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We study the question of extending the BCD intersection type system with additional type construc-
tors. On the typing side, we focus on adding the usual rules for product types. On the subtyping
side, we consider a generic way of defining a subtyping relation on families of types which include
intersection types. We find back the BCD subtyping relation by considering the particular case where
the type constructors are intersection, omega and arrow. We obtain an extension of BCD subtyping
to product types as another instance. We show how the preservation of typing by both reduction and
expansion is satisfied in all the considered cases. Our approach takes benefits from a “subformula
property” of the proposed presentation of the subtyping relation.

1 Introduction

Intersection type systems are tools for building and analysing models of the λ -calculus [BCDC83,
Bak95, RDRP04, ABDC06]. They also provide ways of characterising reduction properties of λ -terms
such as normalization. The main difference with other type systems is the fact that not only subject re-
duction holds (if t reduces to u and Γ ` t : A then Γ ` u : A) but also subject expansion holds (if t reduces
to u and Γ ` u : A then Γ ` t : A). As a consequence it is possible to define a denotational model by
associating to each (closed) term the set of its types JtK = {A | ` t : A}.

The most famous intersection type system is probably the BCD system [BCDC83], and this is the
one we are focusing on. While BCD insists on the interaction between arrow types and intersection
types, following [BCD+18], we want to consider more general sets of type constructors. The BCD type
system can be decomposed into two parts: typing rules and subtyping rules. They are related through the
subsumption rule. Our main contribution is a derivation system for the subtyping relation which allows
us to deal with generic type constructors while satisfying a “subformula property”. In contrast with
[BCD+18], we allow contravariant type constructors so that even the arrow constructor can be defined
as an instance of our generic pattern, and only intersection has a specific status.

In Section 2, we recall standard syntactic proofs [ABDC06, Lau12] of preservation of typing by
β -reduction and β -expansion for the BCD system. Our presentation stresses the fact that, starting from
intersection (and Ω) only, type constructors can be added in a modular way. In Section 2.2, we con-
sider the arrow types, thus obtaining the usual BCD rules. We extend the results to product types in
Section 2.3. The main part of the paper is then Section 3 where we propose a sequent-style derivation
system for defining BCD-like subtyping relations for extensions of intersection types to generic sets of
constructors. Starting from a transitivity/cut admissibility property, we prove that instances of our system
are equivalent with variants of the BCD subtyping relation.

Key results on subtyping (Propositions 5 and 6 and Theorem 1) are proved in Coq:

https://perso.ens-lyon.fr/olivier.laurent/bcdc/bcdc_coq.tgz
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var
Γ,x : A ` x : A

Γ ` t : A A≤ B ≤
Γ ` t : B

Γ ` t : A Γ ` t : B ∩
Γ ` t : A∩B

Ω
Γ ` t : Ω

Table 1: Typing Rules with Subtyping and Intersection.

2 Intersection Typing

We present the system we are looking at, which is mainly BCD [BCDC83] extended with product types.
Type constructors are introduced in an incremental and modular way.

2.1 Intersection Types

Let us first consider an at most countable set X of base types denoted X , Y , etc, and consider types built
using at least the following constructors:

A,B ::= X | A∩B |Ω | . . .

Similarly we do not define the exact set of terms (denoted t, u, etc), but first we only assume they contain
a denumerable set of term variables V (whose elements are denoted x, y, etc). A first set of typing rules
is given on Table 1. Note these rules rely on a subtyping relation ≤ on types.

Lemma 1 (Weakening)
If Γ ` t : A and ∆≤ Γ (meaning that, for each x : B in Γ, one can find x : B′ in ∆ with B′ ≤ B) then ∆ ` t : A.

Lemma 2 (Strengthening)
If Γ,x : B ` t : A and x /∈ t then Γ ` t : A.

Because it makes hypotheses on the term in conclusion, the rule (var) is called a term rule (the
introduced term must be a variable). In the opposite, (≤), (∩) and (Ω) rules are called non-term as they
apply on any term without any constraint on its main constructor. As a term rule, (var) admits a so-called
generation lemma analysing how variables can by typed. For this, we make some hypotheses on the
subtyping relation (see Table 2).

Note in passing, that the axioms of Table 2 make≤ a preorder relation with ∩ as greatest lower bound
and Ω as top element. In particular, up to the equivalence relation induced by ≤, ∩ is a commutative
associative idempotent operation with Ω as unit. As a consequence the notation

⋂
i∈I Ai makes sense (up

to the equivalence relation induced by ≤) for any (possibly empty) finite set I.

Lemma 3 (Generation for Variables)
Assuming that (var) is the only term rule introducing a variable, the only non-term rules are (≤), (∩)
and (Ω), and that the axioms of Table 2 are satisfied, we have: if Γ ` x : A with x : B ∈ Γ then B≤ A.

Lemma 4 (Substitution)
If Γ,x : A ` t : B and Γ ` u : A then Γ ` t[u/x] : B.

2.2 Arrow Types

We now assume types contain an arrow constructor and terms are extended correspondingly:

A,B ::= X | A∩B |Ω | A→ B | . . . t,u ::= x | λx.t | t u | . . .
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A≤ A (refl)

A≤ B ∧ B≤C ⇒ A≤C (trans)

A∩B≤ A (∩1
l )

A∩B≤ B (∩2
l )

C ≤ A ∧ C ≤ B ⇒ C ≤ A∩B (∩r)

A≤Ω (Ωr)

Table 2: Kernel Properties of Subtyping.

Γ,x : A ` t : B
abs

Γ ` λx.t : A→ B
Γ ` t : A→ B Γ ` u : A app

Γ ` t u : B

Table 3: Typing Rules for Arrow.

The associated typing rules are given on Table 3. Note the two new rules are term rules corresponding
respectively to λx.t and t u (no new non-term rule).

By adding new cases corresponding to the added rules in the proofs, one can check that Lemmas 1
and 2 still hold. Moreover the hypotheses of Lemma 3 are still verified, and finally Lemma 4 (which
only relies on the previous lemmas) is still true as well.
Lemma 5 (Generation for Application)
Assuming that (app) is the only term rule introducing an application, the only non-term rules are (≤),
(∩) and (Ω), and that the axioms of Table 2 are satisfied, we have: if Γ ` t u : B then there exist two
families of types (Ai)i∈I and (Bi)i∈I with

⋂
i∈I Bi ≤ B and, for each i ∈ I, Γ ` t : Ai→ Bi and Γ ` u : Ai.

Lemma 6 (Generation for Abstraction)
Assuming that (abs) is the only term rule introducing an abstraction, the only non-term rules are (≤),
(∩) and (Ω), and that the axioms of Table 2 are satisfied, we have: if Γ ` λx.t : A then there exist two
families of types (Bi)i∈I and (Ci)i∈I with

⋂
i∈I(Bi→Ci)≤ A and, for each i ∈ I, Γ,x : Bi ` t : Ci.

We now have the requested material to prove subject reduction and subject expansion. However a
specific axiom on subtyping is still missing:

⋂
i∈I

(Ai→ Bi)≤ A→ B ⇒ ∃J ⊆ I,

(⋂
i∈J

Bi ≤ B ∧ ∀i ∈ J, A≤ Ai

)
(→≤→)

The study of this axiom will be at the heart of Section 3.
Proposition 1 (Subject Reduction)
Assuming (→≤→), if t1→β t2 and Γ ` t1 : A then Γ ` t2 : A.

Proof. The key case is (λx.t)u→β t[u/x]. If Γ ` (λx.t)u : A, by Lemma 5, we have two families (Bi)i∈I

and (Ci)i∈I with
⋂

i∈I Ci ≤ A and, for each i ∈ I, Γ ` λx.t : Bi → Ci and Γ ` u : Bi. For each i ∈ I, by
Lemma 6, we have two families (B′j) j∈Ji and (C′j) j∈Ji with

⋂
j∈Ji

(B′j → C′j) ≤ Bi → Ci and, for each
j ∈ Ji, Γ,x : B′j ` t : C′j. By (→≤→), there exists Ki ⊆ Ji such that Bi ≤ B′j ( j ∈ Ki) and

⋂
j∈Ki

C′j ≤Ci.
We conclude by using Lemma 4 with Γ ` u : B′j:
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A≤ A
A≤ B B≤C

A≤C A≤Ω

A∩B≤ A A∩B≤ B A≤ A∩A
A≤C B≤ D

A∩B≤C∩D

C ≤ A B≤ D
A→ B≤C→ D (A→ B)∩ (A→C)≤ A→ (B∩C) Ω≤Ω→Ω

Table 4: BCD Subtyping Rules.

· · ·

· · · Γ ` t[u/x] : C′j · · ·
∩

Γ ` t[u/x] :
⋂

j∈Ki
C′j

⋂
j∈Ki

C′j ≤Ci
≤

Γ ` t[u/x] : Ci · · ·
∩

Γ ` t[u/x] :
⋂

i∈I Ci
⋂

i∈I Ci ≤ A
≤

Γ ` t[u/x] : A

Proposition 2 (Subject Expansion)
If t1→β t2 and Γ ` t2 : A then Γ ` t1 : A.

Proof. The key case is (λx.t)u→β t[u/x]. We first prove that Γ ` t[u/x] : B implies that we can find a
type A such that Γ,x : A ` t : B and Γ ` u : A, by induction on the derivation of Γ ` t[u/x] : B. And then:

Γ,x : A ` t : B
abs

Γ ` λx.t : A→ B Γ ` u : A app
Γ ` (λx.t)u : B

To sum up, we have shown that given the typing rules of Tables 1 and 3, the subject reduction and
subject expansion properties hold for β -reduction as soon as the chosen subtyping satisfies the axioms
of Table 2 as well as property (→≤→). The historical example from the literature is the BCD sys-
tem [BCDC83] corresponding to the subtyping relation of Table 4. We will come back to the fact that
(→≤→) holds for this BCD relation (Lemma 10).

2.3 Product Types

We now assume types contain a product constructor and terms are extended correspondingly:

A,B ::= X | A∩B |Ω | A→ B | A×B | . . . t,u ::= x | λx.t | t u | 〈t,u〉 | π1 t | π2 t | . . .

The associated typing rules are given on Table 5. Note the new rules are all term rules (no non-term
rule added). Lemmas 1, 2, 3 and 4 still hold. It is also easy to check that the new rules do not break
Propositions 1 and 2.
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Γ ` t : A Γ ` u : B pair
Γ ` 〈t,u〉 : A×B

Γ ` t : A×B proj1
Γ ` π1 t : A

Γ ` t : A×B proj2
Γ ` π2 t : B

Table 5: Typing Rules for Product.

Lemma 7 (Generation for Paring)
Assuming that (pair) is the only term rule introducing a pair, the only non-term rules are (≤), (∩) and
(Ω), and that the axioms of Table 2 are satisfied, we have: if Γ ` 〈t,u〉 : A then there exist two families of
types (Bi)i∈I and (Ci)i∈I with

⋂
i∈I(Bi×Ci)≤ A and, for each i ∈ I, Γ ` t : Bi and Γ ` u : Ci.

Lemma 8 (Generation for Projection)
Assuming that (proj1) is the only term rule introducing a left projection, the only non-term rules are (≤),
(∩) and (Ω), and that the axioms of Table 2 are satisfied, we have: if Γ ` π1 t : A then there exist two
families of types (Bi)i∈I and (Ci)i∈I with

⋂
i∈I Bi ≤ A and, for each i ∈ I, Γ ` t : Bi×Ci.

The corresponding result for the right projection π2 t holds as well.
We consider the reduction→π to be the congruence generated by:

π1 〈t,u〉 →π t π2 〈t,u〉 →π u

Similarly to the arrow case, we ask for an additional property of the subtyping relation in order to deduce
subject reduction: ⋂

i∈I

(Ai×Bi)≤ A×B ⇒
⋂
i∈I

Ai ≤ A ∧
⋂
i∈I

Bi ≤ B (×≤×)

Proposition 3 (Subject Reduction for Products)
Assuming (×≤×), if t1→π t2 and Γ ` t1 : A then Γ ` t2 : A.

Proof. The key case is π1 〈t,u〉 →π t. If Γ ` π1 〈t,u〉 : A, by Lemma 8, we have two families (Bi)i∈I and
(Ci)i∈I with

⋂
i∈I Bi ≤ A and, for each i ∈ I, Γ ` 〈t,u〉 : Bi×Ci. For each i ∈ I, by Lemma 7, we have two

families (B′j) j∈Ji and (C′j) j∈Ji with
⋂

j∈Ji
(B′j×C′j)≤ Bi×Ci and, for each j ∈ Ji, Γ ` t : B′j and Γ ` u : C′j.

By (×≤×),
⋂

j∈Ji
B′j ≤ Bi. We conclude by:

· · ·

· · · Γ ` t : B′j · · ·
∩

Γ ` t :
⋂

j∈Ji
B′j

⋂
j∈Ji

B′j ≤ Bi
≤

Γ ` t : Bi · · · ∩
Γ ` t :

⋂
i∈I Bi

⋂
i∈I Bi ≤ A

≤
Γ ` t : A

Proposition 4 (Subject Expansion for Products)
If t1→π t2 and Γ ` t2 : A then Γ ` t1 : A.

Proof. The key case is π1 〈t,u〉 →π t. We have:

Γ ` t : A Ω
Γ ` u : Ω pair

Γ ` 〈t,u〉 : A×Ω
proj1

Γ ` π1 〈t,u〉 : A



6 Intersection Subtyping with Constructors

A≤C B≤ D
A×B≤C×D (A×B)∩ (C×D)≤ (A∩C)× (B∩D)

Table 6: BCD-Style Subtyping Rules for Products.

Following [BCD+18] in extending BCD subtyping in the context of additional type constructors, we
can consider the rules of Table 6 for subtyping with products. This system satisfies property (× ≤ ×)
(Lemma 11).

While the present section focused on the product extension of BCD, our purpose is to use it as a
concrete application of a more general pattern of subtyping between types which include intersection as
well as other type constructors. What should be remind of from what we have done so far, is that we can
get subject reduction and subject expansion as soon as the subtyping relation satisfies Table 2 as well as
(→≤→) and (×≤×). The next section provides a general approach to these results.

3 Intersection Subtyping

Inspired by [BCD+18], we directly consider types built with an arbitrary set of constructors. The case of
× for example will be obtained as a particular instance. We go in fact one step further than [BCD+18]
by allowing enough generality in the treatment of constructors so that→ appears as a constructor among
others and not as a specific one as given in [BCD+18].

3.1 Generic Subtyping with Constructors

We assume given a set K of type constructors (denoted κ , κ1, κ2, etc) which come with a contravariant
arity ακ and a covariant arity βκ . We assume that arities are respected when constructing types, so that
if ακ = 2 and βκ = 1, then κ(A,B;C) is a type when A, B and C are three types. Moreover, for each
constructor κ , a Boolean ε(κ) defines its behaviour with respect to top types (see below).

Types are thus generated through:

A,B ::= A∩B | κ(~A;~B)

Type constants are provided by constructors with zero arities.
We introduce a sequent-calculus-style derivation system ISC to define the subtyping relation on these

types. We will show that applying proof-theoretical methods, such as cut elimination, allows us to deduce
easily some properties of subtyping such as Lemma 9.

Sequents are of the shape Γ ` A where Γ is a (possibly empty) list of types. The intended meaning
is:

A1, . . . ,Ak ` B “means” A1∩·· ·∩Ak ≤ B (thus if k = 0, B is a top type).

The derivation rules are on Table 7 and satisfy the subformula property.



O. Laurent 7

Γ,∆ `C
wk

Γ,κ(~A;~B),∆ `C
Γ ` A Γ ` B ∩R

Γ ` A∩B
Γ,A,B,∆ `C

∩L
Γ,A∩B,∆ `C

k = 0⇒ ε(κ) = 1
A1 ` A1

1 · · · A1 ` Ak
1

...
Aακ
` A1

ακ
· · · Aακ

` Ak
ακ

B1
1, . . . ,B

k
1 ` B1

...
B1

βκ
, . . . ,Bk

βκ
` Bβκ

constr
κ(A1

1, . . . ,A
1
ακ

;B1
1, . . . ,B

1
βκ
), . . . ,κ(Ak

1, . . . ,A
k
ακ

;Bk
1, . . . ,B

k
βκ
) ` κ(A1, . . . ,Aακ

;B1, . . . ,Bβκ
)

Table 7: ISC Deduction System.

Proposition 5 (Admissible Rules)
The following rules are admissible in ISC:

Γ `C ex
Γ′ `C

Γ′ permutation of Γ

Γ,∆ `C wkgen
Γ,A,∆ `C

ax
A ` A

Γ,A∩B,∆ `C ∩Le
Γ,A,B,∆ `C

Γ,A,A,∆ `C
co

Γ,A,∆ `C
Γ ` A ∆,A,Σ `C

cut
∆,Γ,Σ `C

Proof. (ex) is obtained by induction on the proof of the premise. (wkgen) is obtained by induction on A.
(ax) is obtained by induction on A using (wkgen). (∩Le) is obtained by induction on the premise.

(co) is obtained by induction on the lexicographically ordered pair (size of A, height of the proof of
the premise), by looking at each possible last rule of the premise. The key case is (∩L):

Γ,A,B,A∩B,∆ `C
∩L

Γ,A∩B,A∩B,∆ `C

we apply (∩Le) and (ex) to the premise to get Γ,A,A,B,B,∆ ` C and we use the induction hypothesis
twice.

(cut) is obtained by induction on the lexicographically ordered triple (size of A, height of the proof
of the left premise, height of the proof of the right premise), by looking at possible last rules of the
premises. Let us focus on the main cases:
• (∩R) rule on the right:

π1

Γ ` A

π2

∆,A,Σ ` B
π3

∆,A,Σ `C
∩R

∆,A,Σ ` B∩C
cut

∆,Γ,Σ ` B∩C

 

π1

Γ ` A
π2

∆,A,Σ ` B
cut

∆,Γ,Σ ` B

π1

Γ ` A
π3

∆,A,Σ `C
cut

∆,Γ,Σ `C
∩R

∆,Γ,Σ ` B∩C

we use the induction hypothesis twice with a decreasing height on the right.

• (∩R) rule on the left and (∩L) rule on the right:

π1

Γ ` A
π2

Γ ` B ∩R
Γ ` A∩B

π3

∆,A,B,Σ `C
∩L

∆,A∩B,Σ `C
cut

∆,Γ,Σ `C

 

π1

Γ ` A

π2

Γ ` B
π3

∆,A,B,Σ `C
cut

∆,A,Γ,Σ `C
cut

∆,Γ,Γ,Σ `C
ex· · · co

∆,Γ,Σ `C

we use the induction hypothesis twice with smaller cut formulas.
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• (constr) rules on both sides (in which we only write the key parts):

· · · A1 ` Ai
1 · · ·

...
· · · Aα ` Ai

α · · ·

. . . ,Bi
1, . . . ` B1

...
. . . ,Bi

β
, . . . ` Bβ

constr
. . . ,κ(Ai

1, . . . ,A
i
α ;Bi

1, . . . ,B
i
β
), . . . ` κ(A1, . . . ,Aα ;B1, . . . ,Bβ)

· · · C1 ` A1 · · ·
...

· · · Cα ` Aα · · ·

. . . ,B1, . . . ` D1
...

. . . ,Bβ , . . . ` Dβ
constr

. . . ,κ(A1, . . . ,Aα ;B1, . . . ,Bβ), . . . ` κ(C1, . . . ,Cα ;D1, . . . ,Dβ)
cut

. . . ,κ(Ai
1, . . . ,A

i
α ;Bi

1, . . . ,B
i
β
), . . . ` κ(C1, . . . ,Cα ;D1, . . . ,Dβ)

 · · ·
Cp ` Ap Ap ` Ai

p
cut

Cp ` Ai
p · · ·

. . . ,Bi
p, . . . ` Bp . . . ,Bp, . . . ` Dp

cut
. . . ,Bi

p, . . . ` Dp · · ·
constr

. . . ,κ(Ai
1, . . . ,A

i
α ;Bi

1, . . . ,B
i
β
), . . . ` κ(C1, . . . ,Cα ;D1, . . . ,Dβ)

we use the induction hypothesis many times (always with smaller cut formulas).

Note a 0-ary constructor κ behaves like an atomic type if ε(κ) = 0, and defines a top type if ε(κ) = 1:

ε(κ) = 1
constr` κ wkgenA ` κ

In particular the types obtained with such 0-ary constructors κ such that ε(κ) = 1 are all equivalent and
we denote them Ω. More generally, ε(κ) controls whether κ distributes over Ω or not. In the case of a
constructor with unary covariant arity, ε(κ) determines whether κ(~A;Ω) = Ω or not.

Proposition 6 (Kernel Properties)
If we define A≤ B as A ` B in ISC, the axioms of Table 2 are satisfied.

Proof. (refl) and (trans) correspond to (ax) and (cut) from Proposition 5. (∩r) is an instance of (∩R) and
for (∩1

l ) we have:

ax
A ` A wkgenA,B ` A

∩LA∩B ` A
Finally, if we have a 0-ary constructor Ω with ε(Ω) = 1, we have just seen it satisfies (Ωr).

Lemma 9 (Inversion)
If κ(A1

1, . . . ,A
1
ακ

;B1
1, . . . ,B

1
βκ
), . . . ,κ(Ak

1, . . . ,A
k
ακ

;Bk
1, . . . ,B

k
βκ
) ` κ(A1, . . . ,Aακ

;B1, . . . ,Bβκ
), there exists

{i1, . . . , ip} ⊆ {1, . . . ,k} such that:

A1 ` Ai1
1 · · · A1 ` Aip

1 · · · Aακ
` Ai1

ακ
· · · Aακ

` Aip
ακ

and Bi1
1 , . . . ,B

ip
1 ` B1 · · · Bi1

βκ
, . . . ,Bip

βκ
` Bβκ

Proof. By induction on the derivation of κ(A1
1, . . . ,A

1
ακ

;B1
1, . . . ,B

1
βκ
), . . . ,κ(Ak

1, . . . ,A
k
ακ

;Bk
1, . . . ,B

k
βκ
) `

κ(A1, . . . ,Aακ
;B1, . . . ,Bβκ

), with only (wk) and (constr) as possible last rules.

3.2 The Arrow-Product Instance

We consider the following set of constructors:

• an at most countable set of 0-ary constructors denoted X , Y , etc, such that ε(X) = ε(Y ) = · · ·= 0;

• a 0-ary constructor Ω with ε(Ω) = 1;

• a constructor→ with contravariant arity 1 and covariant arity 1 such that ε(→) = 1;
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X ` X `Ω
A ` A1 · · · A ` Ak B1, . . . ,Bk ` B

A1→ B1, . . . ,Ak→ Bk ` A→ B
` B

` A→ B

A1, . . . ,Ak ` A B1, . . . ,Bk ` B
A1×B1, . . . ,Ak×Bk ` A×B

Table 8: ISC Deduction System with→ and ×.

• a constructor × with contravariant arity 0 and covariant arity 2 such that ε(×) = 0.

By instantiating the (constr) rule of Table 7 to this set of constructors, and using the (wk) rule to
simplify the X and Ω cases, we obtain the rules of Table 8 where k ≥ 1.

Theorem 1 (Equivalence with BCD)
A ` B in ISC with the (constr) rule instantiated as given in Table 8 if and only if A≤ B using the rules of
Table 4 extended with the rules of Table 6.

Proof. From left to right, we prove a slightly more general statement: A1, . . . ,Ak ` B implies
⋂

1≤i≤k Ai ≤
B. From right to left, the key results are in Propositions 5 and 6.

Lemma 10 (Inversion for Arrow)
If A≤ B is obtained from Tables 4 and 6, we have:

⋂
i∈I

(Ai→ Bi)≤ A→ B ⇒ ∃J ⊆ I,

(⋂
i∈J

Bi ≤ B ∧ ∀i ∈ J, A≤ Ai

)

This is the key property of subtyping allowing for subject β -reduction to hold in the BCD typing
system. While the traditional proof goes by induction on the derivation which requires a more general
statement to deal with the transitivity rule, we rely here on the subformula property. The traditional
approach seems more difficult to use in a context where we may have many type constructors.

Proof. By Theorem 1, we have
⋂

i∈I(Ai→ Bi) ` A→ B, thus if I = {1, · · · ,k}, we get A1→ B1, . . . ,Ak→
Bk ` A→ B by Proposition 5. By applying Lemma 9, we obtain A ` Ai1 ,. . . , A ` Aip , Bi1 , . . . ,Bip ` B with
J = {i1, . . . , ip} ⊆ I, so that

⋂
i∈J Bi ` B, and we conclude with Theorem 1.

Lemma 11 (Inversion for Product)
If A≤ B is obtained from Tables 4 and 6, we have:⋂

i∈I

(Ai×Bi)≤ A×B ⇒
⋂
i∈I

Ai ≤ A ∧
⋂
i∈I

Bi ≤ B

Proof. Similarly by Theorem 1, Proposition 5 and Lemma 9.

3.3 BCD Subtyping with Unary Constructors

Our system ISC also generalises BCD subtyping with unary covariant constructors [BCD+18]. In their
setting constructors come as a set of unary covariant operations κ on types added to the usual→ and Ω

constructors:
A,B ::= X | A→ B | A∩B |Ω | κ(A)
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where each constructor κ satisfies the following subtyping properties:

A≤ B
κ(A)≤ κ(B) κ(A)∩κ(B)≤ κ(A∩B)

This exactly corresponds in the ISC setting to a set of constructors κ all satisfying ακ = 0, βκ = 1
and ε(κ) = 0 (the constructors → and Ω are obtained as before). For example the associated (constr)
rule can be derived in the [BCD+18] setting:

⋂
1≤i≤k κ(Ai)≤ κ(

⋂
1≤i≤k Ai)

⋂
1≤i≤k Ai ≤ A

κ(
⋂

1≤i≤k Ai)≤ κ(A)⋂
1≤i≤k κ(Ai)≤ κ(A)

4 Conclusion

We have presented a general way of defining a subtyping relation on intersection types which allows
us to extend the BCD subtyping to generic contravariant/covariant type constructors. It makes easy to
derive key properties used to get subject reduction and subject expansion of the induced type systems.
As a concrete example we have fully developed the extension of BCD with product types.

Our approach can be extended to the case where a preorder relation 4 between constructors leads
to κ1 4 κ2 ⇒ κ1(A) ≤ κ2(A), by a natural generalisation of the (constr) rule. Another interesting case
would be the study of sum types for which a bit more work is needed to get subject expansion.

We also plan to work on the characterisation of normalizability properties of terms through typing
properties in intersection type systems: solvability, normalization, strong normalization, etc. We would
like to extend the known results [BCDC83] to the case with more type constructors.

Acknowledgements. We would like to thank to Jan Bessai and Andrej Dudenhefner would suggested
us to look at BCD with constructors. Thanks also to the anonymous referees for their comments.
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