based on a translation from it to
uniform intersection type assignment system. First, we will define a translation from intersection types
to simple types, which simply erases the multisets in 7;.

6 Uniform intersection types

Definition 3 1. The translation (.)° from 7 to 7 is defined by induction on the size of types in the
following way:

(a)° = &
(c—=4)° = (0)7—=(A)%
([Al)° = (&)
2. The translation (.)° can be extended to contexts in the following way:

(I)°={x:A|x:0€l'A=(0)°}.
Definition 4 On .7; we define two relations.
1. XC 7; x 7 is defined in the following way:
(a) a=<a ifa=2a;
(b) [Aly = [Alm ifn<m;
(c) o A=<1T—=Bifoc X7Tand A <B.
2. ~C J; x J; is defined in the following way:
(a) a~a' ifa=a/;
(b) [A]n = [A]m, for any n,m;
(¢c) o >A~1T—>Bifc~7Tand A~B.

Property 2 (A)° = (B)° ((0)° = (1)°) implies A ~ B (G ~ t). Moreover; the class Sg = {A | (A)° =B}
has a minimum element, with respect to the number of symbol occurrences in a type.

Proof. Easy, by induction on types. The minimum element of Sg is a type A € .75 where all multisets
have cardinality 1.

Definition 5 The operation merge : 7 x J — ;i is defined as follows:
merge(A,B) = if A% Bthen undefined, else
merge(a,a) = a;
merge([A], — B, [A'ln — B') = [merge(A,A")|nax(nm) — merge(B,B’)

Definition 6 1. A type context is obtained by adjoining a new constant [(the hole) to the syntax of

types:
TC == [OJa|[TC], —A|[A], — TC (n>1)

TC(A) denotes the result of replacing the hole O in it by A; note that filling the context [TCl,, — A
with B produces the type [TC(B)], — A. An occurrence of A inside a type B is the type context

TC such that TC(A) = B, so all the copies inside the same multisets are considered as a single
occurrence: let B be [C], — A, then there is a unique occurrence of C in it, namely [],, — A.

Rules of Figure [2]can be trivially extended to the new syntax. In what follows, we will deal with occur-
rences of subtypes. In order to distinguish between different occurrences of the same (sub)type inside
a derivation, we will use integer indexes. A more formal definition, using derivation contexts, could be
possible, but it would be a very difficult syntax to work with.

Definition 7 Ler II>T" 5 M: A. An o-set of I is a set of occurrences of the same type in it, and O(I)
denotes the set of o-sets of I1. The definition of O(I1) and the partial relation < between o-sets are given

by induction on Il in the following way:
Let I1 be:

o o) Fa x TC(ag))

D.Pautasso & S. Ronchi Della Rocca 7

then, for every context TC, {A1,A2} € O(II).
Let 1 end with an application of the rule (—1). There are two cases, according to the possible type
contexts into consideration.

O>T,x: [TC(Ay)], i M: TC'(By)
I'F; Ax.M: [TC(A2)]n — TC'(By) = ([TC(A)], — TC'(B)):

Then, for every context TC, o/ € O(®) and A € o implies o7 U{A,} € O(I1), # € O(®) and B, € #
implies U {B,} € O(I1). Moreover {([TC(A)], — TC'(B))1} € O(I1). Every other o-set of ® is also an
o-set of TL

Let I1 be:

(—1)

OvI,x:[Ci], i M: B
FFi Ax.M: ([C]n — B)l

Then, {([C], — B)1} € O(IN), and , for every €,% such that C; € € € O(®) and B; € B € O(0)
¢,% € O(Il), and {([C], = B)1} <€ and {([C], — B)1} < AB. Every other o-set of ® is also an o-set
of TL

Let T1 ends with an application of the rule (—g). Also here there are two cases, according to the
possible type contexts.

O>TF; M: [TC'(By)], — TC(A;) @A N:TC'(By) I'—; A
I'y(AW...”A), F; MN: TC(Az)

then By € %, € 0(@1) and By € B, € 0(@2) imply %8, U %, € O(H). Ifh\ e € 0(@1), then </ U
{A>2} € O(IT). Moreover, for every x € dom(I') Ndom(A), if x : [TC"(Cy)], € T and x : [TC"(Ca)|m € A, if
C| €%1 € 0(0)) and C; € €, € O(0,), then €, U6, € O(I1). Every other o-set of ® and ®, is also an
o-set of TL

Let I1 be:

(—E)

O;>I'H; M:([B])]n —)Al)l O>AF;N:By, T'—; A
'y (AW...wWA), F; MN: Ay

(—E)

Then, by the previous point, A| € o7 € O(0y) implies o7 U{A,} € O(I1), and B) € B € O(0®,) implies
A J{By} € O(I1). Moreover ([B1)], — A1)1 € & € O(0Oy) implies & € O(I). So &/ U{A} < BU{B,}
and also o/ U{Ay} < €1 UG, for every x € dom(I') Ndom(A).

Let I1 be:

'kyM:A T'—; {x:[TC(B)],}
OvI'Wx: [TC(By)],FiM:A

If x ¢ dom(T"), then {B;} € O(I1), otherwise there is x : [TC(B;)],y in I, and every o-set of O(®) belongs
to O(I0).

weak)

Morally an o-set of II collects all the (sub)types occurrences that are copies of the same logical
(sub)formula and the < relation connects the conclusion with the premises of a rule.

Example 3 Consider the following derivation:

x:[[a] > a]tix:[a] > a (var)

8 Uniform intersection types

Let us number the subtype occurrences of a:

x:[[a1] = ax]Fix:[a3z] = ag (var)

and the type occurrences of [a] — a:

(Al = an]Fix: (ja] — a) (var)

then {ai,asz}, {az,asa}, {([a] — a)1,([a] — a)2} belong to O(I).

Let us define a rewriting operation on derivations, R(I1, <7,B), where <7 denotes an o-set of O(IT)
containing occurrences of A such that A < B. Roughly speaking, this operation consists in replacing all
occurrences of A in .7 and in all the o-sets > .7 by B. We will prove at the same time that this operation
preserves typability, i.e., [I>T"F; M: A implies R(IT, <7 ,B)>T" - M: A

The definition is by induction on IT.

Let IT be:

O] Fe x To(ay))

If o7 ={Ay,Ay}, R(IL, <7 ,B) is:

(var)
x: [TC(B)] k1 x : TC(B)
Otherwise, R(I1, <7,B) =II. Clearly R(I1, <7,B) is a correct derivation for x.
Let A; € & and let I1 be:

O>T,x: [TC(Ay)], ki M: TC'(Cy)
[k AxM: [TC(Ay)], — TC'(Co)

By induction there is R(0®, .27 ,B), proving
[,x: [TC(B)], i M: C’

so R(I1, «7,B) is obtained from it by rule (—1). Let C; € <7 by induction there is R(®, <7, B), proving
[,x:[A], ki M: TC'(B)

and the result follows by rule (—1).
Let A, € 7. Since, by definition, A; and A; both are in are in <7, as C; and C;, we can apply the same
reasoning. Let ([A'], — C'); € < and let IT be:

Qb x: [A]],FiM:C)
Tk AxM: ([A], — ')

Then B = [A"],, — C", where A’ < A", ¢’ <" and n < m.

Then let <7 and %) be such that A} € o7} € O(0®), and C| € %) € O(®). By definition 7 < 7] and
o/ < g, so we need to close the substitution w.r.t. .27 and <%. By induction R(R(®, <7 ,A"), o#,C") >
I x:[A"], i M:C", and R(IL, ([A'],, — C'); is the derivation:

[x:[A"], kM
[x: [0, FiM:C”
[AxM: [A"],, —

(weak)

(—1)

D.Pautasso & S. Ronchi Della Rocca 9

Otherwise R(IT,A;,B) =1L
Let IT be:

Q> M: [TC'(Cy)], — TC(A;) Or>AR;N:TC(C;) ['—; A
I'y(AW...wA), F; MN: TC(Az)

(—E)

Let C; € 7. Remember that, by definition, this implies C; € 7. Then by induction R(®1,<7,B)>I" I
M: [TC(B)], — A’ and R(®,, o/ ,B)>A’ I3 N : TC(B). Moreover, by definition of the relation < between
o-sets, I" —; A’. So the result follows by rule (—g). The case where {A;,A;} C o follows by induction.
Let IT be:
O pI'H; M: ([Bl]n — Al)l O>AF;N:By I'—; A

'y (AW...wWA), F; MN: Ay

(—E)

and ([By], — Ay); € . Then B = [B],, — A’, where B < B’ and A < A’. By induction R(®;, </ ,B)>
I"H; M:[C];, = A" and R(®,,47,B)>A’ F; N : C'. By definition I” ~—; A’. So the result follows by rule
(%E)-
Property 3 Let II>T"F; M: A, Then, for every o-set < of occurrences of A, for every B such that A < B,
R(I1, 7 ,B)>T" 3 M: A, for some T and A'.
Proof. The proof follows from the definition of R(I1,.<7,B).

Lemma 3 LetI'-M: A. There are I'* and A* such that I'* 3 M : A*, and moreover:
1. (A")° =A;
2 D)*={x:0|x:(0)° eI}
Proof. By induction on the derivation IT proving I' M : A. Let IT be:
— (var
x:AFx:A ()

Between all types A’ € .7; such that (A’)° = A, let A* be the minimum type w.r.t. ~ such that ((A*))° = A.

The desired derivation is:

Let IT be:
Opl,x:AFM:B

I'FAxM:A—B

By induction there is a derivation (®)* > (A)* ;3 M: (B)*, satisfying[I]and 2} So, by[2] (A)* = (I)*,x: o
where (0)° = A, and, by (1] ((B)*)° =B. So 0 = [(A)*],. Then the desired derivation is:

_>I)

(@) >(I)",x: [(A)]u s M: (B)
(0)* 3 Ax.M: [(A)], — (B)"

(—1)

and it is easy to check that both the conditions [I] and 2] are satisfied.

Let IT be:
O >I'FM:B—A O,bAFN:B T'—; A

TUAFMN: A

(—E)

10 Uniform intersection types

By induction, there are derivations: (®;)*> (I')* F; M: (B — A)* and (®;)" > (A)* ;1 N : (B)*, both
satisfying conditions [T|and 2} Since ((B — A)*)° = B — A, by [1] and definition of () (B—4)")° =
(0)° — (A")°, for some ¢ and A’ such that (0)° =B and (A")° = A. So, byl o = [B'],, for some n, and
some B’ such that (B')° = B. In the derivation ®,, let (B)* =B": by (B")° =B, so B” ~ B’. Moreover,
by I *. Let Z € O(I1) contain the occurrence of B in the type conclusion of ®;. Remember
that, by constructlon, 9B contains also the occurrence of B in the type conclusion of ®;. Then the desired
derivation is R(I1, Z,merge(B',B")).

Theorem 4 I'-M: A implies M is strongly normalizing.

Proof. By Lemma [3| M is typable in the system of uniform intersection types. Then the result follows
from Theorem

References

[1] Federico Aschieri. Strong normalization for HA + EM1 by non-deterministic choice. In Ugo de’Liguoro and
Alexis Saurin, editors, Proceedings First Workshop on Control Operators and their Semantics, COS 2013,
Eindhoven, The Netherlands, June 24-25, 2013., volume 127 of EPTCS, pages 1-14, 2013.

[2] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in logic and the
foundation of mathematics. Revised edition, 1984.

[3] Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. The inhabitation problem for non-
idempotent intersection types. In Theoretical Computer Science - S8th IFIP TC 1/WG 2.2 International Con-
ference, TCS 2014, Rome, Italy, September 1-3, 2014. Proceedings, pages 341-354, 2014.

[4] M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory for the A-calculus. Notre
Dame J. Form. Log., 21(4):685-693, 1980.

[5] René David. A short proof of the strong normalization of the simply typed lambda calculus. 2001.

[6] Daniel de Carvalho. Execution time of lambda-terms via denotational semantics and intersection types. CoRR,
abs/0905.4251, 2009.

[7] Philippa Gardner. Discovering needed reductions using type theory. In Theoretical Aspects of Computer
Software, International Conference TACS '94, Sendai, Japan, April 19-22, 1994, Proceedings, pages 555—
574, 1994.

[8] J. Roger Hindley and Jonathan P. Seldin. Lambda-calculus and Combinators, an Introduction. Cambridge
University Press, 2008.

[9] Simona Ronchi Della Rocca and Luca Paolini. The Parametric A-Calculus: a Metamodel for Computation.
Texts in Theoretical Computer Science. Springer, 2004.

	Introduction
	Preliminaries
	The uniform intersection types
	Strong normalization of simple types

